POSTGRESQL QUERY
PERFORMANCE INSIGHTS

Hamid Quddus Akhtar

Percona

Keeping Open Source Open

@ PERCONA



About Myself

e More than two decades of professional software
development.
o Actually developed a couple of games back in 1993

e I’'m part of Percona:
o Previously as Technical Product Manager for PostgreSQL.
o Now as the Senior Software Engineer
o Percona has amazing culture.

e Prior to joining Percona, | had worked with EnterpriseDB
where | lead the configuration management team that
delivers the official PostgreSQL installers for Windows and

MacOS.

2 © 2021 Percona @PERCONA



Contacts
Email:
hamid.akhtar@percona.com
Skype:
EngineeredVirus
WhatsApp



mailto:hamid.akhtar@percona.com

Presentation Outline
e Understanding query plan

e The tools for observing query performance
o pg_stat_activity

pg_stat_statements

auto_explain

pgbadger

pg stat _monitor

O O O O

4 © 2021 Percona



Initial Thoughts

O8N PERCONA



Observing Query Performance - Overview
e Application/Connection Information

e Query Text

o With parameter values

Execution Plan

Planning and Execution Timing Statistics
Block Read/Write Statistics

Wait Events and Locks

6 © 2021 Percona



EXPLAIN and ANALYZE...

O8N PERCONA



Components of Query Processing

e There are 5 components of query processing:

o Parser
Analyzer

Rewriter

= Parser and Analyzer ensure that the query is written correctly, and rewriter
may perform some transformations.

o Planner

= The transformed query tree is passed on to the Planner which defines the
execution steps for the executor.

o Executor
= Executes steps defined by the planner.

e To understand query performance, we must first understand the
EXPLAIN command output; i.e. the query execution plan.

8 © 2021 Percona Q PERCONA



EXPLAIN - Basics
e Let’s have a look at the EXPLAIN command output.

__________________________________________________________________________________________________________________________________________________________

regression=# EXPLAIN SELECT * FROM tenk1;
i QUERY PLAN

Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)
+ (1 row)

e Estimated...
o Startup Cost
o Total Cost
o Number of Rows
o Average Row Width in Bytes

9 © 2021 Percona O3 PERCONA



10

EXPLAIN - Basics: Costs

e Costis:

o An arbitrary unit
o Conventionally equivalent to “seq _page cost” = 1.0

e Page Costs

o Sequential vs Random page access
e CPU Costs

o Cost for processing of a tuple, indexing entry, or operator
e Parallel Costs

o Cost for setup, or tuple transfer to another parallel worker

© 2021 Percona



11

EXPLAIN - Basics: Example
e A more complex query plan is show

regression=# EXPLAIN SELECT *

regression-# FROM tenk1 t1, tenk2 t2

regression-# WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;
QUERY PLAN

Nested Loop (cost=4.65..49.36 rows=33 width=488)
Join Filter: (t1.hundred < t2.hundred)
-> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.38 rows=10 width=244)
Recheck Cond: (unique1 < 10)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
Index Cond: (unique1 < 10)
-> Materialize (cost=0.29..8.51 rows=10 width=244)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10 width=244)
Index Cond: (unique2 < 10)

© 2021 Percona 0 PERCONA



12

EXPLAIN - Basics: Nodes

e Query planis a tree of plan nodes.
o Nodes at the bottom level of the tree are scan nodes.
e Types of scan nodes for table access methods:

o Sequential
o Index
o Bitmap Index

e For non-table row sources

o Functions Returning Sets
= EXPLAIN SELECT * FROM generate_series(1,10);
o VALUES Clauses
= EXPLAIN SELECT * FROM (VALUES (1), (2), (3)) AS t(id);

© 2021 Percona



EXPLAIN ANALYZE - Basics
e Let’s have a look at the EXPLAIN ANALYZE command output.

__________________________________________________________________________________________________________________________________________________________

regression=# EXPLAIN ANALYZE SELECT * FROM tenk1;
’ QUERY PLAN

Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244) (actual time=1.777..18.050 rows=10000 loops=1)
i Planning Time: 0.248 ms
| Execution Time: 18.853 ms

e Additional information...

o Actual Startup and Total Time (in ms)

Total Rows Returned

Loops

Planning Time (EXPLAIN with SUMMARY option gives this too)
Execution Time

13 © 2021 Percona @PERCONA

O O O O



EXPLAIN ANALYZE - Basics

e EXPLAIN ANALYZE command allows you to gauge planner’s
cost estimates.

o Note! Costs are arbitrary units. So, time and cost wouldn’t match.
o In case of loops, average times and row counts are shown.
e Additional information...
o Actual Time
o Total Rows Returned
o Loops
o Planning Time (EXPLAIN with SUMMARY option gives this too)
o Execution Time

14 © 2021 Percona @3 PERCONA



The Tools

O8N PERCONA



16

The Tools

e pg stat activity

e pg stat statements
e auto_explain

e pgbadger

e pg stat monitor

© 2021 Percona



pg stat activity

O8N PERCONA



18

pg_stat_activity
e Aview in the pg catalog schema.
e It tells you what’s happening in the PostgreSQL right now.

