
Percona Server Documentation
Release 8.0.18-9

Percona LLC and/or its affiliates 2009-2019

Dec 11, 2019

CONTENTS

I Introduction 2

II Installation 12

III Scalability Improvements 36

IV Performance Improvements 39

V Flexibility Improvements 52

VI Reliability Improvements 77

VII Management Improvements 81

VIII Security Improvements 115

IX Diagnostics Improvements 151

X TokuDB 183

XI Percona MyRocks 294

XII Reference 352

i

Percona Server Documentation, Release 8.0.18-9

Percona Server for MySQL is an enhanced drop-in replacement for MySQL. With Percona Server for MySQL,

• Your queries will run faster and more consistently.

• You will consolidate servers on powerful hardware.

• You will delay sharding, or avoid it entirely.

• You will save money on hosting fees and power.

• You will spend less time tuning and administering.

• You will achieve higher uptime.

• You will troubleshoot without guesswork.

Does this sound too good to be true? It’s not. Percona Server for MySQL offers breakthrough performance, scalability,
features, and instrumentation. Its self-tuning algorithms and support for extremely high-performance hardware make
it the clear choice for companies who demand the utmost performance and reliability from their database server.

CONTENTS 1

Part I

Introduction

2

CHAPTER

ONE

THE PERCONA XTRADB STORAGE ENGINE

Percona XtraDB is an enhanced version of the InnoDB storage engine, designed to better scale on modern hardware.
It also includes a variety of other features useful in high-performance environments. It is fully backwards compatible,
and so can be used as a drop-in replacement for standard InnoDB.

Percona XtraDB includes all of InnoDB ‘s robust, reliable ACID-compliant design and advanced MVCC architecture,
and builds on that solid foundation with more features, more tunability, more metrics, and more scalability. In particu-
lar, it is designed to scale better on many cores, to use memory more efficiently, and to be more convenient and useful.
The new features are especially designed to alleviate some of InnoDB‘s limitations. We choose features and fixes
based on customer requests and on our best judgment of real-world needs as a high-performance consulting company.

Percona XtraDB engine will not have further binary releases, it is distributed as part of Percona Server for MySQL.

3

CHAPTER

TWO

LIST OF FEATURES AVAILABLE IN PERCONA SERVER FOR MYSQL
RELEASES

Percona Server for MySQL 5.6 Percona Server for MySQL 5.7 Percona Server for MySQL 8.0
Improved Buffer Pool Scalability Improved Buffer Pool Scalability Improved Buffer Pool Scalability
Improved InnoDB I/O Scalability Improved InnoDB I/O Scalability Improved InnoDB I/O Scalability
Multiple Adaptive Hash Search
Partitions

Multiple Adaptive Hash Search
Partitions

Multiple Adaptive Hash Search
Partitions

Atomic write support for Fusion-io
devices

Atomic write support for Fusion-io
devices

Atomic write support for Fusion-io
devices

Query Cache Enhancements Query Cache Enhancements Feature not implemented
Improved NUMA support Improved NUMA support Feature not implemented
Thread Pool Thread Pool Thread Pool
Suppress Warning Messages Suppress Warning Messages Suppress Warning Messages
Ability to change database for
mysqlbinlog

Ability to change database for
mysqlbinlog

Ability to change database for
mysqlbinlog

Fixed Size for the Read Ahead Area Fixed Size for the Read Ahead Area Fixed Size for the Read Ahead Area
Improved MEMORY Storage En-
gine

Improved MEMORY Storage En-
gine

Improved MEMORY Storage En-
gine

Restricting the number of binlog
files

Restricting the number of binlog
files

Restricting the number of binlog
files

Ignoring missing tables in mysql-
dump

Ignoring missing tables in mysql-
dump

Ignoring missing tables in mysql-
dump

Too Many Connections Warning Too Many Connections Warning Too Many Connections Warning
Handle Corrupted Tables Handle Corrupted Tables Handle Corrupted Tables
Lock-Free SHOW SLAVE STA-
TUS

Lock-Free SHOW SLAVE STA-
TUS

Lock-Free SHOW SLAVE STA-
TUS

Expanded Fast Index Creation Expanded Fast Index Creation Expanded Fast Index Creation
Percona Toolkit UDFs Percona Toolkit UDFs Percona Toolkit UDFs
Support for Fake Changes Support for Fake Changes Support for Fake Changes
Kill Idle Transactions Kill Idle Transactions Kill Idle Transactions
XtraDB changed page tracking XtraDB changed page tracking XtraDB changed page tracking
Enforcing Storage Engine Enforcing Storage Engine Replaced with upstream implemen-

tation
Utility user Utility user Feature not implemented
Extending the secure-file-priv
server option

Extending the secure-file-priv
server option

Extending the secure-file-priv
server option

Expanded Program Option Modi-
fiers

Expanded Program Option Modi-
fiers

Feature not implemented

PAM Authentication Plugin PAM Authentication Plugin PAM Authentication Plugin
Continued on next page

