
POSTGRESQL QUERY 
PERFORMANCE INSIGHTS 

Hamid Quddus Akhtar 

Percona
Keeping Open Source Open



© 2021 Percona

● More than two decades of professional software 
development. 
○ Actually developed a couple of games back in 1993! 

● I’m part of Percona: 
○ Previously as Technical Product Manager for PostgreSQL. 
○ Now as the Senior Software Engineer 
○ Percona has amazing culture. 

● Prior to joining Percona, I had worked with EnterpriseDB 
where I lead the configuration management team that 
delivers the official PostgreSQL installers for Windows and 
MacOS.

About Myself

2



© 2021 Percona

● Email: 
○ hamid.akhtar@percona.com 

● Skype: 
○ EngineeredVirus 

● WhatsApp

Contacts

3

mailto:hamid.akhtar@percona.com


© 2021 Percona

Presentation Outline
● Understanding query plan 
● The tools for observing query performance 
○ pg_stat_activity 
○ pg_stat_statements 
○ auto_explain 
○ pgbadger 
○ pg_stat_monitor

4



Initial Thoughts



© 2021 Percona

● Application/Connection Information 
● Query Text 
○ With parameter values 

● Execution Plan 
● Planning and Execution Timing Statistics 
● Block Read/Write Statistics 
● Wait Events and Locks

Observing Query Performance - Overview

6



EXPLAIN and ANALYZE…



© 2021 Percona

Components of Query Processing

8

● There are 5 components of query processing: 
○ Parser 

Analyzer 
Rewriter 
■ Parser and Analyzer ensure that the query is written correctly, and rewriter 

may perform some transformations. 
○ Planner 

■ The transformed query tree is passed on to the Planner which defines the 
execution steps for the executor. 

○ Executor 
■ Executes steps defined by the planner. 

● To understand query performance, we must first understand the 
EXPLAIN command output; i.e. the query execution plan.



© 2021 Percona

● Let’s have a look at the EXPLAIN command output. 

● Estimated… 
○ Startup Cost 
○ Total Cost 
○ Number of Rows 
○ Average Row Width in Bytes

EXPLAIN - Basics

9

regression=# EXPLAIN SELECT * FROM tenk1;
                         QUERY PLAN                          
-------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..445.00 rows=10000 width=244)
(1 row)



© 2021 Percona

● Cost is: 
○ An arbitrary unit 
○ Conventionally equivalent to “seq_page_cost” = 1.0 

● Page Costs 
○ Sequential vs Random page access 

● CPU Costs 
○ Cost for processing of a tuple, indexing entry, or operator 

● Parallel Costs 
○ Cost for setup, or tuple transfer to another parallel worker

EXPLAIN - Basics: Costs

10



© 2021 Percona

● A more complex query plan is show
EXPLAIN - Basics: Example

11

regression=# EXPLAIN SELECT *
regression-# FROM tenk1 t1, tenk2 t2
regression-# WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;
                                         QUERY PLAN                                          
---------------------------------------------------------------------------------------------
 Nested Loop  (cost=4.65..49.36 rows=33 width=488)
   Join Filter: (t1.hundred < t2.hundred)
   ->  Bitmap Heap Scan on tenk1 t1  (cost=4.36..39.38 rows=10 width=244)
         Recheck Cond: (unique1 < 10)
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..4.36 rows=10 width=0)
               Index Cond: (unique1 < 10)
   ->  Materialize  (cost=0.29..8.51 rows=10 width=244)
         ->  Index Scan using tenk2_unique2 on tenk2 t2  (cost=0.29..8.46 rows=10 width=244)
               Index Cond: (unique2 < 10)
(9 rows)



© 2021 Percona

● Query plan is a tree of plan nodes. 
○ Nodes at the bottom level of the tree are scan nodes. 

● Types of scan nodes for table access methods: 
○ Sequential 
○ Index 
○ Bitmap Index 

● For non-table row sources 
○ Functions Returning Sets 

■ EXPLAIN SELECT * FROM generate_series(1,10); 
○ VALUES Clauses 

■ EXPLAIN SELECT * FROM (VALUES (1), (2), (3)) AS t(id);

EXPLAIN - Basics: Nodes

12



© 2021 Percona

● Let’s have a look at the EXPLAIN ANALYZE command output. 

● Additional information... 
○ Actual Startup and Total Time (in ms) 
○ Total Rows Returned 
○ Loops 
○ Planning Time (EXPLAIN with SUMMARY option gives this too) 
○ Execution Time

EXPLAIN ANALYZE - Basics

13

regression=# EXPLAIN ANALYZE SELECT * FROM tenk1;
                                                 QUERY PLAN                                                 
------------------------------------------------------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..445.00 rows=10000 width=244) (actual time=1.777..18.050 rows=10000 loops=1)
 Planning Time: 0.248 ms
 Execution Time: 18.853 ms
(3 rows)



© 2021 Percona

● EXPLAIN ANALYZE command allows you to gauge planner’s 
cost estimates. 
○ Note! Costs are arbitrary units. So, time and cost wouldn’t match. 
○ In case of loops, average times and row counts are shown. 

