
POSTGRESQL QUERY
PERFORMANCE INSIGHTS

Hamid Quddus Akhtar

Percona
Keeping Open Source Open

© 2021 Percona

● More than two decades of professional software
development.

○ Actually developed a couple of games back in 1993!

● I’m part of Percona:

○ Previously as Technical Product Manager for PostgreSQL.

○ Now as the Senior Software Engineer

○ Percona has amazing culture.

● Prior to joining Percona, I had worked with EnterpriseDB
where I lead the configuration management team that
delivers the official PostgreSQL installers for Windows and
MacOS.

About Myself

2

© 2021 Percona

● Email:

○ hamid.akhtar@percona.com

● Skype:

○ EngineeredVirus

● WhatsApp

Contacts

3

mailto:hamid.akhtar@percona.com

© 2021 Percona

Presentation Outline
● Understanding query plan

● The tools for observing query performance

○ pg_stat_activity

○ pg_stat_statements

○ auto_explain

○ pgbadger

○ pg_stat_monitor

4

Initial Thoughts

© 2021 Percona

● Application/Connection Information

● Query Text

○ With parameter values

● Execution Plan

● Planning and Execution Timing Statistics

● Block Read/Write Statistics

● Wait Events and Locks

Observing Query Performance - Overview

6

EXPLAIN and ANALYZE…

© 2021 Percona

Components of Query Processing

8

● There are 5 components of query processing:

○ Parser 

Analyzer 
Rewriter

■ Parser and Analyzer ensure that the query is written correctly, and rewriter

may perform some transformations.

○ Planner

■ The transformed query tree is passed on to the Planner which defines the
execution steps for the executor.

○ Executor

■ Executes steps defined by the planner.

● To understand query performance, we must first understand the
EXPLAIN command output; i.e. the query execution plan.

© 2021 Percona

● Let’s have a look at the EXPLAIN command output.

● Estimated…

○ Startup Cost

○ Total Cost

○ Number of Rows

○ Average Row Width in Bytes

EXPLAIN - Basics

9

regression=# EXPLAIN SELECT * FROM tenk1;
 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)
(1 row)

© 2021 Percona

● Cost is:

○ An arbitrary unit

○ Conventionally equivalent to “seq_page_cost” = 1.0

● Page Costs

○ Sequential vs Random page access

● CPU Costs

○ Cost for processing of a tuple, indexing entry, or operator

● Parallel Costs

○ Cost for setup, or tuple transfer to another parallel worker

EXPLAIN - Basics: Costs

10

© 2021 Percona

● A more complex query plan is show
EXPLAIN - Basics: Example

11

regression=# EXPLAIN SELECT *
regression-# FROM tenk1 t1, tenk2 t2
regression-# WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;
 QUERY PLAN

 Nested Loop (cost=4.65..49.36 rows=33 width=488)
 Join Filter: (t1.hundred < t2.hundred)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.38 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Materialize (cost=0.29..8.51 rows=10 width=244)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10 width=244)
 Index Cond: (unique2 < 10)
(9 rows)

© 2021 Percona

● Query plan is a tree of plan nodes.

○ Nodes at the bottom level of the tree are scan nodes.

● Types of scan nodes for table access methods:

○ Sequential

○ Index

○ Bitmap Index

● For non-table row sources

○ Functions Returning Sets

■ EXPLAIN SELECT * FROM generate_series(1,10);

○ VALUES Clauses

■ EXPLAIN SELECT * FROM (VALUES (1), (2), (3)) AS t(id);

EXPLAIN - Basics: Nodes

12

© 2021 Percona

● Let’s have a look at the EXPLAIN ANALYZE command output.

● Additional information...

○ Actual Startup and Total Time (in ms)

○ Total Rows Returned

○ Loops

○ Planning Time (EXPLAIN with SUMMARY option gives this too)

○ Execution Time

EXPLAIN ANALYZE - Basics

13

regression=# EXPLAIN ANALYZE SELECT * FROM tenk1;
 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244) (actual time=1.777..18.050 rows=10000 loops=1)
 Planning Time: 0.248 ms
 Execution Time: 18.853 ms
(3 rows)

© 2021 Percona

● EXPLAIN ANALYZE command allows you to gauge planner’s
cost estimates.

○ Note! Costs are arbitrary units. So, time and cost wouldn’t match.

○ In case of loops, average times and row counts are shown.

● Additional information...

