Postgres and Vacuum

Transactions, MVCC, Vacuum, and why it matters

Charly Batista
Percona
charly.batista@percona.com

o

Who am I?

I’'m Charly Batista :)

PostgreSQL Tech Leader @ Percona
Database lover

* Working with IT for over 20 years
Craft beer and coffee lover

* You can find me at:
https://github.com/elchinoo
https://www.linkedin.com/in/charlyfrankl

2 © 2022 Percona O PERCONA

https://github.com/elchinoo
https://www.linkedin.com/in/charlyfrankl

MVCC

 What are and why do we need transactions?
* MVCC, what exactly is it?

* MVCC on Postgres

Vacuum and Autovacuum
 What is vacuum?

* How about autovacuum?
* Settings and tuning

© 2022 Percona o PERCONA

What are transactions?

* A transaction is a logical, atomic unit of work that contains one or more SQL

* Transaction gives some guarantees: i
= Atomicity coamaly Committed x
= Consistency B@» R > End
= Isolation j
= Durability _' Failed Aborted

4 © 2022 Percona 0 PER C 0 NA

How does it look like?

pagila=# begin;

BEGIN

pagila=# insert into city wvalues(default, 'Brasilia', 15, now());
INSERT O 1

pagila=# insert into city wvalues(default, 'Shanghai', 23, now());
INSERT O 1

pagila=# commit;

COMMIT

pagila=#

5 © 2022 Percona

Atomicity

e An atomic transaction is an indivisible and irreducible series of database operations
such that either all occur, or nothing occurs:

= Indivisible
= All or nothing
e Example bank transfer
= John transfers $100 to Alice
* Withdraw 5100 from John’s bank account

* Deposit 5100 into Alice’s bank account

6 © 2022 Percona 0 PER C 0 NA

Atomicity

pagila=# begin;

BEGIN
pagila=# insert into country values (default, 'BRAZIL', now());
INSERT 0 1
pagila=# select * from country where country = 'BRAZIL';
country id | country | last _update
____________ +_________+______________________________
110 | BRAZIL | 2022-05-10 09:33:23.82151+00
(1 row)

pagila=# insert into city values(default, 'Brasilia', 110, now());
INSERT 0 1
pagila=# select c.city id, c.city, ct.country from city c join country ct on

ct.country id = c.country id where country = 'BRAZIL';
city id | city | country
_________ +______________+______________
603 | 'Brasilia' | "BRAZIL'
(1 row)

pagila=# commit;
COMMIT

7 © 2022 Percona

Consistency

e A transaction must keep the database in a valid state
e Guarantees

= Any transactions started in the future necessarily see the effects of other
transactions committed in the past

= Database constraints are not violated, particularly once a transaction commits

= QOperations in transactions are performed accurately, correctly, and with validity,
with respect to application semantics

8 © 2022 Percona 0 PER C 0 NA

Consistency

pagila=# begin;

BEGIN

pagila=# insert into city values(default, 'Brasilia', 110, now());
ERROR: insert or update on table '"city" violates foreign key constraint
"city country id fkey"

DETAIL: Key (country id)=(110) is not present in table "country".

pagila=#

9 © 2022 Percona

Isolation

e Determines how transaction integrity is visible to other users
e Makes the transaction think it is the only transaction working inside the database
e There are different levels of isolation

= Read Uncommitted

= Read Committed

= Repeatable Read

= Serializable

= Postgres default transaction isolation = 'read committed'

10 © 2022 Percona 0 PER C 0 NA

Isolation

e |deally prevent race conditions
e Also help prevent anomalies:

= Dirty read

= Non-repeatable read

= Phantom read

= Serialization anomaly

11

© 2022 Percona

Durability

e Committed transactions can not be rolled back

e Committed transactions must survive

12 © 2022 Percona

MVCC

e Multiversion concurrency control
e Concurrency control method commonly used by databases
e Optimistic - means no locking
= Readers and Writers do not block each other
e First perform changes in a protected area then change the database state

e Main idea: Version your database (Multiversion :-D)

