
© 2022 Percona1

Charly Batista

Postgres and Vacuum
Transactions, MVCC, Vacuum, and why it matters

Percona
charly.batista@percona.com

© 2022 Percona2

Who am I?
I’m Charly Batista :)

∙ PostgreSQL Tech Leader @ Percona

∙ Database lover

∙ Working with IT for over 20 years

∙ Craft beer and coffee lover

∙ You can find me at:
https://github.com/elchinoo
https://www.linkedin.com/in/charlyfrankl

https://github.com/elchinoo
https://www.linkedin.com/in/charlyfrankl

© 2022 Percona3

Agenda

MVCC
• What are and why do we need transactions?
• MVCC, what exactly is it?
• MVCC on Postgres

Vacuum and Autovacuum
• What is vacuum?
• How about autovacuum?
• Settings and tuning

© 2022 Percona4

What are transactions?

• A transaction is a logical, atomic unit of work that contains one or more SQL

• Transaction gives some guarantees:

▪ Atomicity

▪ Consistency

▪ Isolation

▪ Durability

© 2022 Percona5

How does it look like?
pagila=# begin;
BEGIN
pagila=# insert into city values(default, 'Brasilia', 15, now());
INSERT 0 1
pagila=# insert into city values(default, 'Shanghai', 23, now());
INSERT 0 1
pagila=# commit;
COMMIT
pagila=#

© 2022 Percona6

Atomicity

• An atomic transaction is an indivisible and irreducible series of database operations
such that either all occur, or nothing occurs:

▪ Indivisible

▪ All or nothing

• Example bank transfer

▪ John transfers $100 to Alice

• Withdraw $100 from John’s bank account

• Deposit $100 into Alice’s bank account

© 2022 Percona7

Atomicity
pagila=# begin;
BEGIN
pagila=# insert into country values(default, 'BRAZIL', now());
INSERT 0 1
pagila=# select * from country where country = 'BRAZIL';
 country_id | country | last_update
------------+---------+------------------------------
 110 | BRAZIL | 2022-05-10 09:33:23.82151+00
(1 row)

pagila=# insert into city values(default, 'Brasilia', 110, now());
INSERT 0 1
pagila=# select c.city_id, c.city, ct.country from city c join country ct on
ct.country_id = c.country_id where country = 'BRAZIL';
 city_id | city | country
---------+--------------+--------------
 603 | 'Brasilia' | 'BRAZIL'
(1 row)
pagila=# commit;
COMMIT

© 2022 Percona8

Consistency

• A transaction must keep the database in a valid state

• Guarantees

▪ Any transactions started in the future necessarily see the effects of other
transactions committed in the past

▪ Database constraints are not violated, particularly once a transaction commits

▪ Operations in transactions are performed accurately, correctly, and with validity,
with respect to application semantics

© 2022 Percona9

Consistency
pagila=# begin;
BEGIN
pagila=# insert into city values(default, 'Brasilia', 110, now());
ERROR: insert or update on table "city" violates foreign key constraint
"city_country_id_fkey"
DETAIL: Key (country_id)=(110) is not present in table "country".

pagila=#

© 2022 Percona10

• Determines how transaction integrity is visible to other users

• Makes the transaction think it is the only transaction working inside the database

• There are different levels of isolation

▪ Read Uncommitted

▪ Read Committed

▪ Repeatable Read

▪ Serializable

▪ Postgres default transaction isolation = 'read committed'

Isolation

© 2022 Percona11

• Ideally prevent race conditions

• Also help prevent anomalies:

▪ Dirty read

▪ Non-repeatable read

▪ Phantom read

▪ Serialization anomaly

Isolation

© 2022 Percona12

Durability

• Committed transactions can not be rolled back

• Committed transactions must survive

© 2022 Percona13

• Multiversion concurrency control

• Concurrency control method commonly used by databases

• Optimistic - means no locking

▪ Readers and Writers do not block each other

• First perform changes in a protected area then change the database state

• Main idea: Version your database (Multiversion :-D)

MVCC

© 2022 Percona14

• Read uncommitted not really implemented on Postgres

• No Rollback segments for UNDO

▪ UNDO management is within tables

• Rows are never really deleted

• A tuple contains the hidden columns to help managing transactions

▪ xmin, xmax, cmin, cmax, …
• Transaction identifiers (xid or transaction IDs) are 32-bit unsigned integer

• ID’s 0, 1 and 2 are reserved.

• Can be inspected, for example “select xmin, xmax, cmin, cmax, a from tb1;”

MVCC on Postgres

© 2022 Percona15

• T1: Start transaction (txid 200)

• T2: Start transaction (txid 201)

• T3: Execute SELECT commands of txid 200 and 201

• T4: Execute UPDATE command of txid 200

• T5: Execute SELECT commands of txid 200 and 201

• T6: Commit txid 200

• T7: Execute SELECT command of txid 201

MVCC on Postgres

© 2022 Percona16

• Each Heap tuple in a table contains a HeapTupleHeaderData structure.

Heap Tuples

© 2022 Percona17

• t_xmin : txid of the transaction that inserted this tuple

• t_xmax : txid of the transaction that issued an update/delete on this tuple and not
committed yet or when the delete/update has been rolled back and 0 when nothing
happened.

• t_cid : The position of the SQL command within a transaction that has inserted this
tuple, starting from 0. If 5th command of transaction inserted this tuple, cid is set to
4.

• t_ctid : Contains the block number of the page and offset number of line pointer that
points to the tuple.

