
MySQL Performance Optimization
P R A C T I C A L

A hands-on, business-case-driven
guide to understanding MySQL
query parameter tuning and
database performance optimization.

and networks in both business and personal
interconnections, performance has become one
of the key metrics of successful communication.
Optimizing performance is key to maintaining
customers, fostering relationships, and growing
business endeavors.

A central component to applications in any business
system is the database, how applications query
the database, and how the database responds to
requests. MySQL® is arguably one of the most
popular ways of accessing database information.
There are many methods to configuring MySQL that
can help ensure your database responds to queries
quickly and with a minimum amount of application
performance degradation.

Percona is the only company that delivers enterprise-
class software, support, consulting, and managed
services solutions for both MySQL and MongoDB®
across traditional and cloud-based platforms that
maximize application performance while streamlining
database efficiencies. Our global 24x7x365 consulting
team has worked with over 3,000 clients worldwide,
including the largest companies on the Internet,
who use MySQL, Percona Server, Amazon® RDS for
MySQL, MariaDB® and MongoDB.

With the increasing
importance of applications

This book, co-written by Peter Zaitsev (CEO and
co-founder of Percona) and Alex Rubin (Percona
consultant, who has worked with MySQL since
2000 as DBA and Application Developer)
provides practical hands-on technical expertise to
understanding how tuning MySQL query parameters
can optimize your database performance and
ensure that its performance improves application
response times. It also will provide a thorough
grounding in the context surrounding what the
business case is for optimizing performance, and
how to view performance as a function of the
whole system (of which the database is one part).

THIS BOOK IS PRESENTED WITH
THE FOLLOWING SECTIONS:

 » Section 1 (this section): Application
Performance and User Perception

 » Section 2: Why is Your Database
Performance Poor?

 » Section 3: MySQL Configuration

For more information on Percona, and Percona’s
software and services, visit us at www.percona.com.

Peter Zaitsev, CEO

Peter Zaitsev is CEO and co-founder of Percona. A serial
entrepreneur, Peter enjoys mixing business leadership with hands-
on technical expertise. Previously he was an early employee at
MySQL AB, one of the largest open source companies in the world,
which was acquired by Sun Microsystems in 2008. Prior to joining
MySQL AB, Peter was CTO at SpyLOG, which provided statistical
information on website traffic.

Peter is the co-author of the popular book, High Performance
MySQL. He has a Master’s in Computer Science from Lomonosov
Moscow State University and is one of the award-winning leaders
of the world MySQL community. Peter contributes regularly to the
Percona Performance Blog and speaks frequently at technical and
business conferences including the Percona Live series, SouthEast
LinuxFest, All Things Open, DataOps LATAM, Silicon Valley Open
Doors, HighLoad++ and many more.

Alexander Rubin, Principal Consultant

Alexander joined Percona in 2013. Alexander worked with MySQL
since 2000 as a DBA and Application Developer. Before joining
Percona he was doing MySQL consulting as a principal consultant
for over 7 years (started with MySQL AB in 2006, then Sun
Microsystems and then Oracle). He helped many customers design
large, scalable and highly available MySQL systems and optimize
MySQL performance. Alexander also helped customers design big
data stores with Apache Hadoop and related technologies.

AB0UT THE AUTHORS

Introduction:
“Software is eating the world.”

Practical MySQL Performance Optimization 2

Introduction

INTRODUCTION
There is a common phrase you’re probably familiar with:
“software is eating the world.” It was coined by Marc Andreessen
in an essay on the implications of a software-driven society. It’s
truer today than it was then. Indeed, applications impact and
infiltrate more areas of our life every day. There isn’t an aspect of
our lives that doesn’t have an application: we’re using applications
to share stories with our friends, share our kitten photos, and
even share cabs.

As applications become a larger and larger part of our life, our
expectations for those applications are also growing larger. We
want applications to be always up, bug free, easy to use, secure,
and well performing. In this book, we’re going to talk about this
last (but not least) application quality: performance. This book
will cover the details of what application performance is, how we
define it, and how we measure it.

Once we have defined application performance and examined
how to properly measure it, we will discuss approaches to getting
performance to the correct level, along with the most practical
ways of doing it (without overspending, wasting developer
resources, or creating impossible-to-maintain applications).

It is worth noting that performance goes hand in hand with
availability. Availability is often viewed as much more important
than performance, and managed much more tightly in many
organizations. If your application responds so slowly that the user
loses patience and quits waiting for a reply, the result is viewed as
application downtime.

