
A Comprehensive
Plan for Migration from

MySQL 8.0
to MySQL 8.4

2

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

I. Executive Summary: The Strategic
Case for Upgrading to MySQL 8.4
This report provides a comprehensive, risk-mitigated plan for migrating a database from
MySQL 8.0 to the MySQL 8.4 Long-Term Support (LTS) release. The strategic importance of
adopting an LTS version for production environments lies in its extended support lifecycle,
which ensures long-term stability, security patching, and predictability for business-critical
applications. The migration from one major version to another is not a trivial task and requires
meticulous planning to avoid operational disruptions. This document outlines the necessary
preliminary steps, details three distinct migration methodologies, and provides a final valida-
tion and optimization checklist to ensure a successful and smooth transition. The central the-
sis of this report is that a “simple” upgrade is a misnomer. The most critical phase is not the
migration itself, but the preparation and pre-flight checks. The new server defaults in MySQL
8.4 may fundamentally alter performance characteristics, and deprecated features could
break application or operational scripts.

For enterprises that operate in an open-source ecosystem, the migration process can be sup-
ported by third-party tools and services, such as those provided by Percona.

Tools like Percona Toolkit are specifically engineered to assist with complex tasks such as
data migration and performance analysis. Percona XtraBackup also provides a hot backup
utility for MySQL 8.4, which is a critical part of a robust migration strategy.

The core recommendations of this plan are to:

1. Proactively identify and
address incompatibilities
using automated tools;

2. Choose the appropriate
migration method based
on the specific use case,
risk tolerance, and
required downtime;

3. Perform a full dry
run in a non-production
environment to validate
the entire process.

3

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

II. The Transition from MySQL 8.0
to MySQL 8.4: A Comprehensive
Release Notes Analysis
Upgrading from MySQL 8.0 to MySQL 8.4 involves more than simply replacing binaries. The
new version introduces a variety of incompatible changes, new default behaviors, and the re-
moval of deprecated features, all of which can significantly impact existing applications and
operational practices.4 A thorough understanding of these changes is essential for a success-
ful migration.

A. Incompatible Changes
and Breaking Behaviors

A number of critical changes in MySQL 8.4 necessitate a review of
both the database schema and application code prior to migration.
•	 Authentication and User Management: The most significant change for appli-

cation connectivity is the shift in default authentication. The deprecated mysql_nati-
ve_password authentication plugin is now disabled by default as of MySQL 8.4.0.6. This
means any application or user account that relies on this legacy authentication method
will fail to connect after the upgrade unless the plugin is explicitly re-enabled via the
mysql-native-password=ON server option. This is a deliberate security enhancement,
pushing users toward the more secure caching_sha2_password plugin. Additionally, the
default_authentication_plugin variable has been removed entirely, with the system now
defaulting to caching_sha2_password for all new user accounts. This change represents
a clear strategic directive from Oracle to modernize and secure the MySQL ecosystem,
moving away from older, less secure protocols. The implication is that a seemingly strai-
ghtforward upgrade could lead to widespread application downtime if a proactive analy-
sis is not performed.

4

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

•	 Replication Terminology: The MySQL documentation confirms a complete removal of
the MASTER and SLAVE terminology from the SQL syntax. All related commands, such as
START SLAVE, SHOW SLAVE STATUS, and CHANGE MASTER TO have been removed and
replaced with new REPLICA and SOURCE terminology. For example, START SLAVE is now
START REPLICA, and CHANGE MASTER TO is now CHANGE REPLICATION SOURCE TO. This
requires a comprehensive review and update of any custom scripts, applications, or opera-
tional tooling that manages replication, as they will cease to function with the new syntax.

•	 Spatial Indexes: A known bug exists up to MySQL version 8.0.40, in which a spatial index
could become corrupted after a minimal update to a geometry, followed by a delete opera-
tion. To mitigate this risk and prevent data loss, the official recommendation is to drop any
spatial indexes on tables before the upgrade and then re-create them after the migration
is complete. This is a crucial step to ensure data integrity, or better upgrade to the latest
available version of 8.0 to get the bug fix.

•	 New Reserved Keywords: The introduction of new reserved words, such as MANUAL,
PARALLEL, QUALIFY, and TABLESAMPLE, can cause schema-related issues. If any data-
base objects, such as table or column names, use these words as unquoted identifiers,
the upgrade will fail or application queries will break. A pre-upgrade check is mandatory to
identify and properly quote these identifiers.

•	 Data Type Restrictions: The AUTO_INCREMENT option is no longer permitted on FLOAT
and DOUBLE data types. The presence of a table containing such a column will cause the
upgrade process to fail, requiring a data type conversion prior to migration.

B. Changed Server Defaults and
Their Performance Implications

MySQL 8.4 is pre-tuned for modern hardware, and several server variable defaults have been
adjusted to reflect this. A simple in-place upgrade that carries over the old configuration file
may not leverage these improvements and, in some cases, could lead to unexpected perfor-
mance behavior.

5

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

The table below illustrates some of the most impactful changes in InnoDB system
variable defaults.

InnoDB System
Variable Name

New Default
Value (MySQL 8.4)w

Previous Default
Value (MySQL 8.0)

innodb_adaptive_hash_
index

OFF ON

innodb_change_buffering none all

innodb_flush_method on
Linux

O_DIRECT if supported,
otherwise fsync

fsync

innodb_io_capacity 10000 200

innodb_log_buffer_size 67108864 (64 MiB) 16777216 (16 MiB)

innodb_numa_interleave ON OFF

temptable_max_ram 3% of total memory (1-4
GiB range)

1073741824 (1 GiB)

innodb_parallel_read_
threads

available logical
processors / 8 (min 4)

4

These changes are not arbitrary; they are a direct response to the evolution of server hardware
and a reflection of common production workloads. The dramatic increase in innodb_io_capacity
from 200 to 10000 signals a deliberate effort to leverage high-speed SSD and NVMe storage for
I/O-bound operations. Similarly, a larger innodb_log_buffer_size reduces the frequency of physical
writes to the redo log, which is beneficial for write-heavy workloads. The change in innodb_adap-
tive_hash_index default from ON to OFF represents a shift toward predictable performance, as the
adaptive hash index can be a source of concurrency bottlenecks in certain scenarios.