13 © 2022 Percona

MVCC on Postgres

e Read uncommitted not really implemented on Postgres
e No Rollback segments for UNDO
= UNDO management is within tables
e Rows are never really deleted
e A tuple contains the hidden columns to help managing transactions
= Xmin, Xmax, cmin, cmay, ...
e Transaction identifiers (xid or transaction IDs) are 32-bit unsigned integer
e [D’s0, 1and 2 are reserved.

e (Can beinspected, for example “select xmin, xmax, cmin, cmax, a from tbl;”

14 © 2022 Percona 0 PER C 0 NA

MVCC on Postgres

e TI1:
o T2:
e T3:
o T4:
e T5:
e T6:
o T7:

Start transaction (txid 200)

Start transaction (txid 201)

Execute SELECT commands of txid 200 and 201
Execute UPDATE command of txid 200

Execute SELECT commands of txid 200 and 201
Commit txid 200

Execute SELECT command of txid 201

15 © 2022 Percona

Heap Tuples

e Each Heap tuple in a table contains a HeapTupleHeaderData structure.

t xmin | t xmax t cid t ctid t infomask2 | t infomask t _hoff

16 © 2022 Percona 0 PER C 0 NA

HeapTupleHeaderData Structure

t_xmin : txid of the transaction that inserted this tuple

t_xmax : txid of the transaction that issued an update/delete on this tuple and not
committed yet or when the delete/update has been rolled back and 0 when nothing
happened.

t_cid : The position of the SQL command within a transaction that has inserted this

tuple, starting from O. If 5th command of transaction inserted this tuple, cid is set to
4,

t_ctid : Contains the block number of the page and offset number of line pointer that
points to the tuple.

17 © 2022 Percona 0 PER C 0 NA

Extension : pageinspect

e |ncluded with the contrib module
e Show the contents of a page/block
e 2 functions we could use to get tuple level metadata and data
= get raw_page : reads the specified 8KB block
= heap page_item_attrs : shows metadata and data of each tuple
e Create the Extension pageinspect:

postgres=# CREATE EXTENSION pageinspect ;
CREATE EXTENSION

18 © 2022 Percona

MVCC on Postgres

e Multiple versions are amazing but can be problematic:
= Dead tuples occupies space on table
* Bloat issues
= Postgres has a 32 bit unsigned integer transaction ID:
* We have a limited number of available transactions;
 We need a way to prevent the transaction ID to wraparound(?)
* [t means that it can and (if we don’t do anything), it will wraparound!

e How can we solve those issues?

19 © 2022 Percona 0 PER C 0 NA

VACUUM / AUTOVACUUM

e VACUUM — garbage-collect and optionally analyze a database

e Here weé’'ll talk about 4 major variations of vacuum on Postgres:

= Full
= Freeze
= Vacuum

= Autovacuum
e Only rows that are not in any currently running transactions can be vacuumed

= |t means that long running transactions can prevent dead rows to be removed;

= Long running transactions can prevent vacuum to freeze old transaction IDs;

20 © 2022 Percona 0 PER C 0 NA

VACUUM / AUTOVACUUM

e VACUUM: reclaims storage occupied by dead tuples
e Here weé’'ll talk about 4 major variations of vacuum on Postgres:

= Full: rebuilds the table and returns empty space to the filesystem;

= Freeze: runs an aggressive “freezing” of tuples to freeze transaction IDs;

= Analyze: performs a VACUUM and then an ANALYZE for each selected table;

= Autovacuum: a feature that automates the execution of VACUUM and ANALYZE;
e Only rows that are not in any currently running transactions can be vacuumed

= |t means that long running transactions can prevent dead rows to be removed;

= Long running transactions can prevent vacuum to freeze old transaction IDs;

21 © 2022 Percona 0 PER C 0 NA

Autovacuum

e Always have the parameter autovacuum set to ON;
e Background Process : Stats Collector tracks the usage and activity information;
e We cannot really control when it runs;

e PostgreSQL identifies the tables needing vacuum or analyze depending on certain
parameters, for example threshold and scale factor;

 Threshold: autovacuum_vacuum_threshold/autovacuum_analyze_ threshold :
Minimum number of obsolete records or DML's needed to trigger an autovacuum;

e Scale factor: autovacuum_vacuum_scale_factor/autovacuum analyze scale factor:
Fraction of the table records that will be added to the formula. For example, a value
of 0.2 equals to 20% of the table records;