4

https://www.percona.com/doc/percona-server/5.6/scalability/innodb_split_buf_pool_mutex.html#innodb-split-buf-pool-mutex
https://www.percona.com/doc/percona-server/5.7/scalability/innodb_split_buf_pool_mutex.html#innodb-split-buf-pool-mutex
https://www.percona.com/doc/percona-server/5.6/scalability/innodb_io.html#innodb-io-page
https://www.percona.com/doc/percona-server/5.7/scalability/innodb_io.html#innodb-io-page
https://www.percona.com/doc/percona-server/8.0/scalability/innodb_io.html#innodb-io-page
https://www.percona.com/doc/percona-server/5.6/scalability/innodb_adaptive_hash_index_partitions.html#innodb-adaptive-hash-index-partitions-page
https://www.percona.com/doc/percona-server/5.6/scalability/innodb_adaptive_hash_index_partitions.html#innodb-adaptive-hash-index-partitions-page
https://www.percona.com/doc/percona-server/5.6/performance/atomic_fio.html#atomic-fio
https://www.percona.com/doc/percona-server/5.6/performance/atomic_fio.html#atomic-fio
https://www.percona.com/doc/percona-server/5.6/performance/query_cache_enhance.html#query-cache-enhance
https://www.percona.com/doc/percona-server/5.7/performance/query_cache_enhance.html#query-cache-enhance
https://www.percona.com/doc/percona-server/5.6/performance/innodb_numa_support.html#innodb-numa-support
https://www.percona.com/doc/percona-server/5.7/performance/innodb_numa_support.html#innodb-numa-support
https://www.percona.com/doc/percona-server/5.6/performance/threadpool.html#threadpool
https://www.percona.com/doc/percona-server/5.6/performance/threadpool.html#threadpool
https://www.percona.com/doc/percona-server/5.6/performance/threadpool.html#threadpool
https://www.percona.com/doc/percona-server/5.6/flexibility/log_warnings_suppress.html#log-warning-suppress
https://www.percona.com/doc/percona-server/5.7/flexibility/log_warnings_suppress.html#log-warning-suppress
https://www.percona.com/doc/percona-server/8.0/flexibility/log_warnings_suppress.html#log-warning-suppress
https://www.percona.com/doc/percona-server/5.6/flexibility/mysqlbinlog_change_db.html#mysqlbinlog-change-db
https://www.percona.com/doc/percona-server/5.6/flexibility/mysqlbinlog_change_db.html#mysqlbinlog-change-db
https://www.percona.com/doc/percona-server/5.6/performance/buff_read_ahead_area.html#buff-read-ahead-area
https://www.percona.com/doc/percona-server/5.6/flexibility/improved_memory_engine.html#improved-memory-engine
https://www.percona.com/doc/percona-server/5.6/flexibility/improved_memory_engine.html#improved-memory-engine
https://www.percona.com/doc/percona-server/5.7/flexibility/improved_memory_engine.html#improved-memory-engine
https://www.percona.com/doc/percona-server/5.7/flexibility/improved_memory_engine.html#improved-memory-engine
https://www.percona.com/doc/percona-server/8.0/flexibility/improved_memory_engine.html#improved-memory-engine
https://www.percona.com/doc/percona-server/8.0/flexibility/improved_memory_engine.html#improved-memory-engine
https://www.percona.com/doc/percona-server/5.6/flexibility/max_binlog_files.html#maximum-binlog-files
https://www.percona.com/doc/percona-server/5.6/flexibility/max_binlog_files.html#maximum-binlog-files
https://www.percona.com/doc/percona-server/5.7/flexibility/max_binlog_files.html#maximum-binlog-files
https://www.percona.com/doc/percona-server/5.7/flexibility/max_binlog_files.html#maximum-binlog-files
https://www.percona.com/doc/percona-server/5.6/flexibility/extended_mysqldump.html#mysqldump-ignore-create-error
https://www.percona.com/doc/percona-server/5.6/flexibility/extended_mysqldump.html#mysqldump-ignore-create-error
https://www.percona.com/doc/percona-server/5.6/reliability/log_connection_error.html#log-connection-error
https://www.percona.com/doc/percona-server/5.7/reliability/log_connection_error.html#log-connection-error
https://www.percona.com/doc/percona-server/8.0/reliability/log_connection_error.html#log-connection-error
https://www.percona.com/doc/percona-server/5.6/reliability/innodb_corrupt_table_action.html#innodb-corrupt-table-action-page
https://www.percona.com/doc/percona-server/5.7/reliability/innodb_corrupt_table_action.html#innodb-corrupt-table-action-page
https://www.percona.com/doc/percona-server/8.0/reliability/innodb_corrupt_table_action.html#innodb-corrupt-table-action-page
https://www.percona.com/doc/percona-server/5.6/reliability/show_slave_status_nolock.html#show-slave-status-nolock
https://www.percona.com/doc/percona-server/5.6/reliability/show_slave_status_nolock.html#show-slave-status-nolock
https://www.percona.com/doc/percona-server/5.6/management/innodb_expanded_fast_index_creation.html#expanded-innodb-fast-index-creation
https://www.percona.com/doc/percona-server/5.6/management/innodb_expanded_fast_index_creation.html#expanded-innodb-fast-index-creation
https://www.percona.com/doc/percona-server/5.6/management/innodb_expanded_fast_index_creation.html#expanded-innodb-fast-index-creation
https://www.percona.com/doc/percona-server/5.6/management/udf_percona_toolkit.html#udf-percona-toolkit
https://www.percona.com/doc/percona-server/5.7/management/udf_percona_toolkit.html#udf-percona-toolkit
https://www.percona.com/doc/percona-server/8.0/management/udf_percona_toolkit.html#udf-percona-toolkit
https://www.percona.com/doc/percona-server/5.6/management/innodb_fake_changes.html#innodb-fake-changes-page
https://www.percona.com/doc/percona-server/5.6/management/innodb_kill_idle_trx.html#innodb-kill-idle-trx
https://www.percona.com/doc/percona-server/5.7/management/innodb_kill_idle_trx.html#innodb-kill-idle-trx
https://www.percona.com/doc/percona-server/5.6/management/changed_page_tracking.html#changed-page-tracking
https://www.percona.com/doc/percona-server/5.7/management/changed_page_tracking.html#changed-page-tracking
https://www.percona.com/doc/percona-server/8.0/management/changed_page_tracking.html#changed-page-tracking
https://www.percona.com/doc/percona-server/5.6/management/enforce_engine.html#enforce-engine
https://www.percona.com/doc/percona-server/5.6/management/enforce_engine.html#enforce-engine
https://www.percona.com/doc/percona-server/5.6/management/utility_user.html#psaas-utility-user
https://www.percona.com/doc/percona-server/5.7/management/utility_user.html#psaas-utility-user
https://www.percona.com/doc/percona-server/5.6/management/secure_file_priv_extended.html#secure-file-priv-extended
https://www.percona.com/doc/percona-server/5.6/management/secure_file_priv_extended.html#secure-file-priv-extended
https://www.percona.com/doc/percona-server/5.6/management/expanded_program_option_modifiers.html#expanded-option-modifiers
https://www.percona.com/doc/percona-server/5.6/management/expanded_program_option_modifiers.html#expanded-option-modifiers
https://www.percona.com/doc/percona-server/5.7/management/expanded_program_option_modifiers.html#expanded-option-modifiers
https://www.percona.com/doc/percona-server/5.7/management/expanded_program_option_modifiers.html#expanded-option-modifiers
https://www.percona.com/doc/percona-server/5.6/management/pam_plugin.html#pam-plugin
https://www.percona.com/doc/percona-server/5.7/management/pam_plugin.html#pam-plugin
https://www.percona.com/doc/percona-server/8.0/security/pam_plugin.html#pam-plugin

Percona Server Documentation, Release 8.0.18-9

Table 2.1 – continued from previous page
Percona Server for MySQL 5.6 Percona Server for MySQL 5.7 Percona Server for MySQL 8.0
Log Archiving for XtraDB Log Archiving for XtraDB Log Archiving for XtraDB
User Statistics User Statistics User Statistics
Slow Query Log Slow Query Log Slow Query Log
Count InnoDB Deadlocks Count InnoDB Deadlocks Count InnoDB Deadlocks
Log All Client Commands (syslog) Log All Client Commands (syslog) Log All Client Commands (syslog)
Response Time Distribution Response Time Distribution Feature not implemented
Show Storage Engines Show Storage Engines Show Storage Engines
Show Lock Names Show Lock Names Show Lock Names
Process List Process List Process List
Misc. INFORMATION_SCHEMA
Tables