An existing my.cnf file from an 8.0 installation will likely not be optimized for these new realities. A
DBA who previously manually tuned their system to innodb_io_capacity = 1000 for an SSD will find
the new default of 10000 to be a significant improvement. Conversely, a server on legacy spinning
disks might be negatively impacted by these aggressive defaults. This highlights that the old con-
figuration file should not be blindly used; it must be reviewed and
re-evaluated against the new defaults, or a new configuration should be generated to maximize the
benefits of the upgrade.

6

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

C. Plugin and
Component Upgrades

Percona Server for MySQL 8.4 introduces a shift from plugins to components for several key
features, a change that requires a manual transition during the upgrade process. It is generally
recommended to transition to the component version of a feature in the 8.0 series before up-
grading to 8.4 if both a plugin and a component are available for that feature.

The configuration of these features also changes: plugins use system variables and the
--early-plugin-load option, while components rely on a separate configuration file and are load-
ed using a manifest.

Key plugin changes and their
recommended transition paths include:
•	 keyring_vault: The primary differences between MySQL Keyring plugins and

Keyring components center around their implementation, loading, configuration,
and capabilities. Plugins rely on the older server plugin infrastructure, are load-
ed using the early-plugin-load option, and configured via plugin-specific system
variables. In contrast, components use the newer component infrastructure, are
loaded via a manifest, and are configured using individual component-specific
configuration files rather than system variables. Furthermore, components offer
fewer restrictions on supported key types and lengths, and, critically, they provide
secure storage for persisted system variable values (like passwords and private
keys), a feature that plugins do not support.

•	 audit_log: This plugin has been removed entirely in 8.4. The recommended re-
placement is component_audit_log_filter.

•	 audit_log_filter: This plugin has a corresponding component. The transition
to the component should be performed after the upgrade to 8.4.

•	 data_masking: For this feature, it is specifically advised to transition to the
component_masking_functions in the 8.0 series before upgrading to 8.4.

•	 binlog_utils_udf and percona-udf: These user-defined functions, previ-
ously installed via a plugin, are now available as components. After running
INSTALL COMPONENT, all functions are automatically registered, which sim-
plifies the process.

7

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

The general procedure for transitioning from a plugin to a component involves setting up the
new component’s configuration file, loading the component using a manifest, thoroughly test-
ing its functionality in a staging environment, and then removing the original plugin.32 This
process should be carefully planned to minimize downtime and ensure that all existing func-
tionality is correctly transferred

D. Percona Toolkit
Compatibility and Changes

Percona, a company that provides software and
services for open-source databases, has updated
its popular Percona Toolkit to support MySQL 8.4.15.
These updates address the breaking changes
introduced by MySQL 8.4, and any user relying
on these tools should be aware of the following:

•	 New Terminology:
Percona Toolkit now fully supports the new REPLICA and SOURCE terminology
in MySQL 8.4.15

•	 Renamed Tools:
To align with the new terminology, the tools pt-slave-find and pt-slave-restart
have been renamed to pt-replica-find and pt-replica-restart, respectively. Aliases
with the old names still exist for a transition period, but it is recommended to
update scripts to use the new names.

•	 Deprecated Tool:
The pt-slave-delay tool has been deprecated because its functionality can be
achieved using built-in delayed replication features.

•	 Improved Authentication Support:
Percona Toolkit has also received updates to improve SSL support and now
consistently supports the caching_sha2_password and sha256_password
authentication plugins.

8

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

E. Deprecated and
Removed Features

A number of features have been removed
to streamline the server, simplify the
codebase, and align with modern standards.

•	 Replication Statements & Variables: A wide array of MASTER/SLAVE
commands and status variables have been removed. This is part of a broader
terminology clean-up, but it also means that any scripts or tools that rely on
these status variables (e.g., Com_show_slave_status) will no longer function.

•	 Authentication Variables: The default_authentication_plugin variable is now
removed.

•	 Removed Functions: The WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() SQL
function, which was deprecated in 8.0, has been removed; its replacement is
WAIT_FOR_EXECUTED_GTID_SET().

•	 System Variables: The expire_logs_days system variable, used for binary log
purging, has been removed in favor of binlog_expire_logs_seconds.

•	 Memcached-related Features: All variables related to the built-in
memcached functionality, such as daemon_memcached and innodb_api, have
been entirely removed. This signifies a deprecation of this feature within the
core offering.

The removal of these features and variables is not arbitrary. It represents a clear strategic
direction for MySQL as a modern LTS product. Removing redundant, obsolete, or tangential
features simplifies the server and reduces the surface area for bugs and maintenance. It is
the user’s responsibility to ensure that their operational scripts and applications do not rely on
these now-obsolete components.

9

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

F. Upgrade
path

Upgrade Path Path Examples Supported
Upgrade Methods

Within an LTS or Bugfix series 8.0.37 to 8.0.41 or
8.4.0 to 8.4.4

In-place upgrade,
logical dump and
load, replication, and
MySQL Clone

From an LTS or Bugfix series
to the next LTS series

8.0.37 to 8.4.x LTS In-place upgrade,
logical dump and
load, and replication

From an LTS or Bugfix release
to an Innovation release
before the next LTS series

8.0.34 to 8.3.0 or
8.4.0 to 9.0.0

In-place upgrade,
logical dump and
load, and replication

From the Innovation series to
the next LTS series

8.3.0 to 8.4 LTS In-place upgrade,
logical dump and
load, and replication

From an Innovation series to
an Innovation release after
the next LTS series

Not allowed, two steps
are required: 8.3.0 to 8.4
LTS, and 8.4 LTS to 9.x
Innovation

In-place upgrade,
logical dump and
load, and replication

III. Removed Parameters
and Functions in MySQL 8.4
A key part of a successful migration is identifying and addressing all removed parameters,
variables, and functions. Using any of these in a configuration file or application code after
the upgrade will result in an error and prevent the server from starting or the application from
running. The mysqlsh upgrade checker utility can identify many of these issues, but a manual
review of this list is also a critical part of the preparation.