Practical MySQL Performance Optimization 33

Introduction

It goes without saying that users love systems that perform well,
and are always available. Over the years, we’ve amassed a great
deal of research on how performance impacts user behavior,
revenues, and business success. Here are a few specific examples:

 » In 2006, Amazon reported 100ms reduction in page speed
that caused 1% increase in revenue

 » In 2008, Google reported an increase of page load time
from 400ms to 900ms that decreased traffic and ad
revenues by 20%

 » In 2009, Akamai reported that 40% of users will abandon a
website if it takes more than 3 seconds to load

These statistics obviously demonstrate the link between ensuring
great performance and your business’ success. If you’re not
working on improving performance, certainly your competitors are.

Even though it is obvious that ensuring system performance and
availability is very important for business’ success, many members
of developer and operations teams don’t understand performance
very well. This lack of understanding can either cause application
performance problems, or prevent resolving them in a timely
manner. For example, developers often test their code using a
small database, when the application is meant to interact with
a large one. This can mask scalability and performance issues.
Understanding how performance affects business decisions
and business outcomes is an excellent tool at any level of the
application management: it is good for career advancement as
well as good for the company.

Practical MySQL Performance Optimization 4

Introduction

Viewing application performance from the 30,000-foot level
is really looking at how quickly applications respond to user
requests (where the “user” can also be other systems) in a given
circumstance. Applications typically contain many components,
and most of those components will contribute to response time.

What limits application performance depends primarily on the
application. In his 2004 book High Performance Web Site, Steve
Souders discovered 80-90% of response time comes from the
application front end. When investigating performance, the front
end is the first place to investigate (if the application backend
is well optimized). On the other hand, at Percona we often run
into applications where the backend is a problem--and more
specifically, the database.

In addition to being a common bottleneck, a database is often
harder to scale compared to an application’s front end. Web
servers, application servers, and the client-side workload are
often easy to scale linearly with the growing number of users.
The database, however, does not linearly scale so easily. If you
don’t maintain and maximize database performance, you risk it
becoming a performance bottleneck.

Percona’s experience and expertise with troubleshooting and
optimizing database performance, and more specifically MySQL®,
is the subject of this book. However, even if you’re using some
other database technology (such as NoSQL, MongoDB®, or
others) you should find many of the concepts and ideas expressed
in this book very helpful.

Application Performance

Practical MySQL Performance Optimization 6

Application Performance

APPLICATION PERFORMANCE
In many of my conference presentations, I like to throw up a
slide that states: “Nobody cares about MySQL performance.”
(Depending on the audience I might replace “nobody cares” with
something stronger!) It definitely gets people’s attention. When
they start to argue about how wrong I am, I follow it with this slide:
“Users care about application performance.”

In information technology systems, performance is defined as
the amount of useful work a system accomplishes in relation to
time and other resources, such as memory, disk IO or CPU usage.
Performance is typically measured either by throughput (the
amount of work done per period of time) or response time (how
quickly system responds to the user request), which in the context
of database systems refers to the SQL statement or other API call.

It is crucial to understand this subtle difference in thinking.
While it is true that many times when we improved application
performance, we did so by optimizing MySQL, in other instances
that was not the case.

As an example, when the Facebook Platform for developers was
first released, its early users came to Percona to help fix their
MySQL database performance. After investigating the problem,
it turns out it was API calls to the platform that were taking a long
time and causing application problems (not MySQL).

With another customer, we looked at their database and didn’t find
any significant load. When we asked them why they thought it was
the database, their reply was, “Because it is always the database!”

Practical MySQL Performance Optimization 77

Application Performance

This attitude is demonstrative of how many developers look at
database performance.

 So while the database may well be the bottleneck for application
performance, it is much better to start with understanding
application performance in general, it’s various causes from the
front to back end, and to drill down from there. As you do, you will
come to the database, if it is indeed the cause of the problem.

When it comes to applications, a bottleneck is any component
system, device, resource, or application that impacts the
performance of the whole system. This could include:

 » Software programming
 » Caching issues
 » CPU issues
 » Operating System deficits
 » Network fluctuations
 » Memory issues
 » Database design

There is another important reason to look at the entire application
when investigating performance: even if the performance problem
is caused by the database (the “bottleneck” in this case), it doesn’t
mean the solution lies with the database as well. In many cases you
can resolve database issues by reducing the amount of load it has
to handle, instead of just making it faster. This can be done, as an
example, by enabling some form of application caching.