O

It has one row per connection.

e Provides information about:

O

Connection, including database, username, client IP/host/port/
application/backend type,

Aging details in form of timestamps for transaction, connection and
state, or transaction ID details.

State of the connection:

= Active vs Idle

Wait events

= Whether waiting on certain type of activity, and if yes, then what event!

© 2021 Percona QPERCONA



19

pg_stat_activity: Take Aways
e Connection and application details.

e Rows of interest could be with values:

o state =idle_in_transaction
= idle_in_transaction (aborted) also if the transaction has savepoint(s).
o state _change = <define threshold based on your use case>

o wait_event = ClientRead | ClientWrite
e Aging transactions

e Wait event type is not NULL may require further investigation.

e Caveat:
o Only currently connected server processes are shown.

© 2021 Percona o3 PERCONA



pg_stat_statements

O8N PERCONA



pg stat_statements
e pg stat statement is one of the most commonly used

extension.

e It tracks planning and execution statistics for all SQL queries
executed by the server.

e It must be loaded by adding “pg_stat statements” to

“shared_preload_libraries” in postgresqgl.conf file.

o Expect ~4% performance degradation when you do that with
default options.

o Uses an internal JumbleQuery function to calculate a query ID

before PG14.
o Only works in PG14 if compute query_id is on (that’s the default).

21 © 2021 Percona @PERCONA



22

pg_stat_statements View
e The pg stat statements view has 33 columns in PG 14.
e By default, track planning is off. So, you’ll see Os for planning

related columns.

o Turning this on will have a detrimental effect on query
performance!

e It provides statistics (total/min/max/mean/stddev) for:

o Query planning times
o Query execution times

© 2021 Percona @B PERCONA



23

pg_stat_statements View
e For shared, local, temp, disk blocks, it tracks reads and writes.
e For shared and local blocks, it also tracks hit and dirtied

counts.

o The same information for a specific SQL query can also be seen with
“EXPLAIN [ANALYZE] (BUFFERS)” command.

e And then there are basic WAL statistics like records, fpi and
bytes.

© 2021 Percona @B PERCONA



24

pg_stat_statements_info
e New view in PG14.

e Itis asingle row view that provides information about:

o When pg_stat_statements was last reset,
o The number of times pg_stat_statements had to deallocate least
executed entry to make room for a new entry.

© 2021 Percona @B PERCONA



pg_stat_statements View Example

| bench=# \x

\ bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
4 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent

¢ FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 2;
=TT )= T I T ——

| query | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2
' calls 3000

' total_exec_time | 25565.855387

' rows 1 3000

. hit_percent | 100.0000000000000000

21070 = 0

query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
+ calls | 3000

| total_exec_time | 271.232977

| TOWS | 3000

| hit_percent |98.8454011741682975

e Hit percentage is 100 * (blocks hit)/(blocks hit + read).
e Sort by the required stat to identify any potential areas for
optimization!

25 © 2021 Percona 0 PERCONA




pg_stat_statements - Challenges

e If one needs to analyze time of day based (or time window
based) statistics, there is no way that can be done (unless you
reset statistics).

e Provides basic planning statistics, but not the plan.

e Does not provide information from relations/views

perspective.

Does not provide actual parameter values used in the SQL

qgueries.

e It does not provide information about spread of timing data,
as shown in the table on the next slide.

26 © 2021 Percona @PERCONA



pg_stat_statements - Challenges
e Link to the spreadsheet: https://tinyurl.com/2p9axvxk