10

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

A. Removed Server and
Replication System Variables

Variable Name Description Replacement

avoid_temporal_upgrade Whether ALTER TABLE
should upgrade pre-5.6.4
temporal columns.

N/A

binlog_transaction_
dependency_tracki ng

Source of dependency
information from which
the multithreaded
applier assesses parallel
execution.

Functionality is now
internal.

character-set-client-
handshake

Do not ignore client-side
character set value sent
during handshake.

N/A

default_authentication_
plugin

Default authentication
plugin.

authentication_policy

expire_logs_days Purge binary logs after a
number of days.

binlog_expire_logs_
second s

group_replication_primary_
member

Primary member UUID
when in single-primary
mode.

N/A

group_replication_
recovery_complete_ at

Recovery policies
when handling cached
transactions.

N/A

have_openssl Whether the server
supports SSL connections.

N/A

have_ssl Whether the server
supports SSL connections.

N/A

innodb_api_... variables All innodb_api variables
related to the built-in
memcached functionality.

N/A

11

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

B. Removed Server Options, SQL
Statements, and Status Variables

Item Name Type Replacement

admin-ssl Server Option --tls-version and--admin-
tls-version

authentication_fido_rp_id Server Option N/A

--language Server Option N/A

--old and --new Server Option N/A

Com_change_master Status Variable Com_change_replication_
source

Com_show_master_status Status Variable Com_show_binary_log_
status

Com_show_slave_status Status Variable Com_show_replica_status

Com_slave_start Status Variable Com_replica_start

Com_slave_stop Status Variable Com_replica_stop

CHANGE MASTER TO SQL Statement CHANGE REPLICATION
SOURCE TO

SHOW SLAVE STATUS SQL Statement SHOW REPLICA STATUS

START SLAVE SQL Statement START REPLICA

STOP SLAVE SQL Statement STOP REPLICA

WAIT_UNTIL_SQL_THREAD_
AFTER_GTID S()

SQL Function WAIT_FOR_EXECUTED_
GTID_S ET()

12

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

IV. Ecosystem Compatibility:
A Review of Third-Party Tools
A major version upgrade impacts not only the database server but also the entire
ecosystem of tools and applications that interact with it. Ensuring compatibility
with third-party tools like backup utilities, proxies, and monitoring solutions is a
critical step in a successful migration.

A. Percona
XtraBackup (PXB)

Percona XtraBackup is a widely used open-source hot backup utility. It has a specific version-
ing and compatibility model that must be considered before upgrading.

•	 Version-Specific Backups: Percona XtraBackup 8.4 is designed to create backups of
data from MySQL 8.4, Percona Server for MySQL 8.4, and Percona XtraDB Cluster 8.4. It
does not support backing up databases from MySQL 8.0 or 9.x servers.

B. Percona Operator
for MySQL upgrade

The upgrade process from Percona XtraDB Cluster (PXC) 8.0 to PXC 8.4 using the Percona
Operator for MySQL on Kubernetes involves creating a new installation of the Percona Operator
solution using the Percona Operator for PXC 8.4. Then, recover the data from an original 8.0
backup, then establish asynchronous replication between the two clusters to keep data in sync.

In-place upgrade is not suggested at the time of writing, and while it may work, there is no guar-
antee it will.

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

C. ProxySQL

ProxySQL is an open-source, high-performance proxy for MySQL. Its abil-
ity to route and manage traffic makes it a critical component in many
high-availability and sharded environments. Compatibility with MySQL
8.4 is essential for seamless operation.

Replication
Terminology:
As a key component
in replication
setups, ProxySQL’s
compatibility with the
new REPLICA/SOURCE
terminology is vital.
The research indicates
that a replication
setup using MySQL
8.4 with ProxySQL
can be configured
with the new syntax.
Additionally, ProxySQL
can be configured to
monitor replica lag
and stop sending
traffic to a replica if its
replication is broken
or has a high lag.

Authentication
Plugin: ProxySQL
versions 2.6 and
later are compatible
with the caching_
sha2_password
authentication
plugin, which is
the new default
in MySQL 8.4.
This is a crucial
compatibility check,
as applications
connecting through
the proxy will need
to support the new
authentication
method.

MySQL 8.4
Support:
Recent versions of
ProxySQL, including
those available in
Percona’s Operator
for MySQL, have
added support
for MySQL 8.4.
ProxySQL now
includes Group
Replication support
for MySQL 8.4
and 9.x

13

14

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

D. Percona Monitoring
and Management (PMM)

Percona Monitoring and Management (PMM) is an
open-source solution for monitoring the health and
performance of database systems. Its compatibility
ensures that performance metrics, query analytics,
and alerting continue to function after the upgrade.

•	 MySQL 8.4 Monitoring: PMM is designed to monitor a variety of MySQL variants, including
Percona Server for MySQL, Percona XtraDB Cluster, and Oracle MySQL Community Edition.
A recent community blog post announced “complete MySQL 8.4 replication monitoring” in
PMM version 3.4.0. This confirms that PMM has been updated to handle the new syntax
and features of the 8.4 release.

•	 Tool Integrations: PMM supports monitoring for a wide range of technologies, including
ProxySQL and Percona XtraDB Cluster, ensuring that the entire database ecosystem can be
observed from a single pane of glass.