Practical MySQL Performance Optimization 8

Application Performance

As much as users, your boss cares about application
performance—or your boss’s boss. The higher up you go in the
management chain, the less interest there is in understanding the
technical reasons that are causing application performance to
degrade. Rather, they mostly care about ensuring that applications
work quickly overall (and thus customers are happy). Embracing
this aspect of your job can be helpful when review time rolls
around! This is known as response time.

In any system, response time is the amount of perceived time it
takes for the user to get feedback from entering input. “Good”
response time is relative to the operation--a front page needs to
respond quickly, whereas a search query is not as time-sensitive.
Many (or all) aspects of a system can contribute to response time.

Understanding response time from the perspective of a given
user’s interactions is a great way to look at application performance
problems. It points to where exactly the response time comes
from, where you need to focus, and how much performance
optimization is potentially possible. For example, if a one
second response time contains 800ms that comes from the
database, we can reduce total response time by almost 80%
(in a best case scenario) with database optimization. If only
200ms is the database’s responsibility, pursuing other optimization
avenues may be your first priority (or at least in parallel with
database optimization).

Practical MySQL Performance Optimization 99

Application Performance

This important insight comes from proper “application
instrumentation,” which allows you to understand how a given
request or type of requests affect response time. Many developers
create and implement their own simple instrumentation, which can
grow into very powerful in-house performance management tools.
Many leading enterprise and web companies use such in-house
solutions. Or you could also consider using tools like NewRelic and
AppDynamics, which provide easy-to-use instrumentation and
can easily analyze data.

A common ad-hoc approach to diagnosing performance issues
is using special code as instrumentation. The special code could
include routines for measuring and logging timing for certain
application functions. This allows you to measure how much time
the suspect code takes to execute--demonstrating where the
program might be contributing to response time issues.

Finally, using solutions like Dtrace or SystemTap can be very
powerful, and allow you to add the measurement data point to the
code running the application without recompiling the application.

Since instrumentation support depends significantly on the
programming language, platform, and development platform in
use, we’ll leave a more detailed instrumentation discussion to
other sources.

If it isn’t possible to instrument the application, we often have to
take the opposite approach by looking at the possible bottleneck
suspects (often the database in our case). This can be done by
enabling the database log file in the development environment
check what the application is doing. For example, using the logs

Practical MySQL Performance Optimization 10

Application Performance

to observe what queries the application makes, their number,
and their response time, and then measuring that against the
full application response time allows us to gauge what portion of
the response time is the database’s responsibility. This method
is easiest to apply in a development environment where there is
only one person using the system. (It can also be done using the
production environment, but it is more complicated and depends a
great deal on the environment parameters.)

Whether the database is at fault, or the problem lies elsewhere
in the system, it is very important that all the development and
operational teams maintain a good working relationship. Too often
we witness the blame game: trying to throw the problem over the
fence rather than focusing on solving the problem at hand. It is
common to see the development team hold the attitude that “...we
should be able to run any queries we want, as often as we want, and
it is up to the operations team to make sure it works!” Conversely,
the operations team often embody the attitude that “. . . if only
developers wouldn’t run such complicated queries, the database
would perform well!”

The reality is both of those approaches are selfish, and defeat
finding a solution: you can’t expect a database to run all the queries
you throw at it, but some applications require complex database
queries. To reach optimal results, the development and operations
teams need to work together during both the design phase and
during the troubleshooting phase, and be ready to give concessions.

Understanding
Performance

Practical MySQL Performance Optimization 12

Business Needs

UNDERSTANDING PERFORMANCE
In many cases, performance is in the eye of the beholder. Users
perceive how systems behave through their expectations, and
compare the performance against similar systems to make
an assessment about whether performance is outstanding or
inadequate. As the world changes, so does the user’s attitude
toward performance. In the late 1990s, I remember having Internet
access through a 14400-baud modem. Waiting for minutes for
a page to load was common. In today’s world, few people have
the patience to wait more than few seconds for a page to load.
An application appears broken if its interactive elements do not
respond within fractions of a second.

What is considered to be adequate performance is not only
defined by user expectations, but also by specific use cases.
Financial markets that employ stock trading are known to be very
sensitive to response time, to the point where the physical location
of the trading server in proximity to the stock exchange matters
(due to communication delays over the physical media).

A system or application will often need to support multiple user
interactions. For example, a typical ecommerce site has a search
function, product detail page, and checkout function—and all of
them have different response time criteria. “Landing” pages often
have one of the lowest response time requirements, as it is crucial
for making a good first impression. A search function in many
cases does not have as strict a response time criteria, as searches
can be computationally expensive and users expect them to take
time. A checkout function also isn’t nearly as time-critical, as
communicating with external payment gateways takes some effort.
If we look at the internal “back office” functions, such as reports of
items sold, these often have even more relaxed criteria.