Misc. INFORMATION_SCHEMA
Tables

Misc. INFORMATION_SCHEMA
Tables

Extended Show Engine InnoDB
Status

Extended Show Engine InnoDB
Status

Extended Show Engine InnoDB
Status

Thread Based Profiling Thread Based Profiling Thread Based Profiling
XtraDB Performance Improve-
ments for I/O-Bound Highly-
Concurrent Workloads

XtraDB Performance Improve-
ments for I/O-Bound Highly-
Concurrent Workloads

XtraDB Performance Improve-
ments for I/O-Bound Highly-
Concurrent Workloads

Page cleaner thread tuning Page cleaner thread tuning Page cleaner thread tuning
Statement Timeout Statement Timeout Statement Timeout
Extended SELECT INTO OUT-
FILE/DUMPFILE

Extended SELECT INTO OUT-
FILE/DUMPFILE

Extended SELECT INTO OUT-
FILE/DUMPFILE

Per-query variable statement Per-query variable statement Per-query variable statement
Extended mysqlbinlog Extended mysqlbinlog Extended mysqlbinlog
Slow Query Log Rotation and Ex-
piration

Slow Query Log Rotation and Ex-
piration

Slow Query Log Rotation and Ex-
piration

Metrics for scalability measure-
ment

Metrics for scalability measure-
ment

Feature not implemented

Audit Log Audit Log Audit Log
Backup Locks Backup Locks Backup Locks
CSV engine mode for standard-
compliant quote and comma pars-
ing

CSV engine mode for standard-
compliant quote and comma pars-
ing

CSV engine mode for standard-
compliant quote and comma pars-
ing

Super read-only Super read-only Super read-only

Other Reading

• Changed in Percona Server 5.6

• Percona Server for MySQL In-Place Upgrading Guide: From 5.7 to 8.0

• What Is New in MySQL 5.5

• What Is New in MySQL 5.6

2.1. Other Reading 5

https://www.percona.com/doc/percona-server/5.6/management/log_archiving.html#log-archiving
https://www.percona.com/doc/percona-server/5.6/diagnostics/user_stats.html#user-stats
https://www.percona.com/doc/percona-server/5.7/diagnostics/user_stats.html#user-stats
https://www.percona.com/doc/percona-server/8.0/diagnostics/user_stats.html#user-stats
https://www.percona.com/doc/percona-server/5.6/diagnostics/slow_extended.html#slow-extended
https://www.percona.com/doc/percona-server/5.7/diagnostics/slow_extended.html#slow-extended
https://www.percona.com/doc/percona-server/8.0/diagnostics/slow_extended.html#slow-extended
https://www.percona.com/doc/percona-server/5.6/diagnostics/innodb_deadlock_count.html#innodb-deadlocks-page
https://www.percona.com/doc/percona-server/5.6/diagnostics/mysql_syslog.html#mysql-syslog
https://www.percona.com/doc/percona-server/5.6/diagnostics/response_time_distribution.html#response-time-distribution
https://www.percona.com/doc/percona-server/5.7/diagnostics/response_time_distribution.html#response-time-distribution
https://www.percona.com/doc/percona-server/5.6/diagnostics/show_engines.html#show-engines
https://www.percona.com/doc/percona-server/5.7/diagnostics/show_engines.html#show-engines
https://www.percona.com/doc/percona-server/8.0/diagnostics/show_engines.html#show-engines
https://www.percona.com/doc/percona-server/5.6/diagnostics/innodb_show_lock_names.html#innodb-show-lock-names
https://www.percona.com/doc/percona-server/5.6/diagnostics/process_list.html#process-list
https://www.percona.com/doc/percona-server/5.7/diagnostics/process_list.html#process-list
https://www.percona.com/doc/percona-server/8.0/diagnostics/process_list.html#process-list
https://www.percona.com/doc/percona-server/5.6/diagnostics/misc_info_schema_tables.html#misc-info-schema-tables
https://www.percona.com/doc/percona-server/5.6/diagnostics/misc_info_schema_tables.html#misc-info-schema-tables
https://www.percona.com/doc/percona-server/5.7/diagnostics/misc_info_schema_tables.html#misc-info-schema-tables
https://www.percona.com/doc/percona-server/5.7/diagnostics/misc_info_schema_tables.html#misc-info-schema-tables
https://www.percona.com/doc/percona-server/8.0/diagnostics/misc_info_schema_tables.html#misc-info-schema-tables
https://www.percona.com/doc/percona-server/8.0/diagnostics/misc_info_schema_tables.html#misc-info-schema-tables
https://www.percona.com/doc/percona-server/5.6/diagnostics/innodb_show_status.html#innodb-show-status
https://www.percona.com/doc/percona-server/5.6/diagnostics/innodb_show_status.html#innodb-show-status
https://www.percona.com/doc/percona-server/5.7/diagnostics/innodb_show_status.html#innodb-show-status
https://www.percona.com/doc/percona-server/5.7/diagnostics/innodb_show_status.html#innodb-show-status
https://www.percona.com/doc/percona-server/8.0/diagnostics/innodb_show_status.html#innodb-show-status
https://www.percona.com/doc/percona-server/8.0/diagnostics/innodb_show_status.html#innodb-show-status
https://www.percona.com/doc/percona-server/5.6/diagnostics/thread_based_profiling.html#thread-based-profiling
https://www.percona.com/doc/percona-server/5.7/diagnostics/thread_based_profiling.html#thread-based-profiling
https://www.percona.com/doc/percona-server/8.0/diagnostics/thread_based_profiling.html#thread-based-profiling
https://www.percona.com/doc/percona-server/5.6/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/5.6/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/5.6/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/5.7/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/5.7/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/5.7/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/8.0/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/8.0/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/8.0/performance/xtradb_performance_improvements_for_io-bound_highly-concurrent_workloads.html#xtradb-performance-improvements-for-io-bound-highly-concurrent-workloads
https://www.percona.com/doc/percona-server/5.6/performance/page_cleaner_tuning.html#page-cleaner-tuning
https://www.percona.com/doc/percona-server/5.6/management/statement_timeout.html#statement-timeout
https://www.percona.com/doc/percona-server/5.6/flexibility/extended_select_into_outfile.html#extended-select-into-outfile
https://www.percona.com/doc/percona-server/5.6/flexibility/extended_select_into_outfile.html#extended-select-into-outfile
https://www.percona.com/doc/percona-server/5.7/flexibility/extended_select_into_outfile.html#extended-select-into-outfile
https://www.percona.com/doc/percona-server/5.7/flexibility/extended_select_into_outfile.html#extended-select-into-outfile
https://www.percona.com/doc/percona-server/8.0/flexibility/extended_select_into_outfile.html#extended-select-into-outfile
https://www.percona.com/doc/percona-server/8.0/flexibility/extended_select_into_outfile.html#extended-select-into-outfile
https://www.percona.com/doc/percona-server/5.6/flexibility/per_query_variable_statement.html#per-query-variable-statement
https://www.percona.com/doc/percona-server/5.7/flexibility/per_query_variable_statement.html#per-query-variable-statement
https://www.percona.com/doc/percona-server/5.6/flexibility/extended_mysqlbinlog.html#extended-mysqlbinlog
https://www.percona.com/doc/percona-server/5.7/flexibility/extended_mysqlbinlog.html#extended-mysqlbinlog
https://www.percona.com/doc/percona-server/8.0/flexibility/extended_mysqlbinlog.html#extended-mysqlbinlog
https://www.percona.com/doc/percona-server/5.6/flexibility/slowlog_rotation.html#slowlog-rotation
https://www.percona.com/doc/percona-server/5.6/flexibility/slowlog_rotation.html#slowlog-rotation
https://www.percona.com/doc/percona-server/5.7/flexibility/slowlog_rotation.html#slowlog-rotation
https://www.percona.com/doc/percona-server/5.7/flexibility/slowlog_rotation.html#slowlog-rotation
https://www.percona.com/doc/percona-server/5.6/diagnostics/scalability_metrics_plugin.html#scalability-metrics-plugin
https://www.percona.com/doc/percona-server/5.6/diagnostics/scalability_metrics_plugin.html#scalability-metrics-plugin
https://www.percona.com/doc/percona-server/5.7/diagnostics/scalability_metrics_plugin.html#scalability-metrics-plugin
https://www.percona.com/doc/percona-server/5.7/diagnostics/scalability_metrics_plugin.html#scalability-metrics-plugin
https://www.percona.com/doc/percona-server/5.6/management/audit_log_plugin.html#audit-log-plugin
https://www.percona.com/doc/percona-server/5.7/management/audit_log_plugin.html#audit-log-plugin
https://www.percona.com/doc/percona-server/8.0/management/audit_log_plugin.html#audit-log-plugin
https://www.percona.com/doc/percona-server/5.6/management/backup_locks.html#backup-locks
https://www.percona.com/doc/percona-server/5.7/management/backup_locks.html#backup-locks
https://www.percona.com/doc/percona-server/8.0/management/backup_locks.html#backup-locks
https://www.percona.com/doc/percona-server/5.6/flexibility/csv_engine_mode.html#csv-engine-mode
https://www.percona.com/doc/percona-server/5.6/flexibility/csv_engine_mode.html#csv-engine-mode
https://www.percona.com/doc/percona-server/5.6/flexibility/csv_engine_mode.html#csv-engine-mode
https://www.percona.com/doc/percona-server/5.7/flexibility/csv_engine_mode.html#csv-engine-mode
https://www.percona.com/doc/percona-server/5.7/flexibility/csv_engine_mode.html#csv-engine-mode
https://www.percona.com/doc/percona-server/5.7/flexibility/csv_engine_mode.html#csv-engine-mode
https://www.percona.com/doc/percona-server/5.6/management/super_read_only.html#super-read-only
https://www.percona.com/doc/percona-server/5.6/changed_in_56.html#changed-in-56
http://dev.mysql.com/doc/refman/5.5/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html