15

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

V. Phase 1: A Production-Grade
Pre-Migration Strategy
The success of a major version upgrade is determined not by the speed of the migration itself,
but by the thoroughness of the preliminary planning and testing phases. This is the single
most important part of the entire process.

A.The Golden
Rules

#1: Test, Test, Test
A migration should never be attempted on a production server without first perform-
ing a dry run in a staging or test environment. This environment must be a clone of
the production system, using the same dataset, hardware specifications, and rep-
resentative application workload. This is the only way to validate the entire upgrade
procedure, from pre-flight checks to post-migration application testing, without risk
of production downtime or data loss. Percona also strongly recommends creating
a test environment, noting that there is no supported downgrade procedure from
MySQL 8.4. For clustered environments, the best practice is to upgrade one node at
a time, starting with the secondary nodes to minimize impact.

#2 Upgrade to Latest Minor Version
To ensure stability and security, it is mandatory to upgrade your MySQL or Percona Serv-
er installation to the latest minor version available for your current major release. This
action is critical for receiving all accumulated bug fixes. For example, the spatial index
corruption issue (Bug #36452528) was officially resolved in the MySQL 8.0.41 release.

#3 Use Percona Toolkit’s pt-upgrade Utility:
Function: This critical diagnostic tool enables pre-upgrade performance validation.
It systematically compares query plans and execution behavior between your cur-
rent production environment (e.g., Percona Server 8.0) and the target release (e.g.,
Percona Server 8.4). Benefit: Allows the early detection of performance regressions
or unexpected changes in query optimization before deployment.

16

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

B. Automated Pre-Flight Checklist:
The mysqlsh Upgrade Checker

The cornerstone of a safe migration is the mysqlsh utility’s util.checkForServerUpgrade() func-
tion. This tool proactively scans the database and identifies potential upgrade blockers before
any changes are made.

Step-by-Step Usage:

1. Install mysqlsh on the source server.

2. Connect to the existing MySQL 8.0 instance.

3. Run the utility and specify the target version:
util.checkForServerUpgrade({version: ‘8.4.0’}).

4. Review the generated report carefully and address every flagged issue.

The utility performs a wide range of checks, including:

•	 reservedKeywords: Detects database object names that conflict with the new
reserved words in 8.4.

•	 defaultAuthenticationPlugin: Identifies user accounts that still rely on the
now-disabled mysql_native_password plugin.

•	 removedFunctions: Flags functions used in stored routines that have been
removed in the target version.

•	 sysVarsNewDefaults: Reports system variables with changed defaults, which
prompts the DBA to review and potentially adjust their configuration file.

•	 spatialIndex: Flags spatial indexes that need to be dropped and re-created af-
ter the upgrade to prevent corruption.

17

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

C. Establishing a
Performance Baseline

Prior to any changes, a performance baseline of the current MySQL 8.0 environment must be
established.4 This involves running a representative application workload on the production
system and collecting metrics such as query latency, throughput (QPS), and resource utiliza-
tion (CPU, I/O).4 This benchmark will serve as a critical point of comparison to validate perfor-
mance improvements or identify regressions after the upgrade.

D. The Backup
Strategy

A full, verifiable backup is a non-negotiable prerequisite for any major version upgrade. Before
initiating the migration, the team must confirm that a recent backup exists and has been suc-
cessfully restored in a test environment. This provides a safety net in the event of unforeseen
issues, allowing for a swift rollback to the original state. Percona XtraBackup is a popular tool
for this purpose, offering hot backups without disrupting server performance.

VI. Phase 2: Detailed
Migration Methodologies
There are three primary methods for migrating from MySQL 8.0 to MySQL 8.4, each with its
own advantages and disadvantages based on the specific operational requirements.

18

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

A. Method: In-Place
Binary Upgrade

This method involves replacing the existing MySQL 8.0
packages or binaries with the new MySQL 8.4 packages
on the same server, without moving the data.

•	 Ideal Use Case:
This method is suitable for small to medium-sized databases where the underlying
hardware and operating system are not changing. It offers the lowest perceived
complexity and shortest downtime, as the automatic upgrade of system tables is handled
upon server restart.

•	 Step-by-Step Procedure (Linux-centric):

1.	 Preparation: Complete all pre-migration checks from Phase 1.

2.	 Shutdown MySQL 8.0: Stop the server to ensure a clean upgrade process. For
systemd-managed servers, the command would be sudo systemctl stop mysqld.
Configure the server to perform a slow shutdown by setting innodb_fast_shutdown=0
before shutting down.

3.	 Replace Binaries: Install the MySQL 8.4 binaries. On most Linux distributions, this
involves updating your package repository configuration and running an upgrade
command.

4.	 Restart MySQL 8.4: Start the new server. The MySQL server will automatically
perform the necessary system table upgrades upon startup. The server may be
unavailable during this automatic upgrade process.

•	 Post-Upgrade Actions:
While the automatic upgrade handles most tasks, it is a best practice to run the
mysql_upgrade command explicitly to finalize the process and check user tables for
incompatibilities. The server must then be stopped and restarted for these changes to
take full effect.

19

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

B. Method: New environment
with cut over

Upgrading with a new environment involves provisioning a duplicate environment with the
same number of servers, with the same hardware specs and the same operating system as
the current production nodes.

On the newly provided hardware, the target MySQL version will be installed. The new environ-
ment will be set up, and the production data will be recovered. Remember that you can use
pt-config-diff to verify MySQL configurations.

Replication from the current source to the newly built environment will be established. At cu-
tover time, all writes on the current source will be halted, and the application traffic will need
to be redirected to the new source. The cutover can be done using a Virtual IP address or by
manually redirecting the application itself. Once writes are being received on the new environ-
ment, you are in a fail-forward situation, and the old environment can be torn down.