Practical MySQL Performance Optimization 1313

Business Needs

Users and Performance
Just as all application functions are not created equal, all users
are also not created equal. There is a good chance that many
performance problems will correspond to specific users or data
objects. Often some operations teams get so familiar with certain
user issues that they immediately recognize them, and you can
hear team members say something like “Ah, user 1256 is trying to
browse his one hundred thousand photos again!”

When problems are specific to certain users or certain data
objects, this typically means they are outliers to some extent:
holding much more data than the average user, having different
cardinality, producing a large amount of requests, or have those
requests being unusually slow and expensive.

You should not ignore these outliers for two reasons. The first
is because your problem children are often your most valuable
users and most active champions of your product. In the stock
photography website example above, the user has one hundred
thousand pictures in their portfolio. The user is one of their top
sellers and is much more important to the business than the
average user. The second reason is such users not only can have a
poor performance experience themselves, but in many cases they
can take up resources and impact the performance experience for
other users as well.

 For example, you may have heard about Facebook’s “Justin
Bieber” problem. Justin Bieber had more than 72 million likes on his
Facebook page at the point of this writing (and counting). I would
think having a page on Facebook is good both for Mr. Bieber and
Facebook, but it does require some special engineering to support
that level of user.

Practical MySQL Performance Optimization 14

Business Needs

Investing engineering resources to support extreme use cases is
one option. Another might be to simply impose some limitations.
For example, LiveJournal for many years had a limit of 750 “friends”
because they could not support more than that while maintaining
consistently high performance. An even more prominent example
is Google, which does not return more than 1000 search results
for any query. Having clear limits in the software is often a much
better choice than having users getting themselves in situations
where the application starts to perform poorly (and builds up user
frustration).

A final option is firing abusive users. Many low-cost shared hosting
providers with “unlimited” space and traffic take this approach.
The user one thousand times more active than the average user is
quite likely to cost too much to support, and will be asked to leave
(or “upgrade”) to higher-end dedicated hosting.

Timing is Everything
Performance can also be impacted by time. First, there is the
typical variation in the system load between daytime and nighttime
(even global systems tend to have significant variance) where
performance during peak times might suffer if the system gets
overloaded. Second, it is possible for internal system process cycles
to impact system performance. This might be caused by running
automated scripts for hourly reporting, nightly backup processes,
or monthly billing applications. Such scripts can cause significant
impact to system performance, to the point where some systems
are known to have higher user-facing performance problems
during nighttime when the interactive users load is ostensibly the
lowest. The performance during these times is impacted by the
maintenance scripts that often get scheduled during “down” time.

Practical MySQL Performance Optimization 1515

Business Needs

That’s So Random
Finally, the universe is a random place. There is a lot of strange
stuff that goes on that can affect application performance. Perhaps
a Google Bot (if you’re lucky) or Spam Crawl Bot (if you’re not)
decided to give your website an intensive crawl. Maybe your
application just became famous by being mentioned on TV (or
even worse, Justin Bieber just wrote about it on his Facebook
page). Maybe your hosting provider is having some issues, or,
especially in cloud and virtualized environments, the neighbors
sharing your infrastructure started to use a lot of resources.
Figuring out what the universe decided to lay at your doorstep is
often difficult. Sometimes performance problems come and go and
never happen again. Their exact cause remains unknown.

How to Look at Response Time
Up until now, we have been discussing system response times
in the context of individual transactions by specific users. In the
large-scale systems, there will be millions or billions of users—
analyzing every one of them isn’t possible. So how can we look at
all this data?

First off, the wrong way to look at response time is through the
“average.” There is a saying you may have heard: “I once knew a
man who drowned trying to cross a stream that was three feet
deep—on average.” (You will hear many similar anecdotes in system
performance expert circles.) The point is that looking at the average
response time in most cases is a bad way to address the problem.

Practical MySQL Performance Optimization 16

Business Needs

At the same time, looking at the maximum response time is also
rarely a good idea (unless you’re working with hard, real-time
systems). The complexity of modern systems guarantees that
some of the billions of transactions will be much slower than you
would like.

Instead, the best option is to look at the percentile response time.
For example, the 99th percentile shows a response time that 99%
of all requests were able to match or beat. If the 99th percentile for
a landing page opening was 5ms, then the response time of 99% of
people going to that landing page was 5ms or better. Applications
that are very focused on performance and have a large volume
of requests—Amazon.com for example—might set even higher
criteria, such as the 99.9% percentile. This would allow only 1 out of
every 1000 requests to be an outlier.