22 © 2022 Percona 0 PER C 0 NA

Autovacuum

e VACUUM threshold for a table := autovacuum_vacuum_scale_factor * number of
tuples + autovacuum_vacuum_threshold

= |f the actual number of dead tuples in a table exceeds this effective threshold, due
to updates and deletes, that table becomes a candidate for
autovacuum

e ANALYZE threshold for a table := autovacuum_analyze scale factor * number of
tuples + autovacuum_analyze threshold

= Any table with a total number of inserts/deletes/updates exceeding this threshold
since last analyze is eligible for an autovacuum analyze.

23 © 2022 Percona 0 PER C 0 NA

Some things we must know

e Setting global parameters alone may not be appropriate, all the time.

e Regardless of the table size, if the condition for autovacuum is reached, a table is
eligible for autovacuum vacuum or analyze.

= Consider 2 tables with ten records and a million records.

= Frequency at which a vacuum or an analyze runs automatically could be greater for
the table with just ten records.

= Use table level autovacuum settings instead.

= ALTER TABLE foo.bar SET (autovacuum_vacuum_scale factor =0,
autovacuum_vacuum_threshold = 100);

24 © 2022 Percona 0 PER C 0 NA

Some things we must know

e Autovacuum reads block_size pages of a table from disk (default of 8KB), and
modifies/writes to the pages containing dead tuples;

e Involves both read and write 10 and may be heavy on big tables with huge amount of
dead tuples;

e There are other autovacuum parameters like:

autovacuum_vacuum_cost_limit
autovacuum_vacuum_cost_delay
vacuum_cost_page_hit
vacuum_cost_page_miss
vacuum_cost_page_dirty

etc...

25 © 2022 Percona 0 PER C 0 NA

Summary is

e If we need to learn one thing from this presentation is:
NEVER DISABLE YOUR AUTOVACUUM

e Transactions are not free, don’t let a transaction open for a long time;

e Transaction IDs are not unlimited, make sure your autovacuum is able to freeze them;
e Vacuum is able to prevent bloating to increase but not able to pack the table;

e Vacuum FULL is the only one able to return disk space back, but it locks the table;

e Sometimes we need to have per-table autovacuum configuration;

e Again, NEVER DISABLE YOUR AUTOVACUUM. If it’s causing problems is because you
didn’t understand how it works and you may need to make it more aggressive!ll

26 © 2022 Percona 0 PER C 0 NA

Thank you!

Want to learn more about vacuum?

| will be talking about PostgreSQL
internals and vacuum at

Percona Live this year!

27 © 2019 Percona

Charly Batista
PostgreSQL Tech Lead, Percona

Cleaning the Room -
Everything You Need To Know
About Vacuum

£ Wednesday, May 18 ® 9:30 AM CDT © Salon 2 Zlotnik L

Register today at perconalive.com

IRttt

() perconal iy

The biggest open source
database conference in the world.

May 16th-18th, 2022 in Austin, Texas

Percona Live 2022 will be May 16-18 at the AT&T Hotel and
Conference Center in Austin, Texas, USA.

https://www.percona.com/live/conferences

© 2019 Percona

https://www.percona.com/live/conferences

Join in: Percona Community

e Write for our community blog ®

percona.com/community-blog @ &
e Join in with our community forums | @ -
percona.com/forums &) -
. . XtraDB Cluster @ Toolkit
e Contribute to our open source projects

github.com/percona

Check out our Open Source Projects at
github.com/percona

29 © 2019 Percona 0 PERCONA

We are hiring!

e We are a remote first company

e Some of our current open positions:
o C Software Engineer (PostgreSQL)
o Support Consultant - PostgreSQL
o PostgreSQL DBA (Remote)
o Senior Product Manager

You can contact me or check at percona.com/careers for
more info. I’'m looking forward to hearing from you!

Pt
e ——
e ——

e
EE—
o ——
e
e
B
e
P ——
o e
g N

€

il
{i

i

30 © 2019 Percona