The new environment strategy
has the following pros and cons:

•	 Additional infrastructure cost since a new environment must be built.

•	 Ability to upgrade both the OS and the DBMS at the same time.

•	 Allows upgrade of hardware easily.

•	 Requires only a single cutover window.

20

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

B.1 Logical Migration
with MySQL Shell

This is the recommended method for major version
upgrades, especially when migrating to new hardware,
a different operating system, or a cloud-based
environment.It involves exporting the data from the
source and importing it into a new, clean target instance.

•	 Ideal Use Case:
This approach is highly flexible, scalable, and provides the highest level of safety.

•	 The Dump Process: util.dumpInstance()

•	 The mysqlsh utility is the modern, multithreaded alternative to the legacy mysqldump
tool. It can export an entire instance with parallelism, creating separate, chunked files
for each table that can be loaded concurrently.

•	 Example command for a parallel dump: mysqlsh --uri=user:password@host:port--sql
--execute “util.dumpInstance(‘/path/to/dump’, {threads: 8, compression: ‘zstd’})”.

•	 Key options like threads and compression are vital for performance. Using zstd is
recommended for superior compression ratios and faster speeds during both the
dump and load processes.

•	 The Load Process: util.loadDump()

•	 The util.loadDump() utility is designed to import the files created by the dump
utility. It is also multithreaded and can load tables and chunks of tables in parallel,
significantly reducing the total load time. The threads option, which defaults to 4,
controls the level of parallelism.

•	 Example command for a parallel load: mysqlsh root@localhost:3306 -- util load-dump
/path/to/backup.

•	 util.loadDump() can also handle decompression automatically and can resume
interrupted loads, making it robust and reliable.

21

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

B2. Logical Migration with
MyDumper and MyLoader

MyDumper and MyLoader are high-performance,
open source alternatives to mysqldump and
mysql that are specifically engineered for
parallel data export and import.

•	 Ideal Use Case:
This is a strong choice for migrating extremely large databases (1TB+) where minimizing
downtime is the top priority.

•	 The MyDumper Process:

•	 MyDumper’s parallelism is controlled with the --threads (-t) option, and a guideline is
to use one thread per CPU core. It can also split large tables into smaller, manageable
chunks using --chunk-filesize (-F). The recommended compression method is zstd for
optimal performance.

•	 Example command: mydumper --host=localhost --user=root --password=mypassword
--outputdir=/path/to/backup --threads=8 --chunk-filesize=1G --compress=zstd.

•	 The MyLoader Process:

•	 MyLoader handles the parallel import, with options for fine-tuned performance. The
--threads (-t) option controls concurrency, and a best practice is to allocate one thread
for every two vCPUs. The --queries-per-transaction (-q) option allows for balancing
transaction size and commit frequency, which can be critical for performance.
MyLoader also includes the --optimize-keys option, which loads data without
secondary indexes and then builds them afterward, a technique that can significantly
accelerate the import process.

•	 Example command: myloader --threads=4 --directory=/path/to/backup
--database=mydatabase --queries-per-transaction=1500 --optimize-keys.

22

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

This table provides a concise comparative analysis of the three migration methods.

Method Ideal Use
Case

Pros Cons Key Command/
Utility

In-Place
Binary

Small to
medium
DB, same
hardware/
OS.

Minimal
downtime,
simple
for minor
upgrades.

Less flexible,
higher risk if
pre-checks
are skipped.

systemctl start
mysqld

Logical with
mysqlsh

New
hardware/
OS, cloud
migrations.

Highly flexible,
robust, official
Oracle tool,
multithreaded.

Slower than
in-place,
requires
additional
storage for
dump files.

util.
dumpInstance(),
util.loadDump()

Logical with
MyDumper

Extremely
large
databases
(10 TB+).

Fastest logical
method, fine-
grained control,
robust.

Requires a
separate tool
installation,
higher
complexity.

mydumper,
myloader

VII. Phase 2.5: Upgrading Percona
XtraDB Cluster (PXC) from 8.0 to 8.4
Percona XtraDB Cluster (PXC) migration is a specialized form of a rolling upgrade, designed
for high-availability topologies. The process is similar to a minor version upgrade, but with a
few critical differences to ensure the cluster remains stable and consistent during the transi-
tion. A rolling upgrade is the standard method for PXC, where you update one node at a time
while the others handle the workload.

23

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

A. The Rolling
Upgrade Process

To perform a rolling upgrade of a PXC cluster,
follow these steps on each node, one at a time,
until the entire cluster is running the new version.

1. Synchronize Nodes: Ensure all nodes in the cluster are synchronized and
healthy before starting the upgrade on the first node.

2. Stop the Service: Shut down one of the 8.0 nodes. A common best practice
is to start with a secondary node to minimize impact.

3. Remove Old Packages: Uninstall the existing PXC 8.0 packages. It is
crucial not to delete the data directory during this step, as it contains the clus-
ter’s data.

4. Install New Packages: Install the Percona XtraDB Cluster 8.4 packages
on the node.

5. Start the Service: Start the mysqld service with the new packages. The
cluster will handle the data directory upgrade automatically. The node will ei-
ther upgrade in-place during startup or perform a State Snapshot Transfer (SST)
from another node to get a consistent copy of the data.

6. Repeat: Once the first node is successfully running on 8.4 and has rejoined
the cluster, repeat the process for the next node. Continue this procedure for all
nodes until the entire cluster is on PXC 8.4.

24

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

B. State Snapshot
Transfer (SST) Improvements

Percona XtraDB Cluster 8.4 introduces a significant improvement to the SST process by im-
plementing the Clone plugin. The Clone SST method leverages MySQL’s native cloning capa-
bilities to transfer data from a donor node to a joiner node. This method is faster and more
resource-efficient than traditional SST methods like xtrabackup or rsync. This makes adding
or re-syncing a node to a large cluster a much quicker and less intrusive operation, which is a
key benefit for the migration process.