As previously discussed, since response times can vary
significantly due to time of day, user interaction, server, or
database, it often makes sense to set a different percentile
response time for each variable and watch for outliers based on
the modifying factors. Using the stock photo website, for example,
we might look at the 99% response time for user interaction to
browse photos every five minutes, but use the 95% response time
for every user on daily basis.

You might ask why the difference in the percentile figures and the
time of the activity. The answer is sample size. In order to compute
reliable percentile numbers you have to have decent sample sizes.
You can’t really compute a 99th percentile response time if there
are only two requests in the sample that match the criteria. A good
rule of thumb (OK, my rule of thumb!) Is that you should allow
for at least 10 outliers when you compute percentile figures. For

Practical MySQL Performance Optimization 1717

Business Needs

example, if we’re looking to compute a 99% response time for a
given transaction every 5 minutes, I need to ensure I’m observing at
least 1000 events during this time (10 being one percent of 1000).

Since response time is what is readily apparent to users—
and the focus of their concern—it is obviously a key
metric to track. But what other readily available metrics
should we be concerned about? Should we be concerned
with rates such as the number of requests per second
(throughput) or utilization (as percent of CPU usage)?

While these metrics can often be very helpful benchmarks for
capacity planning and performance analyses, they should be seen
as a secondary metrics—mainly because they are not what your
user cares about. In fact, the relationship between such metrics
and performance can be very complicated.

Another thing to consider is that in real world systems, response
time impacts the inflow of requests in various ways. Sometimes
users faced with a slowly responding system will start clicking reload,
increasing the inflow of complicated requests and overloading
the system. We often see this as many orphaned queries on the
database level that are sometimes left running for hours. At the
same time, users also tend to abandon systems that perform very
poorly, reducing inflow of requests and letting them recover.

In a different example, it is entirely possible for a system to have
100% CPU usage when handling a large load without seriously
increasing response time. Chances are the CPU load is attributable
to low priority processes that yielded when resources were needed
to handle more important functions.

Practical MySQL Performance Optimization 18

Business Needs

The “requests per second” is often a great way to gauge the system
load. The system load often affects the response time. This same
metric is also helpful for benchmarking and capacity planning.
For example, if I changed the MySQL configuration and I see the
throughput reduced by 50%, it definitely shows I should rethink
the configuration adjustment—without employing an in-depth
response time analyses.

Another class of performance-related metrics that can be helpful
is “resource use metrics,” such as number of IOs, CPU time used,
memory usage, and network bandwidth. These all correspond
to physical resource usage, and it is important to monitor these
resources, as there is only so much to go around. If a system runs
out of these resources, the system behavior is likely to change and
performance will be drastically impacted.

For example, running out of available CPU time causes queuing
in the run queue and contributes to increasing the response time.
Running out of memory can cause system swapping, drastically
slowing down the system.

Going forward, we will focus a great deal on the response time,
contributors to response time, and the how this metric affects the
end user. However we will also discuss other metrics related to
performance, such as the number of requests per second, amount
of memory used, or number of input/outputs per second (IOPS)
performed when appropriate.

Another important concept when working on performance
problems is “causality versus correlation.” While observing a system
exhibiting slow user interaction response times, you might wonder
which user interactions are hindering system performance because
they take a lot of resources, and which are slow because resources

Practical MySQL Performance Optimization 1919

Business Needs

have been exhausted. Sometimes it is very clear which one is the
issue. In other cases, however, the answer might not be so simple.

For example, you might have a system able to handle 10 concurrent
requests in parallel efficiently. However, 100 requests at the same
time can overload the system due to not having enough resources
to efficiently process them. In such cases it is not specific user
interaction that caused the problem, but rather the fact so many
were attempted at the same time.

Another example of causality versus correlation (a fancy way of
saying “finding the true cause”) is seeing the number of requests
on the database go up when application response time decreases
dramatically. You could claim that a specific number of requests
caused the application to respond slower. In reality, however, it
could be issues with the caching infrastructure that are causing
a high cache miss rate—generating an increase in the number of
queries to the database and application slowness.

It’s not always clear what is causing a performance issue. It’s not
always easy to distinguish the cause of a performance issue from
something that is coincidentally happening at the same time.
Deep investigation may be needed to find a performance issue’s
root cause (or causes). If you keep response time as your focus,
however, you have a much better chance at figuring out which is
which. We will talk more about this in one of the next chapters.