CHAPTER

THREE

PERCONA SERVER FOR MYSQL FEATURE COMPARISON

Percona Server for MySQL is an enhanced drop-in replacement for MySQL. With Percona Server for MySQL,

• Your queries will run faster and more consistently.

• You will consolidate servers on powerful hardware.

• You will delay sharding, or avoid it entirely.

• You will save money on hosting fees and power.

• You will spend less time tuning and administering.

• You will achieve higher uptime.

• You will troubleshoot without guesswork.

We provide these benefits by significantly enhancing Percona Server for MySQL as compared to the standard MySQL
database server:

Features Percona Server for MySQL 8.0.13 MySQL 8.0.13
Open source Yes Yes
ACID Compliance Yes Yes
Multi-Version Concurrency Control Yes Yes
Row-Level Locking Yes Yes
Automatic Crash Recovery Yes Yes
Table Partitioning Yes Yes
Views Yes Yes
Subqueries Yes Yes
Triggers Yes Yes
Stored Procedures Yes Yes
Foreign Keys Yes Yes
Window Functions Yes Yes
Common Table Expressions Yes Yes
Geospatial Features (GIS, SPRS) Yes Yes
GTID Replication Yes Yes
Group Replication Yes Yes
MyRocks Storage Engine Yes No
TokuDB Storage Engine Yes No

6

Percona Server Documentation, Release 8.0.18-9

Improvements for Developers

Feature Percona Server for MySQL 8.0.13 MySQL 8.0.13
NoSQL Socket-Level Interface Yes Yes
X API Support Yes Yes
JSON Functions Yes Yes
InnoDB Full-Text Search Improvements Yes No
Extra Hash/Digest Functions Yes No

Extra Diagnostic Features

Feature Percona Server for MySQL 8.0.13 MySQL 8.0.13
INFORMATION_SCHEMA Tables 95 65
Global Performance and Status Counters 853 434
Optimizer Histograms Yes Yes
Per-Table Performance Counters Yes No
Per-Index Performance Counters Yes No
Per-User Performance Counters Yes No
Per-Client Performance Counters Yes No
Per-Thread Performance Counters Yes No
Enhanced SHOW ENGINE INNODB STATUS Yes No
Temporary tables Information Yes No
Extended Slow Query Logging Yes No
User Statistics Yes No

Performance & Scalability Enhancements

Feature Percona Server for MySQL
8.0.13

MySQL
8.0.13

InnoDB Resource Groups Yes Yes
Configurable Page Sizes Yes Yes
Contention-Aware Transaction Scheduling Yes Yes
Improved Scalability by Splitting Mutexes Yes Yes
Improved MEMORY Storage Engine Yes No
Improved Flushing Yes No
Parallel Doublewrite Buffer Yes No
Configurable Fast Index Creation Yes No
Per-Column Compression for VARCHAR/BLOB and
JSON

Yes No

Compressed Columns with Dictionaries Yes No

3.1. Improvements for Developers 7

Percona Server Documentation, Release 8.0.18-9

Security Features

Feature Percona Server for MySQL 8.0.13 MySQL 8.0.13
SQL Roles Yes Yes
SHA-2 Based Password Hashing Yes Yes
Password Rotation Policy Yes Yes
PAM Authentication Yes Enterprise Only
Audit Logging Plugin Yes Enterprise Only

Encryption Features

Feature Percona Server for MySQL
8.0.13

MySQL
8.0.13

Storing Keyring in a File Yes Yes
Storing Keyring in Hashicorp Vault Yes No
Encrypt InnoDB Data Yes Yes
Encrypt InnoDB Logs Yes Yes
Encrypt Built-in InnoDB Tablespaces (General, System,
Undo, Temp)