○ Actual Time

○ Total Rows Returned

○ Loops

○ Planning Time (EXPLAIN with SUMMARY option gives this too)

○ Execution Time

EXPLAIN ANALYZE - Basics

14

The Tools

© 2021 Percona

● pg_stat_activity

● pg_stat_statements

● auto_explain

● pgbadger

● pg_stat_monitor

The Tools

16

pg_stat_activity

© 2021 Percona

● A view in the pg_catalog schema.

● It tells you what’s happening in the PostgreSQL right now.

○ It has one row per connection.

● Provides information about:

○ Connection, including database, username, client IP/host/port/

application/backend type,

○ Aging details in form of timestamps for transaction, connection and

state, or transaction ID details.

○ State of the connection:

■ Active vs Idle

○ Wait events

■ Whether waiting on certain type of activity, and if yes, then what event!

pg_stat_activity

18

© 2021 Percona

pg_stat_activity: Take Aways
● Connection and application details.

● Rows of interest could be with values:

○ state = idle_in_transaction

■ idle_in_transaction (aborted) also if the transaction has savepoint(s).

○ state_change = <define threshold based on your use case>

○ wait_event = ClientRead | ClientWrite

● Aging transactions

● Wait event type is not NULL may require further investigation.

● Caveat:

○ Only currently connected server processes are shown.

19

pg_stat_statements

© 2021 Percona

● pg_stat_statement is one of the most commonly used
extension.

● It tracks planning and execution statistics for all SQL queries
executed by the server.

● It must be loaded by adding “pg_stat_statements” to
“shared_preload_libraries” in postgresql.conf file.

○ Expect ~4% performance degradation when you do that with

default options.

○ Uses an internal JumbleQuery function to calculate a query ID

before PG14.	

○ Only works in PG14 if compute_query_id is on (that’s the default).

pg_stat_statements

21

© 2021 Percona

● The pg_stat_statements view has 33 columns in PG 14.

● By default, track_planning is off. So, you’ll see 0s for planning

related columns.

○ Turning this on will have a detrimental effect on query

performance!

● It provides statistics (total/min/max/mean/stddev) for:

○ Query planning times

○ Query execution times

pg_stat_statements View

22

© 2021 Percona

● For shared, local, temp, disk blocks, it tracks reads and writes.

● For shared and local blocks, it also tracks hit and dirtied

counts.

○ The same information for a specific SQL query can also be seen with

“EXPLAIN [ANALYZE] (BUFFERS)” command.

● And then there are basic WAL statistics like records, fpi and

bytes.

pg_stat_statements View

23

© 2021 Percona

● New view in PG14.

● It is a single row view that provides information about:

○ When pg_stat_statements was last reset,

○ The number of times pg_stat_statements had to deallocate least

executed entry to make room for a new entry.

pg_stat_statements_info

24

© 2021 Percona

a

* Query and data copied from PostgreSQL documentation for pg_stat_statements and adopted for the example.

● Hit percentage is 100 * (blocks hit)/(blocks hit + read).

● Sort by the required stat to identify any potential areas for

optimization!

pg_stat_statements View Example

25

bench=# \x
bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 2;
-[RECORD 1]---+--​------------------
query | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2
calls | 3000
total_exec_time | 25565.855387
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 2]---+--​------------------
query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls | 3000
total_exec_time | 271.232977
rows | 3000
hit_percent | 98.8454011741682975

© 2021 Percona

● If one needs to analyze time of day based (or time window
based) statistics, there is no way that can be done (unless you
reset statistics).

● Provides basic planning statistics, but not the plan.

● Does not provide information from relations/views

perspective.

● Does not provide actual parameter values used in the SQL

queries.

● It does not provide information about spread of timing data,

as shown in the table on the next slide.

pg_stat_statements - Challenges

26

© 2021 Percona

pg_stat_statements - Challenges
● Link to the spreadsheet: https://tinyurl.com/2p9axvxk

○ Identical:

■ Min/Max/StdDev

○ Different:

■ Mean/Total

○ Top 3 slowest queries:

■ Table 1:

● 3000, 1000, 1000

■ Table 2:

● 300, 500, 60

27

https://tinyurl.com/2p9axvxk

auto_explain

© 2021 Percona

● It is a no SQL extension for PostgreSQL. So, all you have is a
shared object that can be loaded in session or as part of
preload libraries.

● Provides the option to log execution plans automatically.

○ auto_explain.log_min_duration GUC defines time threshold for

logging SQL queries. Setting this to zero will log all queries.

○ So you don’t have to run EXPLAIN command manually.

● Configuration options include similar options to the EXPLAIN
command:

○ WAL, buffers, timings, etc.

● Additionally, you can set to log triggers, or track deeper than
top level query in a function call.

auto_explain Extension

29

© 2021 Percona

● Allows access to the execution plan being used for a client
application.