27

o ldentical: — I I
. Query Timings Min Max Mean Sum Variance Standard Deviation
= Min/Max/StdDev 1 1 1 1 0.00 0.00
: . 50 1 50 25.5 1200.50 24.50
o Different: 40 1 50 30.33333333 1340.67 21.14
= Mean /Tota | 189 1 189 70 20222.00 71.10
i 1000 1 1000 256  712142.00 377.40
o Top 3 slowest queries: 1000 1 1000 380  1173422.00 442.23
. 3000 1 3000 754.2857143  7057193.43 1004.08
= Table 1: 60 1 3000 667.5  7478972.00 966.89

e 3000, 1000, 1000

= Table 2: Query Timings Min  Max  Mean 'Sum Variance Standard Deviation
e 300, 500, 60 1 1 1 1 0.00 0.00
500 1 3000 250.5  124500.50 249.50
40 1 3000 180.3333333  154040.67 226.60
60 1 3000 150.25  164900.75 203.04
60 1 3000 1322 171416.80 185.16
60 1 3000 120.1666667  175760.83 171.15
3000 1 3000 531.5714286  7284423.71 1020.11
60 1 3000 472.625  7479005.88 966.89

© 2021 Percona

O PERCONA


https://tinyurl.com/2p9axvxk

auto_explain

O8N PERCONA



29

auto_explain Extension

It is a no SQL extension for PostgreSQL. So, all you have is a
shared object that can be loaded in session or as part of
preload libraries.

Provides the option to log execution plans automatically.

o auto_explain.log_min_duration GUC defines time threshold for
logging SQL queries. Setting this to zero will log all queries.

o So you don’t have to run EXPLAIN command manually.

Configuration options include similar options to the EXPLAIN
command:

o WAL, buffers, timings, etc.

Additionally, you can set to log triggers, or track deeper than

top level query in a function call.

© 2021 Percona @PERCONA



30

auto_explain Extension
e Allows access to the execution plan being used for a client
application.

o Why that matters? An application may be doing some innocuous
change to the SQL query causing planner to choose a different plan.

e The challenge:

o No SQL interface means that access to log files is required, or
additional of another tool that can provide that access.

© 2021 Percona @B PERCONA



pgbadger

https://github.com/darold/pgbadger

O8N PERCONA



pgbadger Tool

e A perl based, fast PostgreSQL server log file parser, analyzer
and report generator.

e Support multiple report formats including HTML, JSON and
text.

e Relies on proper log configuration in postgresql.conf file; e.g.
o log_min_duration_statement
o log temp files
o etc.

e Beware to not overcook the log files.

o For me, a 15 minute pgbench and make installcheck-world yielded a
4GB of log file!

32 © 2021 Percona QPERCONA



33

pgbadger Statistics

e Some stats are borrowed from statistics tables and view.
However, the log files have the ability to provide way more
information.
o That’s what pgbadger utilizes.

e Generates lots of useful reports that allow you to:

o Information about almost anything and everything in PostgreSQL

server. For example:

= See information about temporary files in general and in query context.
= So that you can tune the work_mem

© 2021 Percona @B PERCONA



34

pgbadger - HTML Report

Overview v

Connections ~

Sessions v

Checkpoints ~

Temp Files ~

Vacuums ~

Locks ~ Queries v Top ~ Events ~ (1 )

¢ Queries generating the most temporary files (N)

Rank Count
1 1,075
2 906

3 630

4 571

5 530

6 504

Total size

28.74 MiB

23.28 MiB

19.72 MiB

17.84 MiB

38.82 MiB

10.88 MiB

10.05 KiB

24B

23.37 KiB

32.00 KiB

236 B

11.95KiB

Max size

32.00 KiB

64.00 KiB

64.00 KiB

32.00 KiB

146.46 KiB

30.28 KiB

Avg size

27.37 KiB

26.31 KiB

32.05 KiB

32.00 KiB

75.01 KiB

2213 KiB

Query

(HSELECT count(*) FROM join_foo LEFT JOIN ( SELECT bl.id, bl.t FROM
join_bar bl JOIN join _bar b2 USING (id)) ss ON join foo.id < ss.id + ?
AND join_foo.id > ss.id - ?;

Examples

(HSELECT count(*) FROM simple r JOIN simple s USING (id);
Examples

(#)SELECT original > ? AS initially multibatch, final > original AS
increased_batches FROM hash_join_batches ($$ SELECT count(*) FROM
simple r JOIN simple s USING (id); $$);

Examples

(A)SELECT final > ? AS multibatch FROM hash_join_batches ($$ SELECT
count(*) FROM join_foo LEFT JOIN ( SELECT bl.id, bl.t FROM join_bar bl
JOIN join bar b2 USING (id)) ss ON join_foo.id < ss.id + ? AND
join_foo.id > ss.id - ?; $§);

Examples

()SELECT count(*) FROM simple r JOIN bigger than_it_looks s USING (id);
Examples

(ZEXPLAIN ( ANALYZE, format ? ) SELECT count(*) FROM join_foo LEFT JOIN
( SELECT bl.id, bl.t FROM join_bar bl JOIN join bar b2 USING (id)) ss
ON join_foo.id < ss.id + ? AND join_foo.id > ss.id - ?;

Examples

© 2021 Percona

PN




35

pgbadger Challenges

e Parsing huge log files could take time.

e You may need to setup a cronjob to run pgbadger regularly.
e Does not link queries with applications.

e The HTML interface is rather basic.

o It’s not responsive! So viewing on a mobile phone is going to be
tricky.