Yes No

Encrypt Binary Logs Yes No
Encrypt Temporary Files Yes No
Key Rotation with Scrubbing Yes No
Enforce Encryption Yes No

Operational Improvements

Feature Percona Server for MySQL
8.0.13

MySQL
8.0.13

Atomic DDL Yes Yes
Transactional Data Dictionary Yes Yes
Instant DDL Yes Yes
SET PERSIST Yes Yes
Invisible Indexes Yes Yes
Changed Page Tracking Yes No
Threadpool Yes Enterprise

Only
Backup Locks Yes Yes
Extended SHOW GRANTS Yes No
Improved Handling of Corrupted Tables Yes No
Ability to Kill Idle Transactions Yes No
Improvements to START TRANSACTION WITH
CONSISTENT SNAPSHOT

Yes No

3.4. Security Features 8

CHAPTER

FOUR

CHANGED IN PERCONA SERVER 8.0

Percona Server for MySQL 8.0 is based on MySQL 8.0 and incorporates many of the improvements found in Percona
Server for MySQL 8.0.

Features ported to Percona Server for MySQL 8.0 from Percona
Server for MySQL 5.7

The following features have been ported to Percona Server for MySQL 8.0 from Percona Server for MySQL 5.7:

SHOW ENGINE INNODB STATUS Extensions

• The Redo Log state

• Specifying the InnoDB buffer pool sizes in bytes

• innodb_print_lock_wait_timeout_info system variable

Performance

• Prefix Index Queries Optimization

• Multiple page asynchronous I/O requests

• Thread Pool

• Priority refill for the buffer pool free list

• Multi-threaded LRU flusher

• Parallel doublewrite buffer

Flexibility

• InnoDB Full-Text Search Improvements

• Improved MEMORY Storage Engine

• Extended mysqldump

• Extended SELECT INTO OUTFILE/DUMPFILE

• Support for PROXY protocol

9

Percona Server Documentation, Release 8.0.18-9

• Compressed columns with dictionaries

Management

• Percona Toolkit UDFs

• Kill Idle Transactions

• XtraDB changed page tracking

• PAM Authentication Plugin

• Expanded Fast Index Creation

• Backup Locks

• Audit Log Plugin

• Start transaction with consistent snapshot

• Extended SHOW GRANTS

• Transparent Data Encryption

Reliability

• Handle Corrupted Tables

• Too Many Connections Warning

Diagnostics

• User Statistics

• Slow Query Log

• Show Storage Engines

• Process List

• INFORMATION_SCHEMA.[GLOBAL_]TEMP_TABLES

• Thread Based Profiling

• InnoDB Page Fragmentation Counters

Features removed from Percona Server for MySQL 8.0

Some features, that were present in Percona Server for MySQL 5.7, are removed from Percona Server for MySQL 8.0:

Removed Features

• Slow Query Log Rotation and Expiration

• CSV engine mode for standard-compliant quote and comma parsing

• Utility user

4.2. Features removed from Percona Server for MySQL 8.0 10

https://www.percona.com/doc/percona-server/5.7/flexibility/slowlog_rotation.html

Percona Server Documentation, Release 8.0.18-9

• Expanded program option modifiers

• The ALL_O_DIRECT InnoDB flush method: it is not compatible with the new redo logging implementation

• XTRADB_RSEG table from INFORMATION_SCHEMA

• InnoDB memory size information from SHOW ENGINE INNODB STATUS; the same information is available
from Performance Schema memory summary tables

• Query cache enhancements

See also:

MySQL Documentation: Performance Schema Table Description https://dev.mysql.com/doc/refman/8.0/en/
performance-schema-table-descriptions.html

Removed Syntax

• The SET STATEMENT ... FOR ... statement that enabled setting a variable for a single query. For more
information see Replacing SET STATEMENT FOR with the Upstream Equivalent.

• The LOCK BINLOG FOR BACKUP statement due to the introduction of the log_status table in Perfor-
mance Schema of MySQL 8.0.

Removed Plugins

• SCALABILITY_METRICS

• QUERY_RESPONSE_TIME plugins

The QUERY_RESPONSE_TIME plugins have been removed from Percona Server for MySQL 8.0 as the Performance
Schema of MySQL 8.0 provides histogram data for statement execution time.

See also:

MySQL Documentation: Statement Histogram Summary Tables https://dev.mysql.com/doc/refman/8.0/en/
statement-histogram-summary-tables.html

Removed System variables

• The innodb_use_global_flush_log_at_trx_commit system variable which enabled setting the global MySQL
variable innodb_flush_log_at_trx_commit

• pseudo_server_id

• max_slowlog_files

• max_slowlog_size

• innodb_show_verbose_locks: showed the records locked in SHOW ENGINE INNODB STATUS

• NUMA support in mysqld_safe

• innodb_kill_idle_trx which was an alias to the kill_idle_trx system variable

• The max_binlog_files system variable

4.2. Features removed from Percona Server for MySQL 8.0 11

https://www.percona.com/doc/percona-server/5.7/performance/query_cache_enhance.html#query-cache-enhancements
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-table-descriptions.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-table-descriptions.html
https://dev.mysql.com/doc/refman/8.0/en/statement-histogram-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/statement-histogram-summary-tables.html
https://www.percona.com/doc/percona-server/5.7/scalability/innodb_io.html#innodb_use_global_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://www.percona.com/doc/percona-server/5.7/flexibility/per_session_server-id.html#pseudo_server_id
https://www.percona.com/doc/percona-server/5.7/flexibility/slowlog_rotation.html#max_slowlog_files
https://www.percona.com/doc/percona-server/5.7/flexibility/slowlog_rotation.html#max_slowlog_size
https://www.percona.com/doc/percona-server/5.7/diagnostics/innodb_show_status.html#innodb_show_verbose_locks
https://www.percona.com/doc/percona-server/5.7/performance/innodb_numa_support.html#improved-numa-support
https://www.percona.com/doc/percona-server/LATEST/management/innodb_kill_idle_trx.html
https://www.percona.com/doc/percona-server/5.7/flexibility/max_binlog_files.html#max_binlog_files

Part II

Installation

12

CHAPTER

FIVE

INSTALLING PERCONA SERVER FOR MYSQL 8.0.18-9

This page provides the information on how to you can install Percona Server for MySQL. Following options are
available:

• Installing Percona Server for MySQL from Repositories (recommended)

• Installing Percona Server for MySQL from Downloaded rpm or apt Packages

• Installing Percona Server for MySQL from a Binary Tarball

• Installing Percona Server for MySQL from a Source Tarball

• Installing Percona Server for MySQL from the Git Source Tree

• Compiling Percona Server for MySQL from Source

• Running Percona Server for MySQL in a Docker Container

Before installing, you might want to read the Percona Server for MySQL 8.0 Release notes.