However, Clone cannot be used to perform an in-place upgrade between major versions. In-
stance cannot be cloned from a different MySQL server series. For example, you cannot clone
between MySQL/Percona Server 8.0 and MySQL 8.4, but you can clone within a series, such
as MySQL 8.4.1 and MySQL 8.4.13. This means that the Clone SST method cannot be used
during a major version upgrade.

C. Key Challenges in
a Mixed-Version Cluster

While PXC 8.0 and PXC 8.4 nodes can coexist in a mixed-version cluster, there are specific
DDL (Data Definition Language) operations that can cause inconsistencies. The Galera proto-
col itself is compatible, but certain DDL enhancements in 8.4 can fail on an 8.0 node, leading
to its eviction from the cluster.

A prime example is the support for foreign keys referencing non-unique or partial keys. In
MySQL 8.4, this operation is allowed, but in 8.0, it is not. If an administrator runs a

CREATE TABLE statement with such a foreign key on an 8.4 node, it will succeed. However,
because DDL statements are replicated as a transactional operation (TOI) and must execute
identically on all nodes, the statement will fail on the 8.0 node. The cluster’s consistency vot-
ing protocol will detect this difference and evict the 8.0 node.

To mitigate this risk, it is highly recommended to perform all DDL statements on the oldest
version node (the 8.0 node) in the cluster during the rolling upgrade. This ensures that only
DDL that is compatible with all versions in the cluster is executed. Another change to be aware
of is that PXC 8.4 uses a keyring component instead of the keyring plugin, though the docu-
mentation notes that a donor node using the plugin can still work with an 8.4 node using the
component, ensuring compatibility during the rolling upgrade.

25

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

VIII. Phase 2.6: Replication Topology
Upgrades and Challenges
Upgrading a single MySQL server is a well-defined process, but migrating a production replica-
tion topology requires a more nuanced approach to ensure high availability and data consis-
tency. A rolling upgrade is the only viable strategy to minimize downtime.

A. The Rolling
Upgrade Strategy

The official documentation and best practices from companies like Per-
cona recommend a specific order for upgrading servers in a replication
topology to ensure continuous operation. The process is as follows:

This method is applicable to standard replication and is also the recommended approach for
upgrading Percona XtraDB Cluster and MySQL InnoDB Cluster, ensuring minimal disruption.

4. Upgrade
the Old Source:
The original source
server is now
an isolated 8.0
instance. It can
then be upgraded
following the single-
server procedure
and reintroduced
into the new
replication topology
as a replica of the
new 8.4 source.

3. Perform a
Switchover:
Once all replicas
are on the new
version (8.4), a
planned switchover
is performed. Stop
all client updates to
the original source,
wait for at least one
replica to apply all
pending changes,
and then promote
one of the upgraded
replicas to become
the new source.

2. Monitor
Replication:
During this
phase, it is
critical to
monitor the
replication status
to ensure that
the upgraded
replicas are
correctly pulling
and applying
changes from
the older source
server.

1. Upgrade
Replicas First:
Begin the upgrade
with the replicas,
starting with the
ones that are
farthest away
from the source
in a multi-layered
topology. This
allows the newly
upgraded replicas
to catch up with
the older version
of the source server
without causing
an outage.

26

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

B. Replication-Specific
Breaking Changes

The upgrade from MySQL 8.0 to 8.4 is not seamless
for replication due to several breaking changes.

•	 Terminology Removal:
The most significant and impactful change is the complete removal of the MASTER and
SLAVE terminology from SQL syntax and status variables. This is a breaking change for
any scripts, tools, or applications that rely on the old syntax.

•	 START SLAVE becomes START REPLICA

•	 SHOW SLAVE STATUS becomes SHOW REPLICA STATUS

•	 CHANGE MASTER TO becomes CHANGE REPLICATION SOURCE TO

•	 Authentication for Replication Users:
In MySQL 8.4, the deprecated mysql_native_password authentication plugin is disabled by
default. This can cause replication to fail if the replication user on the source was created
using this authentication method. The replication user must be recreated or altered to use
the more secure caching_sha2_password plugin, ensuring connectivity after the upgrade.

•	 Function and Variable Removals:
The WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() function, which was deprecated in 8.0,
has been removed and must be replaced with WAIT_FOR_EXECUTED_GTID_SET().14 Sim-
ilarly, the expire_logs_days system variable has been removed in favor of binlog_expire_
logs_seconds.

27

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

Downgrade

You cannot perform a
direct in-place rollback
from MySQL 8.4 to 8.0.
The only supported method for downgrading between major versions like this
is to restore a backup taken before the upgrade was performed.

This is because MySQL 8.4 introduces significant changes to the data dictio-
nary and internal file formats that are not backward-compatible with MySQL
8.0. Trying to start a MySQL 8.0 server with data files from an 8.4 installation
will result in errors and will not work.

Supported Downgrade Methods
Restore from a pre-upgrade backup: This is the safest and most reliable
method. Before attempting any major version upgrade, you should always create
a full logical or physical backup of your data. If the upgrade fails or you need to
revert, you can simply restore this backup to a clean MySQL 8.0 installation.

Logical Dump and Load: If you don’t have a backup, you can use a logical
dump and load process. This involves exporting your data from the MySQL 8.4
instance using a tool like mysqldump or mysqlpump and then importing it into
a new, clean MySQL 8.0 instance. This method avoids the physical file format
incompatibility, but it’s a slower process and may encounter issues if the 8.4
database uses features or syntax not supported by 8.0.

28

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

IX. Phase 3: Post-Migration
Validation and Optimization
The upgrade is not complete once the migration method is finished. A series of validation
and optimization steps must be performed to ensure the new environment is stable and
performant.