HeapTupleHeaderData Structure

© 2022 Percona18

• Included with the contrib module

• Show the contents of a page/block

• 2 functions we could use to get tuple level metadata and data

▪ get_raw_page : reads the specified 8KB block

▪ heap_page_item_attrs : shows metadata and data of each tuple

• Create the Extension pageinspect:

Extension : pageinspect

© 2022 Percona19

• Multiple versions are amazing but can be problematic:

▪ Dead tuples occupies space on table

• Bloat issues

▪ Postgres has a 32 bit unsigned integer transaction ID:

• We have a limited number of available transactions;

• We need a way to prevent the transaction ID to wraparound(?)

• It means that it can and (if we don’t do anything), it will wraparound!

• How can we solve those issues?

MVCC on Postgres

© 2022 Percona20

• VACUUM — garbage-collect and optionally analyze a database

• Here we’ll talk about 4 major variations of vacuum on Postgres:

▪ Full

▪ Freeze

▪ Vacuum

▪ Autovacuum

• Only rows that are not in any currently running transactions can be vacuumed

▪ It means that long running transactions can prevent dead rows to be removed;

▪ Long running transactions can prevent vacuum to freeze old transaction IDs;

VACUUM / AUTOVACUUM

© 2022 Percona21

• VACUUM: reclaims storage occupied by dead tuples

• Here we’ll talk about 4 major variations of vacuum on Postgres:

▪ Full: rebuilds the table and returns empty space to the filesystem;

▪ Freeze: runs an aggressive “freezing” of tuples to freeze transaction IDs;

▪ Analyze: performs a VACUUM and then an ANALYZE for each selected table;

▪ Autovacuum: a feature that automates the execution of VACUUM and ANALYZE;

• Only rows that are not in any currently running transactions can be vacuumed

▪ It means that long running transactions can prevent dead rows to be removed;

▪ Long running transactions can prevent vacuum to freeze old transaction IDs;

VACUUM / AUTOVACUUM

© 2022 Percona22

• Always have the parameter autovacuum set to ON;

• Background Process : Stats Collector tracks the usage and activity information;

• We cannot really control when it runs;

• PostgreSQL identifies the tables needing vacuum or analyze depending on certain
parameters, for example threshold and scale factor;

• Threshold: autovacuum_vacuum_threshold/autovacuum_analyze_threshold :
Minimum number of obsolete records or DML’s needed to trigger an autovacuum;

• Scale factor: autovacuum_vacuum_scale_factor/autovacuum_analyze_scale_factor:
Fraction of the table records that will be added to the formula. For example, a value
of 0.2 equals to 20% of the table records;

Autovacuum

© 2022 Percona23

• VACUUM threshold for a table := autovacuum_vacuum_scale_factor * number of
tuples + autovacuum_vacuum_threshold

▪ If the actual number of dead tuples in a table exceeds this effective threshold, due
to updates and deletes, that table becomes a candidate for
autovacuum

• ANALYZE threshold for a table := autovacuum_analyze_scale_factor * number of
tuples + autovacuum_analyze_threshold

▪ Any table with a total number of inserts/deletes/updates exceeding this threshold
since last analyze is eligible for an autovacuum analyze.

Autovacuum

© 2022 Percona24

• Setting global parameters alone may not be appropriate, all the time.

• Regardless of the table size, if the condition for autovacuum is reached, a table is
eligible for autovacuum vacuum or analyze.

▪ Consider 2 tables with ten records and a million records.

▪ Frequency at which a vacuum or an analyze runs automatically could be greater for
the table with just ten records.

▪ Use table level autovacuum settings instead.

▪ ALTER TABLE foo.bar SET (autovacuum_vacuum_scale_factor = 0,
autovacuum_vacuum_threshold = 100);

Some things we must know

© 2022 Percona25

• Autovacuum reads block_size pages of a table from disk (default of 8KB), and
modifies/writes to the pages containing dead tuples;

• Involves both read and write IO and may be heavy on big tables with huge amount of
dead tuples;

• There are other autovacuum parameters like:
▪ autovacuum_vacuum_cost_limit

▪ autovacuum_vacuum_cost_delay

▪ vacuum_cost_page_hit

▪ vacuum_cost_page_miss

▪ vacuum_cost_page_dirty

▪ etc…

Some things we must know

© 2022 Percona26

• If we need to learn one thing from this presentation is:

NEVER DISABLE YOUR AUTOVACUUM
• Transactions are not free, don’t let a transaction open for a long time;

• Transaction IDs are not unlimited, make sure your autovacuum is able to freeze them;

• Vacuum is able to prevent bloating to increase but not able to pack the table;

• Vacuum FULL is the only one able to return disk space back, but it locks the table;

• Sometimes we need to have per-table autovacuum configuration;

• Again, NEVER DISABLE YOUR AUTOVACUUM. If it’s causing problems is because you
didn’t understand how it works and you may need to make it more aggressive!!!

Summary is

© 2019 Percona27

Thank you!

Want to learn more about vacuum?

I will be talking about PostgreSQL
internals and vacuum at

Percona Live this year!

© 2019 Percona28

USE CODE

UNIVERSITY
FOR A 20%
DISCOUNT

Percona Live 2022 will be May 16-18 at the AT&T Hotel and
Conference Center in Austin, Texas, USA.

https://www.percona.com/live/conferences

https://www.percona.com/live/conferences

© 2019 Percona29

● Write for our community blog
percona.com/community-blog

● Join in with our community forums
percona.com/forums

● Contribute to our open source projects
github.com/percona

Join in: Percona Community

© 2019 Percona30

We are hiring!

● We are a remote first company

● Some of our current open positions:
○ C Software Engineer (PostgreSQL)
○ Support Consultant - PostgreSQL
○ PostgreSQL DBA (Remote)
○ Senior Product Manager

You can contact me or check at percona.com/careers for
more info. I’m looking forward to hearing from you!