● Additional information... 
○ Actual Time 
○ Total Rows Returned 
○ Loops 
○ Planning Time (EXPLAIN with SUMMARY option gives this too) 
○ Execution Time

EXPLAIN ANALYZE - Basics

14



The Tools



© 2021 Percona

● pg_stat_activity 
● pg_stat_statements 
● auto_explain 
● pgbadger 
● pg_stat_monitor

The Tools

16



pg_stat_activity



© 2021 Percona

● A view in the pg_catalog schema. 
● It tells you what’s happening in the PostgreSQL right now. 
○ It has one row per connection. 

● Provides information about: 
○ Connection, including database, username, client IP/host/port/

application/backend type, 
○ Aging details in form of timestamps for transaction, connection and 

state, or transaction ID details. 
○ State of the connection: 

■ Active vs Idle 
○ Wait events 

■ Whether waiting on certain type of activity, and if yes, then what event!

pg_stat_activity

18



© 2021 Percona

pg_stat_activity: Take Aways
● Connection and application details. 
● Rows of interest could be with values: 
○ state = idle_in_transaction 

■ idle_in_transaction (aborted) also if the transaction has savepoint(s). 
○ state_change = <define threshold based on your use case> 
○ wait_event = ClientRead | ClientWrite 

● Aging transactions 
● Wait event type is not NULL may require further investigation. 
● Caveat: 
○ Only currently connected server processes are shown.

19



pg_stat_statements



© 2021 Percona

● pg_stat_statement is one of the most commonly used 
extension. 

● It tracks planning and execution statistics for all SQL queries 
executed by the server. 

● It must be loaded by adding “pg_stat_statements” to 
“shared_preload_libraries” in postgresql.conf file. 
○ Expect ~4% performance degradation when you do that with 

default options. 
○ Uses an internal JumbleQuery function to calculate a query ID 

before PG14.  
○ Only works in PG14 if compute_query_id is on (that’s the default).

pg_stat_statements

21



© 2021 Percona

● The pg_stat_statements view has 33 columns in PG 14. 
● By default, track_planning is off. So, you’ll see 0s for planning 

related columns. 
○ Turning this on will have a detrimental effect on query 

performance! 
● It provides statistics (total/min/max/mean/stddev) for: 
○ Query planning times 
○ Query execution times

pg_stat_statements View

22



© 2021 Percona

● For shared, local, temp, disk blocks, it tracks reads and writes.  
● For shared and local blocks, it also tracks hit and dirtied 

counts. 
○ The same information for a specific SQL query can also be seen with 

“EXPLAIN [ANALYZE] (BUFFERS)” command. 
● And then there are basic WAL statistics like records, fpi and 

bytes.

pg_stat_statements View

23



© 2021 Percona

● New view in PG14. 
● It is a single row view that provides information about: 
○ When pg_stat_statements was last reset, 
○ The number of times pg_stat_statements had to deallocate least 

executed entry to make room for a new entry.

pg_stat_statements_info

24



© 2021 Percona

a 

* Query and data copied from PostgreSQL documentation for pg_stat_statements and adopted for the example. 

● Hit percentage is 100 * (blocks hit)/(blocks hit + read). 
● Sort by the required stat to identify any potential areas for 

optimization!

pg_stat_statements View Example

25

bench=# \x
bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
               nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
          FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 2;
-[ RECORD 1 ]---+--------------------------------------------------------------------
query           | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2
calls           | 3000
total_exec_time | 25565.855387
rows            | 3000
hit_percent     | 100.0000000000000000
-[ RECORD 2 ]---+--------------------------------------------------------------------
query           | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls           | 3000
total_exec_time | 271.232977
rows            | 3000
hit_percent     | 98.8454011741682975



© 2021 Percona

● If one needs to analyze time of day based (or time window 
based) statistics, there is no way that can be done (unless you 
reset statistics). 

● Provides basic planning statistics, but not the plan. 
● Does not provide information from relations/views 

perspective. 
● Does not provide actual parameter values used in the SQL 

queries. 
● It does not provide information about spread of timing data, 

as shown in the table on the next slide.

pg_stat_statements - Challenges

26



© 2021 Percona

pg_stat_statements - Challenges
● Link to the spreadsheet: https://tinyurl.com/2p9axvxk 
○ Identical: 

■ Min/Max/StdDev 
○ Different: 

■ Mean/Total 
○ Top 3 slowest queries: 

■ Table 1: 
● 3000, 1000, 1000 

■ Table 2: 
● 300, 500, 60

27

https://tinyurl.com/2p9axvxk


auto_explain



© 2021 Percona

● It is a no SQL extension for PostgreSQL. So, all you have is a 
shared object that can be loaded in session or as part of 
preload libraries. 

● Provides the option to log execution plans automatically. 
○ auto_explain.log_min_duration GUC defines time threshold for 

logging SQL queries. Setting this to zero will log all queries. 
○ So you don’t have to run EXPLAIN command manually. 