A. Operational
Validation Checklist

B. Performance Tuning
and Optimization

Do not simply copy the old my.cnf file to the new server. As established, MySQL 8.4’s new
defaults are optimized for modern hardware and workloads. The previous configuration may
now be suboptimal or even detrimental. The new values for variables like innodb_io_capacity
and innodb_log_buffer_size are a direct response to the capabilities of modern hardware. The
DBA should reevaluate their configuration, comparing it against the new defaults and making
adjustments accordingly to maximize performance. Percona’s pt-variable-advisor tool, which
has been updated for MySQL 8.4, can help with this process.

4. Connectivity:
Test that all
applications
and clients can
successfully connect
to the new server
using the correct
authentication
methods and
updated replication
terminology.

3. System
and Data
Dictionary
Upgrade:
Confirm that the
mysql_upgrade
process completed
successfully.

2. Error Log
Review:
Scrutinize the
MySQL error log
for any warnings
or errors that
occurred during
the upgrade or
restart process.

1. Server
Status:
Verify that the
new MySQL 8.4
server is running
correctly and
that the version
is as expected.

29

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

C. Application-Level
Verification

The application must be thoroughly tested in the new environment. Re-run the performance
benchmarks established in Phase 1 and compare the new metrics against the baseline. This
will quantify the performance impact of the upgrade and highlight any regressions that require
further investigation.

D. Troubleshooting Common
Post-Upgrade Issues

Even with meticulous planning, issues can arise. The table below lists the most common
post-upgrade problems and their mitigation strategies.

Change Problem Mitigation Strategy

mysql_native_
password default
disabled

Application
connections fail with
authentication errors.

Re-enable the plugin in the my.cnf
file or, for a more permanent solution,
update user accounts to caching_
sha2_password using ALTER USER.

MASTER/SLAVE
terminology
removed

Custom replication
scripts or commands
fail.

Update all operational scripts and
application code to use the new
REPLICA and SOURCE terminology.

AUTO_INCREMENT
on FLOAT/DOUBLE
removed

Upgrade fails with
an error on a specific
table.

Convert the data type of the affected
column to a numeric integer type
before the migration begins.

A comprehensive approach to an upgrade requires a full-stack perspective. The util.checkFor-
ServerUpgrade() tool is a crucial part of this because it identifies cross-layer dependencies be-
fore they become a problem. A successful migration is not just a database-level event; it is a
collaborative effort involving database administrators, application developers, and systems en-
gineers to ensure every layer of the stack is compatible and optimized for the new environment.

30

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

X. Appendices: Essential
Reference Material

Table A: MySQL 8.0 vs. MySQL 8.4 Feature and Configuration Differences

Category MySQL 8.0 MySQL 8.4

Authentication
Default

caching_sha2_
password enabled
by default; mysql_
native_password
enabled by default.

caching_sha2_password enabled
by default; mysql_native_password
disabled by default.6 The default_
authentication_plugin variable is
removed.

Replication
Terminology

MASTER/SLAVE
terminology used
in SQL syntax and
variables.

All MASTER/SLAVE terminology is
removed and replaced with REPLICA/
SOURCE.

New Reserved
Words

N/A MANUAL, PARALLEL, QUALIFY,
TABLESAMPLE are new reserved words.

Data Type
Restrictions

AUTO_INCREMENT is
allowed on FLOAT and
DOUBLE columns.

AUTO_INCREMENT is no longer allowed
on FLOAT and DOUBLE columns.

InnoDB io_
capacity

Default is 200. Default is 10000.

InnoDB log_
buffer_siz e

Default is 16 MiB. Default is 64 MiB.

InnoDB adaptive_
hash_index

Default is ON. Default is OFF.

Replication
Functions

WAIT_UNTIL_SQL_
THREAD_AFTER_
GTIDS() is available.

WAIT_UNTIL_SQL_THREAD_AFTER_
GTIDS() is removed; use WAIT_FOR_
EXECUTED_GTID_SET() instead.

Binlog Variables expire_logs_days is
available.

expire_logs_days is removed; use
binlog_expire_logs_seconds instead.

Memcached
Variables

daemon_
memcached and
innodb_api variables
are available.

All daemon_memcached and
innodb_api variables are removed.

31

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

Table B: Key Commands and Options for mysqlsh
and mydumper for Large-Scale Migrations

Tool Dump/Export
Command

Key Options
and Purpose

Load/Import
Command

Key Options
and Purpose

MySQL Shell util.
dumpInstance(...)

threads: 8 for
parallelism,

compression:
‘zstd’ for file size
reduction.

MySQL Shell util.loadDump(...) threads: 8 for
parallelism,

excludeUsers:
[...] to avoid user
creation.

MyDumper mydumper... --threads=8
for parallelism,

--chunk-
filesize=1G to split
large tables,

--compress=zstd
for optimal
compression.

myloader... myloader… --threads=4
for parallel
import,

--queries-
per-transac
tion=1500
to optimize
commits,

--optimize-keys
for faster index
creation.

References
1. Percona documentation: https://docs.percona.com/percona-server/8.4/upgrade.html

2. Database Migrations - Percona https://www.percona.com/resources/database-migrations

3. Percona Toolkit — An all-around solution to all of your MySQL troubles | by Shadowfax
https://shadowfax-in.medium.com/percona-toolkit-an-all-around-solution-to-all-of-your-m
ysql-troubles-c33610ab3c70

4. Percona XtraBackup 8.4 Documentation https://docs.percona.com/percona-
xtrabackup/8.4/index.html

5. MySQL 8.4 Reference Manual: 3.3 Upgrade Best Practices - MySQL https://dev.mysql.
com/doc/refman/8.4/en/upgrade-best-practices.html

6. Upgrade from 8.0 to 8.4 overview - Percona Server for MySQL https://docs.percona.com/
percona-server/8.4/upgrade.html

7. 8 Changes in MySQL 8.4.0 (2024-04-30, LTS Release) - Oracle Help Center https://docs.
oracle.com/cd/E17952_01/mysql-8.4-relnotes-en/news-8-4-0.html