○ Why that matters? An application may be doing some innocuous

change to the SQL query causing planner to choose a different plan.

● The challenge:

○ No SQL interface means that access to log files is required, or

additional of another tool that can provide that access.

auto_explain Extension

30

pgbadger

https://github.com/darold/pgbadger

© 2021 Percona

● A perl based, fast PostgreSQL server log file parser, analyzer
and report generator.

● Support multiple report formats including HTML, JSON and
text.

● Relies on proper log configuration in postgresql.conf file; e.g.

○ log_min_duration_statement

○ log_temp_files

○ etc.

● Beware to not overcook the log files.

○ For me, a 15 minute pgbench and make installcheck-world yielded a

4GB of log file!

pgbadger Tool

32

© 2021 Percona

● Some stats are borrowed from statistics tables and view.
However, the log files have the ability to provide way more
information.

○ That’s what pgbadger utilizes.

● Generates lots of useful reports that allow you to:

○ Information about almost anything and everything in PostgreSQL

server. For example:

■ See information about temporary files in general and in query context.

■ So that you can tune the work_mem

pgbadger Statistics

33

© 2021 Percona

pgbadger - HTML Report

34

© 2021 Percona

● Parsing huge log files could take time.

● You may need to setup a cronjob to run pgbadger regularly.

● Does not link queries with applications.

● The HTML interface is rather basic.

○ It’s not responsive! So viewing on a mobile phone is going to be

tricky.

pgbadger Challenges

35

pg_stat_monitor

https://github.com/percona/pg_stat_monitor

© 2021 Percona

● pg_stat_monitor is a query performance observability
extension that combines pg_stat_activity, pg_stat_statements
and auto_explain to paint a wholistic picture.

● It provides:

○ Connection and application details [pg_stat_activity]

○ Query planning and execution statistics [pg_stat_statements]

○ Query execution plan [auto_explain]

○ All of this through its SQL interface!

pg_stat_monitor Extension

37

© 2021 Percona

● It is designed to maintain query planning and execution
statistics in a series of configurable time buckets.

○ Default is 10 buckets of 1 minute duration each.

● It groups queries within a time bucket based on:

○ Database

○ User

○ Client IP

○ Application Name

○ Query ID

○ Plan ID

pg_stat_monitor Extension

38

© 2021 Percona

● pg_stat_monitor view has all of pg_stat_statements columns
and 19 additional columns in PG14!

○ That’s a total of 51 columns!

○ So, I’m not going to repeat those here.

● enable_query_plan is off. So, you’ll see an empty value for
plan.

○ Turning this on will have a significant detrimental effect on query

performance!

● Application and client information

● Top query information including:

○ Top query ID

○ Top query text

pg_stat_monitor View

39

© 2021 Percona

● It also provides:

○ List of relations and views impacted by a query

○ Query meta information that might be present in query test in

Google Sqlcomment like syntax; key value pairs.

○ Actual parameter values that are used in a query to simplify the

debugging and analysis process.

● All of this data is maintained in a fixed number of time

buckets.

○ Buckets are recycled!

pg_stat_monitor View

40

© 2021 Percona

● Query-bucket-wise timing histogram to clearly show the
spread of timing data.

pg_stat_monitor - Histogram

41

© 2021 Percona

● Extension is not yet available for production.

● Feel free to try out the RC release though.

pg_stat_monitor

42

Summarizing

© 2021 Percona

● Application/Connection Information

○ pg_stat_activity

○ pg_stat_monitor

● Query Text

○ pg_stat_statements

○ pgbadger

○ pg_stat_monitor

● Execution Plan

○ auto_explain

○ pg_stat_statements

○ pgbadger

○ pg_stat_monitor

Tools for the Use Case

44

© 2021 Percona

● Planning and Execution Timing Statistics

○ pg_stat_statements

○ pgbadger

○ pg_stat_monitor

● Query Execution Timing Histogram

○ pg_stat_monitor

● Block Read/Write Statistics

○ pg_stat_statements

○ pgbadger

○ pg_stat_monitor

Tools for the Use Case

45

© 2021 Percona

Tools for the Use Case

46

● Wait Events and Locks

○ pg_stat_activity

○ pgbadger

● SQL Interface

○ pg_stat_activity

○ pg_stat_statements

○ pg_stat_monitor

Percona stands for evolution

Percona stands for ease-of-use

Percona stands for freedom

Percona & PostgreSQL - Better Together

If you have 30 mins, I’d love to talk to you
about PostgreSQL.

Thank you!

Questions?