● Configuration options include similar options to the EXPLAIN 
command: 
○ WAL, buffers, timings, etc. 

● Additionally, you can set to log triggers, or track deeper than 
top level query in a function call.

auto_explain Extension

29



© 2021 Percona

● Allows access to the execution plan being used for a client 
application. 
○ Why that matters? An application may be doing some innocuous 

change to the SQL query causing planner to choose a different plan. 
● The challenge: 
○ No SQL interface means that access to log files is required, or 

additional of another tool that can provide that access.

auto_explain Extension

30



pgbadger 
https://github.com/darold/pgbadger



© 2021 Percona

● A perl based, fast PostgreSQL server log file parser, analyzer 
and report generator. 

● Support multiple report formats including HTML, JSON and 
text. 

● Relies on proper log configuration in postgresql.conf file; e.g. 
○ log_min_duration_statement 
○ log_temp_files 
○ etc. 

● Beware to not overcook the log files. 
○ For me, a 15 minute pgbench and make installcheck-world yielded a 

4GB of log file!

pgbadger Tool

32



© 2021 Percona

● Some stats are borrowed from statistics tables and view. 
However, the log files have the ability to provide way more 
information. 
○ That’s what pgbadger utilizes. 

● Generates lots of useful reports that allow you to: 
○ Information about almost anything and everything in PostgreSQL 

server. For example: 
■ See information about temporary files in general and in query context. 
■ So that you can tune the work_mem

pgbadger Statistics

33



© 2021 Percona

pgbadger - HTML Report

34



© 2021 Percona

● Parsing huge log files could take time. 
● You may need to setup a cronjob to run pgbadger regularly. 
● Does not link queries with applications. 
● The HTML interface is rather basic. 
○ It’s not responsive! So viewing on a mobile phone is going to be 

tricky.

pgbadger Challenges

35



pg_stat_monitor 
https://github.com/percona/pg_stat_monitor



© 2021 Percona

● pg_stat_monitor is a query performance observability 
extension that combines pg_stat_activity, pg_stat_statements 
and auto_explain to paint a wholistic picture. 

● It provides: 
○ Connection and application details [pg_stat_activity] 
○ Query planning and execution statistics [pg_stat_statements] 
○ Query execution plan [auto_explain] 
○ All of this through its SQL interface!

pg_stat_monitor Extension

37



© 2021 Percona

● It is designed to maintain query planning and execution 
statistics in a series of configurable time buckets. 
○ Default is 10 buckets of 1 minute duration each. 

● It groups queries within a time bucket based on: 
○ Database 
○ User 
○ Client IP 
○ Application Name 
○ Query ID 
○ Plan ID

pg_stat_monitor Extension

38



© 2021 Percona

● pg_stat_monitor view has all of pg_stat_statements columns 
and 19 additional columns in PG14! 
○ That’s a total of 51 columns! 
○ So, I’m not going to repeat those here. 

● enable_query_plan is off. So, you’ll see an empty value for 
plan. 
○ Turning this on will have a significant detrimental effect on query 

performance! 
● Application and client information 
● Top query information including: 
○ Top query ID 
○ Top query text

pg_stat_monitor View

39



© 2021 Percona

● It also provides: 
○ List of relations and views impacted by a query 
○ Query meta information that might be present in query test in 

Google Sqlcomment like syntax; key value pairs. 
○ Actual parameter values that are used in a query to simplify the 

debugging and analysis process. 
● All of this data is maintained in a fixed number of time 

buckets. 
○ Buckets are recycled!

pg_stat_monitor View

40



© 2021 Percona

● Query-bucket-wise timing histogram to clearly show the 
spread of timing data.

pg_stat_monitor - Histogram

41



© 2021 Percona

● Extension is not yet available for production. 
● Feel free to try out the RC release though.

pg_stat_monitor

42



Summarizing



© 2021 Percona

● Application/Connection Information 
○ pg_stat_activity 
○ pg_stat_monitor 

● Query Text 
○ pg_stat_statements 
○ pgbadger 
○ pg_stat_monitor 

● Execution Plan 
○ auto_explain 
○ pg_stat_statements 
○ pgbadger 
○ pg_stat_monitor

Tools for the Use Case

44



© 2021 Percona

● Planning and Execution Timing Statistics 
○ pg_stat_statements 
○ pgbadger 
○ pg_stat_monitor 

● Query Execution Timing Histogram 
○ pg_stat_monitor 

● Block Read/Write Statistics 
○ pg_stat_statements 
○ pgbadger 
○ pg_stat_monitor

Tools for the Use Case

45



© 2021 Percona

Tools for the Use Case

46

● Wait Events and Locks 
○ pg_stat_activity 
○ pgbadger 

● SQL Interface 
○ pg_stat_activity 
○ pg_stat_statements 
○ pg_stat_monitor



Percona stands for evolution 
Percona stands for ease-of-use 

Percona stands for freedom 

Percona & PostgreSQL - Better Together





If you have 30 mins, I’d love to talk to you 
about PostgreSQL. 



Thank you! 

Questions?