Finally, it is important to realize that performance optimization
is a never-ending story. There is always a way to further improve
system performance and reduce resource usage. Typically,
however, each additional performance gain comes with higher and
higher cost. The ends don’t justify the means at a certain point. For

Practical MySQL Performance Optimization 20

Business Needs

example, you can’t get a round trip from the USA to India in 1ms at
any cost (unless you figure out how to break the speed of light!).

Since you can always invest more into performance pursuits,
and because performance optimization has a law of diminishing
returns, you need to understand how much performance you really
need. What response times are acceptable for users? How efficient
does the system need to be? How expensive and complicated
would it be to reach these goals?

You should always think about the alternatives uses of the time and
costs of optimizing beyond the return on investment (ROI). There
is a point where you should stop specific optimization efforts and
focus on other options: optimizing different parts of the system,
building new features or improving quality. We will talk more about
more specific prioritization methods as we go along.

Business Needs

Practical MySQL Performance Optimization 22

Business Needs

BUSINESS NEEDS

Application users look at performance very selfishly: if an
application responds quickly to their requests, they are happy.
Keeping users happy, at least most of them most of the time, is
typically an important business goal—however it is not the only goal.

When working on system performance optimization, it is important
to understand what business needs exist that justify or prevent
implementing your solutions.

Consultants are very familiar with the concept “true, but useless,
advice.” The phrase means examining a problem, offering a valid
solution that applies, and then realizing it can’t be implemented
due to current business realities or office politics. An example
of this effect might be something like suggesting a department
using Microsoft move to Linux, or move to a physical hardware
environment, right after the CIO spent fifty million dollars
implementing a completely virtualized enterprise environment.

The following are a few things businesses typically care about in
addition to getting the best performance possible.

Agility
Agility is perhaps the most common business requirement that
impacts application performance. Many businesses want software
development to be agile—able to move fast and deliver new
features to the market quickly. This often means the shortest
route to implementation will be used, versus planning for high
performance. In many cases performance design and capacity

Practical MySQL Performance Optimization 2323

Business Needs

planning won’t even be addressed at the outset, but instead tackled
when the system starts to experience performance problems.

You will often see a great deal of resistance to performance
optimizations that impact development agility, complicate
the development process, or slow it down. This often means
using ideas that aren’t the most direct route to solving the
problem. Resistance to a more optimal solution could mean
implementing queries manually instead of using an ORM
framework in critical performance cases, implementing caching,
or using replication or sharding.

Looking Ahead/Supporting Growth
Performance optimization is generally done for a specific scale. If
that scale changes—more data, users, etc.—to say ten times the
current architecture, then the current performance optimization
might not be sufficient (or might even be detrimental by increasing
architectural complexity). When addressing performance issues,
it necessary to understand what direction the application or
system is heading, and how the change may affect performance
optimization requirements.

Resource Efficiency
Many people think that a high performance system is the same
as an efficient system. It isn’t. For example, the fastest sports car
isn’t the most fuel-efficient. This is also true when scaling systems.
Highly scalable systems typically need to be distributed, and
distributed systems tend to be more complicated and less resource
efficient than systems that aren’t. Knowing if your main goal is
optimization or resource efficiency is important, as it will affect
many of the decisions you make.

Practical MySQL Performance Optimization 24

Business Needs

In computing, resources are any physical or virtual system
component that has limited availability. Resources included things
like CPU, memory, I/O operations, network bandwidth, number of
file descriptors process can use, etc.

It is also important to prioritize what resources are optimized first,
as not all resources are created equal. Saving one often means
spending more of another. For example, saving on disk space often
employs compression, which causes more CPU power usage.

Costs
Costs are separate from resource efficiency because costs can
be driven by other factors besides resources. For example, many
companies are looking to be environmentally conscious these days,
while others might simply have space limits in their data center.

Businesses watch costs, and performance optimization can save
money by either directly reducing resource usage or by avoiding
additional future investments.

As of November 2015, a single master-slave configuration, with a
database size of 500GB, with 500 IOPS on the master, hosted on
Amazon’s AWS, can cost around $3,200 per month, or roughly
$38,400 a year in hosting fees. With conservative growth, this could
balloon up to around $4,800 per month ($57,600 per year) in order
to accommodate more data and more storage.

Practical MySQL Performance Optimization 2525

Business Needs

Tuning and auditing an environment like the above can give some
customers up to 50% (or more) improvement in performance, and
often see 20-25% reduction in space. Even with a conservative 25%
boost in your performance and slight reduction in data and storage
would save almost $15,000 in the first year alone. Over 4 years this
could translate to an estimated $75,000 in total savings in AWS
costs just based on smaller data and performance enhancements.
And this is just a small setup.