Installing Percona Server for MySQL from Repositories

Percona provides repositories for yum (RPM packages for Red Hat, CentOS and Amazon Linux AMI) and apt (.deb
packages for Ubuntu and Debian) for software such as Percona Server for MySQL, Percona XtraBackup, and Percona
Toolkit. This makes it easy to install and update your software and its dependencies through your operating system’s
package manager. This is the recommended way of installing where possible.

Following guides describe the installation process for using the official Percona repositories for .deb and .rpm
packages.

Installing Percona Server for MySQL on Debian and Ubuntu

Ready-to-use packages are available from the Percona Server for MySQL software repositories and the Percona down-
loads page.

Supported Releases:

• Debian 9.0 (stretch)

• Ubuntu 16.04 (xenial)

• Ubuntu 18.04 LTS (bionic)

Supported Platforms:

• x86_64 (also known as amd64)

13

http://www.percona.com/downloads/Percona-Server-8.0/
http://www.percona.com/downloads/Percona-Server-8.0/

Percona Server Documentation, Release 8.0.18-9

What’s in each DEB package?

Package Contains
percona-server-
server

The database server itself, the mysqld binary and associated files.

percona-server-
common

The files common to the server and client.

percona-server-
client

The command line client.

percona-server-
dbg

Debug symbols for the server.

percona-server-
test

The database test suite.

percona-server-
source

The server source.

libperconaserverclient21-
dev

Header files needed to compile software to use the client library.

libper-
conaserver-
client21

The client shared library. The version is incremented when there is an ABI change that
requires software using the client library to be recompiled or its source code modified.

Installing Percona Server for MySQL from Percona apt repository

Run the following commands as root or by using the sudo command

1. Fetch the repository packages from Percona web:

$ wget https://repo.percona.com/apt/percona-release_latest.$(lsb_release -sc)_all.
→˓deb

2. Install the downloaded package with dpkg. To do that, run the following commands as root or with sudo:

$ sudo dpkg -i percona-release_latest.$(lsb_release -sc)_all.deb

3. Once you install this package the Percona repositories should be added. You can check the repository setup in
the /etc/apt/sources.list.d/percona-release.list file.

4. Enable the repository:

$ sudo percona-release setup ps80

5. After that you can install the server package:

$ sudo apt-get install percona-server-server

Note: Percona Server for MySQL 8.0 comes with the TokuDB storage engine and MyRocks storage engines. These
storage engines are installed as plugins. You can find more information on how to install and enable the TokuDB
storage in the TokuDB Installation guide. More information about how to install MyRocks can be found in the section
Percona MyRocks Installation Guide.

5.1. Installing Percona Server for MySQL from Repositories 14

Percona Server Documentation, Release 8.0.18-9

Percona apt Testing repository

Percona offers pre-release builds from the testing repository. To enable it, run percona-release with the
testing argument. Run this command as root or by using the sudo command.

$ sudo percona-release enable ps80 testing

Apt-Pinning the packages

In some cases you might need to “pin” the selected packages to avoid the upgrades from the distribution repositories.
You’ll need to make a new file /etc/apt/preferences.d/00percona.pref and add the following lines in
it:

Package: *
Pin: release o=Percona Development Team
Pin-Priority: 1001

For more information about the pinning you can check the official debian wiki.

Installing Percona Server for MySQL using downloaded deb packages

Download the packages of the desired series for your architecture from the Percona downloads page. The easiest way
is to download bundle which contains all the packages. The following example will download Percona Server for
MySQL 8.0.13-3 release packages for Debian 9.0 (stretch):

$ wget https://www.percona.com/downloads/Percona-Server-8.0/Percona-Server-8.0.13-3/
→˓binary/debian/stretch/x86_64/percona-server-8.0.13-3-r63dafaf-stretch-x86_64-bundle.
→˓tar

You should then unpack the bundle to get the packages:

$ tar xvf percona-server-8.0.13-3-r63dafaf-stretch-x86_64-bundle.tar

After you unpack the bundle you should see the following packages:

$ ls *.deb

Output

libperconaserverclient21-dev_8.0.13-3-1.stretch_amd64.deb
libperconaserverclient21_8.0.13-3-1.stretch_amd64.deb
percona-server-dbg_8.0.13-3-1.stretch_amd64.deb
percona-server-client_8.0.13-3-1.stretch_amd64.deb
percona-server-common_8.0.13-3-1.stretch_amd64.deb
percona-server-server_8.0.13-3-1.stretch_amd64.deb
percona-server-source_8.0.13-3-1.stretch_amd64.deb
percona-server-test_8.0.13-3-1.stretch_amd64.deb
percona-server-tokudb_8.0.13-3-1.stretch_amd64.deb

Now, you can install Percona Server for MySQL using dpkg. Run this command as root or by using the sudo
command

5.1. Installing Percona Server for MySQL from Repositories 15

http://wiki.debian.org/AptPreferences
http://www.percona.com/downloads/Percona-Server-8.0/

Percona Server Documentation, Release 8.0.18-9

$ sudo dpkg -i *.deb

This will install all the packages from the bundle. Another option is to download/specify only the pack-
ages you need for running Percona Server for MySQL installation (libperconaserverclient21_8.
0.13-3-1.stretch_amd64.deb, percona-server-client_8.0.13-3-1.stretch_amd64.deb,
percona-server-common_8.0.13-3-1.stretch_amd64.deb, and percona-server-server_8.
0.13-3-1.stretch_amd64.deb. Optionally, you can install percona-server-tokudb_8.0.13-3-1.
stretch_amd64.deb if you want the TokuDB storage engine).

Note: Percona Server for MySQL 8.0 comes with the TokuDB storage engine. You can find more information on how
to install and enable the TokuDB storage in the TokuDB Installation guide.

Warning: When installing packages manually like this, you’ll need to make sure to resolve all the dependencies
and install missing packages yourself. Following packages will need to be installed before you can manually install
Percona Server: mysql-common, libjemalloc1, libaio1 and libmecab2

Running Percona Server for MySQL

Percona Server for MySQL stores the data files in /var/lib/mysql/ by default. You can find the configuration
file that is used to manage Percona Server for MySQL in /etc/mysql/my.cnf.

Note:

Debian and Ubuntu installation doesn’t automatically create a special debian-sys-maint user which can be
used by the control scripts to control the Percona Server for MySQL mysqld and mysqld_safe services like
it was the case with previous Percona Server for MySQL versions. If you still require this user you’ll need to
create it manually.

Run the following commands as root or by using the sudo command

1. Starting the service

Percona Server for MySQL is started automatically after it gets installed unless it encounters errors during the
installation process. You can also manually start it by running: service mysql start

2. Confirming that service is running. You can check the service status by running: service mysql status

3. Stopping the service

You can stop the service by running: service mysql stop

4. Restarting the service. service mysql restart

Note: Debian 9.0 (stretch) and Ubuntu 18.04 LTS (bionic) come with systemd as the default system and service
manager. You can invoke all the above commands with systemctl instead of service. Currently both are
supported.