© 2021 Percona @B PERCONA



o

pg stat monitor

https://github.com/percona/pg_stat_monitor

O8N PERCONA




pg_stat_monitor Extension

e pg stat _monitor is a query performance observability
extension that combines pg_stat_activity, pg_stat statements
and auto_explain to paint a wholistic picture.

e It provides:
o Connection and application details [pg_stat_activity]
o Query planning and execution statistics [pg_stat statements]
o Query execution plan [auto_explain]
o All of this through its SQL interface!

37 © 2021 Percona @3 PERCONA



pg_stat_monitor Extension
e Itis designed to maintain query planning and execution

statistics in a series of configurable time buckets.
o Default is 10 buckets of 1 minute duration each.

e It groups queries within a time bucket based on:
o Database

User

Client IP

Application Name

Query ID

Plan ID

O O O O O

38 © 2021 Percona



39

pg_stat_monitor View
e pg stat _monitor view has all of pg_stat statements columns

and 19 additional columns in PG14!

o That’s a total of 51 columns!
o So, I’'m not going to repeat those here.

e enable _query plan is off. So, you’ll see an empty value for
plan.
o Turning this on will have a significant detrimental effect on query
performance!
e Application and client information

e Top query information including:

o Top query ID
o Top query text

© 2021 Percona o3 PERCONA



40

pg_stat_monitor View

e It also provides:
o List of relations and views impacted by a query
o Query meta information that might be present in query test in
Google Sglcomment like syntax; key value pairs.
o Actual parameter values that are used in a query to simplify the

debugging and analysis process.
e All of this data is maintained in a fixed number of time

buckets.
o Buckets are recycled!

© 2021 Percona @B PERCONA



pg_stat_monitor - Histogram

SELECT resp_calls, query FROM pg_stat_monitor;
resp_calls | query

1
ay

{1," o"," o"," o"," 0"," 0"," 0"," 0"," 0"," 0"} | select client_ip, query from pg_stat_monitor
{3," o"," o"," o"," o"," o"," o"," 0"," 0"," 1"} | select * from pg_stat_monitor_reset()
{3’" 0"," @Il'll 0"," 0"," @ll'll gll'll oll’ll 0“’" 1II} I SELECT * FROM foo

postgres=# SELECT * FROM histogram(®@, 'F44CD1B4B33A47AF') AS a(range TEXT, freq INT, bar TEXT);
range | freq | bar

(0 - 3)} | T T A
(3 -10)} |

(10 - 31)} | N N N

(31 - 100)} |
(100 - 316)} |
(316 - 1000)} |
(1000 - 3162)} |
(3162 - 10000)} |
(10000 - 31622)} |
(31622 - 100000)} |

(10 rows)

e UeEry-nucket-wise tuming nistogram to ciearly snow the
spread of timing data.

o0 000000 RO N

41 © 2021 Percona Q PERCONA



42

pg_stat_monitor
e Extension is not yet available for production.
e Feel free to try out the RC release though.

© 2021 Percona



Summarizing

O8N PERCONA



44

Tools for the Use Case

e Application/Connection Information
o pg_stat activity
o pg_stat_monitor

e Query Text
o pg_stat statements
o pgbadger
o pg_stat _monitor

e Execution Plan
o auto_explain
o pg_stat statements
o pgbadger
o pg_stat_monitor

© 2021 Percona



45

Tools for the Use Case

e Planning and Execution Timing Statistics
o pg_stat statements
o pgbadger
o pg_stat _monitor
e Query Execution Timing Histogram
o pg_stat_monitor
e Block Read/Write Statistics

o pg_stat statements
o pgbadger
o pg_stat_monitor

© 2021 Percona



46

Tools for the Use Case

e Wait Events and Locks
o pg_stat activity
o pgbadger

e SQL Interface
o pg_stat_activity
o pg_stat statements
o pg_stat _monitor

© 2021 Percona



Percona stands for evolution

Percona stands for ease-of-use

Percona stands for freedom

Percona & PostgreSQL - Better Together

@ PERCONA



0

passionate
about Open Source?!

We're hiring!

#RemoteWork



If you have 30 mins, I'd love to talk to you
about PostgreSQL.

O8N PERCONA



Thank you!

Questions?

O8N PERCONA