At Percona, we have worked with many customers where cost
management was the primary need instead of performance
optimization. Through performance optimization, we can often
provide a significant cost savings. Especially with modern cloud
environments, costs savings often can be realized immediately

300

225

D
ol

la
rs

 (T
ho

us
an

ds
)

Months

150

75

4 13 22 31 40
0

Unoptimized

Conservative

Optimized

Practical MySQL Performance Optimization 26

Business Needs

by reducing the number of servers or storage in use, or the cloud
environment configuration. Even if you have already made
hardware purchases for your current workload, optimization after
the fact can achieve much higher performance from existing
hardware and reduce future expenses.

Cost is often the driving factor for moving to an open source
database. Many come to Percona for help moving from Oracle® or
Microsoft SQL Server® to MySQL—not because MySQL performs
better for their workload (it often doesn’t), but because it offers
acceptable performance at a dramatically lower cost. It also avoids
vendor lock in—allowing for better pricing options for future needs.

There are many different types of costs businesses care about.
Some of them are straightforward, such as hardware, licensing, or
cloud services subscriptions. Other costs, however, are also very
important—such as development and operations costs.

We’ve already discussed agility, and the time to implement new
features. Since time is money, however, the larger the team required
to build the same application, the higher the costs. Operational
costs function the same as development costs. How much do you
spend on the operations team to keep the database up and running
24x7? Generally, the larger and more complicated your environment
is, the more expensive it is going to be to maintain.

Security and Compliance
Security and compliance can be considered shackles that don’t
help performance agility, development agility, or resource usage,
but are increasingly important in the modern world. They are a
great concern due to increasing government technology regulation
and increased attention to security and privacy caused by several
high profile security incidents.

Practical MySQL Performance Optimization 2727

Business Needs

Security and compliance requirements are heavily tied to
specific industries or companies; typically little can be done
but follow them.

Many security and compliance requirements, such as secure
connections, data encryption, and audit logging, can be looked at
as application features, and as such be optimized for performance
appropriately. You should ask questions such as how do these
features impact performance? Why is the performance affected? Is
it reasonable? Is there anything you can do to reduce the overhead?

Do Not Be Afraid to Negotiate
We often encounter a development team that has been tasked to
produce something that is difficult, expensive, and complicated
to implement. Yet nobody ever asks the question of whether the
request is really worth the cost.

Not questioning implementation requests is fraught with peril, as it
can lead to overcomplicated and inefficient architectures. Always
examine the performance implication of a requested feature and
see whether an alternative solution would be “good enough,” but
easier to implement.

For example, when you enter “the” in Google, you get about 25
billion matches. Of course, it’s not exactly 25 billion matches,
because computing the exact number of matches is expensive and
provides no value (and is kind of silly). From a user perspective, the
difference between “about 25 billion matches” and “25,302,434,121
matches” is meaningless. Yet many smaller search engines insist on
reporting the exact number of matching documents.

Practical MySQL Performance Optimization 28

Business Needs

Sometimes you can redefine features so that you can make it
“good enough” for the context, but much cheaper to implement.
In other cases, you might opt for removing some features from the
roadmap (or even existing features) if maintaining them with high
performance is costly.

There Are Always Politics and Team Dynamics
As much as many of us would like to avoid politics, many
organizations (especially larger ones) come with strong and
persistent politics that span all areas—including choosing
technology and making technology decisions. Whether you’re
working as consultant, or you’re a permanent member of the team,
it is important to know the political situation, understand what
suggestions are feasible, which are taboo, how to present ideas, and
how to make things happen. You have a limited amount of time
and energy and have to pick your fights. Happily, most problems
have more than one solution—there is always “more than one way
to skin the cat.” Often you can meet performance (or other) goals
without ruffling too many feathers.

Remember to take team skills and experience into account.
Solutions must meet the skills and strengths of the people that
employ them.

For example, when working with a team with little experience using
SQL and relational databases, we often end up choosing simpler
queries and doing more work on the application. This isn’t perfect,
but it is best solution for the team.

On other hand, many Oracle users that now employ MySQL like
using a lot of stored procedures. Stored procedures often don’t
perform as well in MySQL, and are not easy to debug. However, if
not used excessively, they can work well.