5.1. Installing Percona Server for MySQL from Repositories 16

http://freedesktop.org/wiki/Software/systemd/

Percona Server Documentation, Release 8.0.18-9

Uninstalling Percona Server for MySQL

To uninstall Percona Server for MySQL you’ll need to remove all the installed packages. Removing packages with
apt-get remove will leave the configuration and data files. Removing the p ackages with apt-get purge will
remove all the packages with configuration files and data files (all the databases). Depending on your needs you can
choose which command better suits you.

1. Stop the Percona Server for MySQL service: service mysql stop

2. Remove the packages

(a) Remove the packages. This will leave the data files (databases, tables, logs, configuration, etc.) be-
hind. In case you don’t need them you’ll need to remove them manually: apt-get remove
percona-server*

(b) Purge the packages. NOTE: This will remove all the packages and delete all the data files (databases,
tables, logs, etc.): apt-get purge percona-server*

Installing Percona Server for MySQL on Red Hat Enterprise Linux and CentOS

Ready-to-use packages are available from the Percona Server for MySQL software repositories and the download page.
The Percona yum repository supports popular RPM-based operating systems, including the Amazon Linux AMI.

The easiest way to install the Percona Yum repository is to install an RPM that configures yum and installs the Percona
GPG key.

Supported Releases:

• CentOS 6 and RHEL 6 (Current Stable)

• CentOS 7 and RHEL 7

• RHEL 8

• Amazon Linux AMI (works the same as CentOS 6)

• Amazon Linux 2

Important: “Current Stable”: We support only the current stable RHEL6/CentOS6 release, because there is no
official (i.e. RedHat provided) method to support or download the latest OpenSSL on RHEL/CentOS versions prior
to 6.5. Similarly, and also as a result thereof, there is no official Percona way to support the latest builds of Percona
Server for MySQL on RHEL/CentOS versions prior to 6.5. Additionally, many users will need to upgrade to OpenSSL
1.0.1g or later (due to the Heartbleed vulnerability), and this OpenSSL version is not available for download from any
official RHEL/Centos repository for versions 6.4 and prior. For any officially unsupported system, src.rpm packages
may be used to rebuild Percona Server for MySQL for any environment. Please contact our support service if you
require further information on this.

The CentOS repositories should work well with Red Hat Enterprise Linux too, provided that yum is installed on the
server.

Important:

CentOS 6 offers an outdated version of the curl library required by the keyring Vault plugin of Percona
Server for MySQL. The version of the curl library in CentOS 6, which depends on the nss library, is
known to create memory corruption issues. This bug is registered in Red Hat Bugzilla. Its current status
is CLOSED WONTFIX.

5.1. Installing Percona Server for MySQL from Repositories 17

http://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/downloads/RPM-GPG-KEY-percona
https://www.percona.com/downloads/RPM-GPG-KEY-percona
http://www.percona.com/resources/ceo-customer-advisory-heartbleed
http://www.percona.com/products/mysql-support
https://www.percona.com/doc/percona-server/5.7/management/data_at_rest_encryption.html#keyring-vault-plugin
https://bugzilla.redhat.com/show_bug.cgi?id=1057388

Percona Server Documentation, Release 8.0.18-9

If you intend to use the keyring Vault plugin of Percona Server for MySQL make sure that you use the
latest version of the curl library. We recommend that you build it from source configuring with ssl but
without nss:

$./configuration --with-ssl --without-nss --prefix=<INSTALATION DIRECTORY>

As soon as you install curl, make sure that Percona Server for MySQL will use this version.

See also:

How to install curl and libcurl https://curl.haxx.se/docs/install.html

Supported Platforms:

• x86_64 (also known as amd64)

What’s in each RPM package?

Each of the Percona Server for MySQL RPM packages have a particular purpose.

Package Contains
percona-server-
server

The server itself (the mysqld binary)

percona-server-
debuginfo

Debug symbols for the server

percona-server-
client

The command line client

percona-server-
devel

the header files needed to compile software using the client library.

percona-server-
shared

The client shared library.

percona-server-
shared-compat

Shared libraries for software compiled against old versions of the client library. The following
libraries are included in this package: libmysqlclient.so.12,
libmysqlclient.so.14, libmysqlclient.so.15, libmysqlclient.so.16,
and libmysqlclient.so.18.

percona-server-
test

package includes the test suite for Percona Server for MySQL.

Installing Percona Server for MySQL from Percona yum repository

Please add sudo to percona-release setup and yum install commands

Run the following commands as root or by using the sudo command

1. Install the Percona repository

You can install Percona yum repository by running the following command as a root user or with sudo:

$ sudo yum install https://repo.percona.com/yum/percona-release-latest.noarch.rpm

You should see some output such as the following:

Retrieving http://www.percona.com/downloads/percona-release/redhat/0.1-6/percona-
→˓release-latest.noarch.rpm
Preparing... ### [100%]
1:percona-release ### [100%]

5.1. Installing Percona Server for MySQL from Repositories 18

https://curl.haxx.se/docs/install.html
https://curl.haxx.se/docs/install.html

Percona Server Documentation, Release 8.0.18-9

2. Enable the repository:

$ sudo percona-release setup ps80

3. Install the packages

You can now install Percona Server for MySQL by running:

$ sudo yum install percona-server-server

Note: Percona Server for MySQL 8.0 comes with the TokuDB storage engine and MyRocks storage engines. These
storage engines are installed as plugins. You can find more information on how to install and enable the TokuDB
storage in the TokuDB Installation guide. More information about how to install MyRocks can be found in the section
Percona MyRocks Installation Guide.

Percona yum Testing repository

Percona offers pre-release builds from our testing repository. To subscribe to the testing repository, you’ll need
to enable the testing repository in /etc/yum.repos.d/percona-release.repo. To do so, set both
percona-testing-$basearch and percona-testing-noarch to enabled = 1 (Note that there are
3 sections in this file: release, testing and experimental - in this case it is the second section that requires updating).
NOTE: You’ll need to install the Percona repository first (ref above) if this hasn’t been done already.