8. 1.4 What Is New in MySQL 8.4 since MySQL 8.0 https://dev.mysql.com/doc/refman/8.4/
en/mysql-nutshell.html

32

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

9. Changes in MySQL 8.4.4 (2025-01-21, LTS Release) https://dev.mysql.com/doc/relnotes/
mysql/8.4/en/news-8-4-4.html

10. Upgrade the database major version in-place | Cloud SQL for MySQL https://cloud.
google.com/sql/docs/mysql/upgrade-major-db-version-inplace

11. Major Version Upgrade - Oracle Help Center
https://docs.oracle.com/en-us/iaas/mysql-database/doc/major-version-upgrade.html

12. 1.5 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL
8.4 since 8.0

https://dev.mysql.com/doc/refman/8.3/en/added-deprecated-removed.html

13. MySQL Shell 8.4 : 11.1 Upgrade Checker Utility https://dev.mysql.com/doc/mysql-
shell/8.2/en/mysql-shell-utilities-upgrade.html

14. Upgrading MySQL 8.0 BugFix to MySQL 8.4 LTS - Oracle Help Center https://docs.oracle.
com/en/database/mysql/heatwave-aws/hw-aws-upgrading-mysql-8.0- 8.4.html

15. 3.5 Changes in MySQL 8.4 https://dev.mysql.com/doc/en/upgrading-from-previous-
series.html

16. MySQL 8.4 Support in Percona Toolkit 3.7.0 https://percona.community/
blog/2025/01/06/mysql-8.4-support-in-percona-toolkit-3.7.0/

17. Upgrade the database major version by migrating data | Cloud SQL for MySQL https://
cloud.google.com/sql/docs/mysql/upgrade-major-db-version-migrate

18. How to Safely Upgrade InnoDB Cluster From MySQL 8.0 to 8.4 - Percona https://www.
percona.com/blog/how-to-safely-upgrade-innodb-cluster-from-mysql-8-0-to-8-4/

19. MySQL 8.4 Reference Manual :: 3.7 Upgrading MySQL ... - MySQL https://dev.mysql.com/
doc/refman/8.4/en/upgrade-binary-package.html

20. MySQL 8.4 Reference Manual :: 2 Installing MySQL https://dev.mysql.com/doc/mysql-
installation-excerpt/8.3/en/

21. https://dev.mysql.com/doc/refman/8.4/en/upgrade-in-place.html

22. 6.4.5 mysql_upgrade — Check and Upgrade MySQL Tables https://dev.mysql.com/doc/
en/mysql-upgrade.html

23. MySQL Shell 8.4 :: 11.5 Instance Dump Utility, Schema ... - MySQL https://dev.mysql.
com/doc/mysql-shell/8.3/en/mysql-shell-utilities-dump-instance-schema.html

24. Multithreaded Data Dumps With MySQL Shell - Oracle Blogs https://blogs.oracle.com/
mysql/post/multithreaded-data-dumps-with-mysql-shell

25. MySQL Shell 8.0 :: 11.4 Parallel Table Import Utility https://dev.mysql.com/doc/mysql-
shell/8.0/en/mysql-shell-utilities-parallel-table.html

33

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

26. Migrate very large databases to Amazon Aurora MySQL using … https://aws.amazon.
com/blogs/database/migrate-very-large-databases-to-amazon-aurora-mysql-using-
mydumper-and-myloader/

27. MySQL Shell 8.4 :: 11.6 Dump Loading Utility
https://dev.mysql.com/doc/mysql-shell/8.3/en/mysql-shell-utilities-load-dump.html

28. Upgrade from 8.0 to 8.4 overview https://docs.percona.com/percona-server/8.4/
upgrade.html

29. How to Safely Upgrade InnoDB Cluster From MySQL 8.0 to 8.4 https://www.percona.
com/blog/how-to-safely-upgrade-innodb-cluster-from-mysql-8-0-to-8-4/

30. Upgrade Percona XtraDB Cluster
https://docs.percona.com/percona-xtradb-cluster/8.4/upgrade-guide.html

31. docs.percona.com, https://docs.percona.com/percona-xtradb-cluster/8.4/upgrade-
guide.html#:~:text=Shut down an 8.0 node,service%3A Start the node again.

32. Percona Distribution for MySQL 8.4.4 using Percona XtraDB Cluster https://docs.
percona.com/percona-distribution-for-mysql/8.4/release-notes-pxc-8.4.4.htm

33. Percona XtraDB Cluster 8.4.4-4
https://docs.percona.com/percona-xtradb-cluster/8.4/release-notes/8.4.4-4.html

34. Versions compatibility - Percona Operator for MySQL https://docs.percona.com/percona-
operator-for-mysql/pxc/versions.html

35. Releases · sysown/proxysql - GitHub https://github.com/sysown/proxysql/releases

36. MySQL 8 Password Management & Plugin Switching - Mydbops https://www.mydbops.
com/blog/password-management-in-mysql-8

37. Building Production-Ready MySQL Master-Slave Replication with Docker and ProxySQL:
A Complete Guide | by Poulastaa | Sep, 2025 | Medium https://medium.com/@poulastaa/
building-production-ready-mysql-master-slave-replicatio n-with-docker-and-proxysql-a-
complete-guide-70007be745ee

38. Stop Sending Traffic to Broken MySQL Replicas with ProxySQL - Mydbops https://www.
mydbops.com/blog/prevent-proxysql-from-directing-traffic-to-broken-mysql-r eplica

39. Percona Monitoring and Management - Database Tools https://www.percona.com/
software/database-tools/percona-monitoring-and-management

40. PMM - Percona Monitoring and Management https://percona.community/projects/pmm/

34

A Comprehensive Plan for Migration from MySQL 8.0 to MySQL 8.4