Practical MySQL Performance Optimization 2929

Business Needs

 In other cases though, some internal prejudices might be worth
the fight. The infrastructure team of one customer we worked with
was convinced by the DBA team that no one should need more
than 16GB of memory, including databases. This philosophy ended
up creating a huge IO workload that required a lot of servers. Since
hardware selection was the infrastructure team’s job, the DBAs
were overstepping their boundaries. Convincing everybody to
upgrade memory capacity to 64GB reduced the servers to a third
of their previous number (including a reduction in the number of
replicas) and increased response time at the same time.

If there is a lot to win, don’t let politics stop you: pick a fight!

In the next section of this book, we’ll begin discussing how to
specifically isolate the cause of poor application performance, and
how to work through various root causes in order to isolate MySQL
as the issue.

How Percona Can Help

Practical MySQL Performance Optimization 3131

Introduction

How Percona Can Help
Potential performance killers are easy to miss when you are busy
with daily database administration. Once these problems are
discovered and corrected, you will see noticeable improvements in
data performance and resilience.

Percona Consulting can help you maximize the performance
of your database deployment with our MySQL performance
audit, tuning and optimization services. The first step is usually
a Performance Audit. As part of a Performance Audit, we will
methodically and analytically review your servers and provide a
detailed report of their current health, as well as detail potential
areas for improvement. Our analysis encompasses the full stack
and provides you with detailed metrics and recommendations
that go beyond the performance of your software to enable
true performance optimization. Most audits lead to substantial
performance gains.

If you are ready to proactively improve the performance of your
system, we can help with approaches such as offloading workload-
intensive operations to memcached. If your user base is growing
rapidly and you need optimal performance at a large scale, we can
help you evaluate solutions. If performance problems lie outside
of MySQL or NoSQL, such as in your web server, we can usually
diagnose and report on that as well.

Percona Support can provide developers and members of your
operation team the 24x7x365 resources they need to both build
high performance applications and fix potential performance
issues. Percona Support is a highly responsive, effective, affordable
option to ensure the continuous performance of your deployment.

Practical MySQL Performance Optimization 32

Introduction

Our user-friendly Support team is accessible 24x7 online or by
phone to ensure that your databases are running optimally. We can
help you increase your uptime, be more productive, reduce your
support budget, and implement fixes for performance issues faster.

If you want to put your time and focus on your business, but still
have peace of mind knowing that your data and database will be
fast, available, resilient and secure, Percona Database Managed
Services may be ideal for you. With Percona Managed Services,
your application performance can be proactively managed by
our team of experts so that problems are identified and resolved
before they impact your business. When you work with Percona’s
Managed Service team you are able to leverage our deep
operational knowledge of Percona Server, MySQL, MongoDB,
MariaDB®, OpenStack Trove and Amazon® RDS to ensure your
data (and your database) is performing at the highest levels.

Our experts are available to help, if you need additional manpower
or expertise to improve and insure the performance of your system.
To discuss your performance optimization needs, please call us at
+1-888-316-9775 (USA), +44 (203) 6086727 (Europe), visit
http://learn.percona.com/contact-me or have us contact you.

Practical MySQL Performance Optimization 3333

How Percona Can Help

ABOUT PERCONA

Percona is the only company that delivers enterprise-class
software, support, consulting, and managed services solutions
for both MySQL and MongoDB across traditional and cloud-
based platforms that maximize application performance while
streamlining database efficiencies. Our global 24x7x365 consulting
team has worked with over 3,000 clients worldwide, including
the largest companies on the Internet, who use MySQL, Percona
Server, Amazon RDS for MySQL, MariaDB and MongoDB.

Percona consultants have decades of experience solving complex
database and data performance issues and design challenges.
We consult on the full LAMP stack, from hardware to operating
systems and right up through the database and web tiers. Because
we are both broadly and deeply experienced, we can help build
complete solutions. Our consultants work both remotely and on
site. We can also provide full-time or part-time interim staff to
cover employee absences or provide extra help on big projects.

Percona was founded in August 2006 by Peter Zaitsev and Vadim
Tkachenko and now employs a global network of experts with
a staff of over 125 people. Our customer list is large and diverse
and we have one of the highest renewal rates in the business. Our
expertise is visible in our widely read Percona Data Performance
blog and our book High Performance MySQL.

Visit Percona at www.percona.com

Copyright © 2015 Percona LLC. All rights reserved. Percona is a registered trademark of Percona LLC. All other trademarks or service marks are property of their respective owners.

Percona Corporate Headquarters

8081 Arco Corporate Drive, Suite 330
Raleigh, NC 27617, USA

www.perc0na.com
info@percona.com

usa +1 (888) 401-3401
eur +44 (203) 6086727