Installing Percona Server for MySQL using downloaded rpm packages

1. Download the packages of the desired series for your architecture from the download page. The easiest way
is to download bundle which contains all the packages. Following example will download Percona Server for
MySQL 8.0.13-3 release packages for CentOS 7:

$ wget https://www.percona.com/downloads/Percona-Server-8.0/Percona-Server-8.0.13-
→˓3/binary/redhat/7/x86_64/Percona-Server-8.0.13-3-r63dafaf-el7-x86_64-bundle.tar

2. You should then unpack the bundle to get the packages: tar xvf Percona-Server-8.0.
13-3-r63dafaf-el7-x86_64-bundle.tar

After you unpack the bundle you should see the following packages when running ls *.rpm:

Output

percona-server-80-debuginfo-8.0.13-3.el7.x86_64.rpm
percona-server-client-80-8.0.13-3.el7.x86_64.rpm
percona-server-devel-80-8.0.13-3.el7.x86_64.rpm
percona-server-server-80-8.0.13-3.el7.x86_64.rpm
percona-server-shared-80-8.0.13-3.el7.x86_64.rpm
percona-server-shared-compat-80-8.0.13-3.el7.x86_64.rpm
percona-server-test-80-8.0.13-3.el7.x86_64.rpm
percona-server-tokudb-80-8.0.13-3.el7.x86_64.rpm

Note: For an RHEL 8 package installation, Percona Server requires the mysql module to be disabled.

5.1. Installing Percona Server for MySQL from Repositories 19

http://www.percona.com/downloads/Percona-Server-8.0/

Percona Server Documentation, Release 8.0.18-9

$ sudo yum module disable mysql

3. Now you can install Percona Server for MySQL 8.0 by running:

$ sudo rpm -ivh percona-server-server-80-8.0.13-3.el7.x86_64.rpm \
percona-server-client-80-8.0.13-3.el7.x86_64.rpm \
percona-server-shared-80-8.0.13-3.el7.x86_64.rpm

This will install only packages required to run the Percona Server for MySQL 8.0. Optionally you can install TokuDB
storage engine by adding the percona-server-tokudb-80-8.0.13-3.el7.x86_64.rpm to the command
above. You can find more information on how to install and enable the TokuDB storage in the TokuDB Installation
guide.

To install all the packages (for debugging, testing, etc.) you should run:

$ sudo rpm -ivh *.rpm

Note: When installing packages manually like this, you’ll need to make sure to resolve all the dependencies and
install missing packages yourself.

Running Percona Server for MySQL

Percona Server for MySQL stores the data files in /var/lib/mysql/ by default. You can find the configuration
file that is used to manage Percona Server for MySQL in /etc/my.cnf.

1. Starting the service

Percona Server for MySQL is not started automatically on RHEL and CentOS after it gets installed. You should
start it by running:

$ sudo service mysql start

2. Confirming that service is running

You can check the service status by running:

$ sudo service mysql status

3. Stopping the service

You can stop the service by running:

$ sudo service mysql stop

4. Restarting the service

You can restart the service by running:

$ sudo service mysql restart

Note: RHEL 7 and CentOS 7 come with systemd as the default system and service manager so you can invoke all the
above commands with sytemctl instead of service. Currently both are supported.

5.1. Installing Percona Server for MySQL from Repositories 20

http://freedesktop.org/wiki/Software/systemd/

Percona Server Documentation, Release 8.0.18-9

Uninstalling Percona Server for MySQL

To completely uninstall Percona Server for MySQL you’ll need to remove all the installed packages and data files.

1. Stop the Percona Server for MySQL service: service mysql stop

2. Remove the packages:

$ sudo yum remove percona-server*

3. Remove the data and configuration files

rm -rf /var/lib/mysql
rm -f /etc/my.cnf

Warning: This will remove all the packages and delete all the data files (databases, tables, logs, etc.), you might
want to take a backup before doing this in case you need the data.

Installing Percona Server for MySQL from a Binary Tarball

Percona Server for MySQL offers multiple tarballs depending on the OpenSSL library available in the distribution:

• ssl100 - for Debian prior to 9 and Ubuntu prior to 14.04 versions (libssl.so.1.0.0 => /usr/lib/
x86_64-linux-gnu/libssl.so.1.0.0 (0x00007f2e389a5000));

• ssl101 - for CentOS 6 and CentOS 7 (libssl.so.10 => /usr/lib64/libssl.so.10
(0x00007facbe8c4000));

• ssl102 - for Debian 9 and Ubuntu versions starting from 14.04 (libssl.so.1.1 => /usr/lib/
libssl.so.1.1 (0x00007f5e57397000);

You can download the binary tarballs from the Linux - Generic section on the download page.

Fetch and extract the correct binary tarball. For example for Debian Wheezy:

$ wget https://www.percona.com/downloads/Percona-Server-LATEST/Percona-Server-8.0.13-
→˓3/binary/tarball/Percona-Server-8.0.13-3-Linux.x86_64.ssl102.tar.gz

Installing Percona Server for MySQL from a Source Tarball

Fetch and extract the source tarball. For example:

$ wget https://www.percona.com/downloads/Percona-Server-LATEST/Percona-Server-8.0.13-
→˓3/source/tarball/Percona-Server-8.0.13-3-Linux.x86_64.ssl102.tar.gz
$ tar xfz percona-server-8.0.13-3.tar.gz

Next, follow the instructions in Compiling Percona Server for MySQL from Source below.

Installing Percona Server for MySQL from the Git Source Tree

Percona uses the Github revision control system for development. To build the latest Percona Server for MySQL from
the source tree you will need git installed on your system.

5.2. Installing Percona Server for MySQL from a Binary Tarball 21

https://www.percona.com/downloads/Percona-Server-8.0/LATEST/binary/tarball/
http://github.com/

Percona Server Documentation, Release 8.0.18-9

You can now fetch the latest Percona Server for MySQL 8.0 sources.

$ git clone https://github.com/percona/percona-server.git
$ cd percona-server
$ git checkout 8.0
$ git submodule init
$ git submodule update

If you are going to be making changes to Percona Server for MySQL 8.0 and wanting to distribute the resulting work,
you can generate a new source tarball (exactly the same way as we do for release):

$ cmake .
$ make dist

Next, follow the instructions in Compiling Percona Server for MySQL from Source below.

Compiling Percona Server for MySQL from Source

After either fetching the source repository or extracting a source tarball (from Percona or one you generated yourself),
you will now need to configure and build Percona Server for MySQL.

Important: Make sure that gcc installed on your system is at least of a version in the 4.9 release series.

First, run cmake to configure the build. Here you can specify all the normal build options as you do for a normal
MySQL build. Depending on what options you wish to compile Percona Server for MySQL with, you may need other
libraries installed on your system. Here is an example using a configure line similar to the options that Percona uses
to produce binaries:

$ cmake . -DCMAKE_BUILD_TYPE=RelWithDebInfo -DBUILD_CONFIG=mysql_release -DFEATURE_
→˓SET=community

Now, compile using make

$ make

Install:

$ make install

Percona Server for MySQL 8.0 will now be installed on your system.

Building Percona Server for MySQL Debian/Ubuntu packages

If you wish to build your own Debian/Ubuntu (dpkg) packages of Percona Server for MySQL, you first need to start
with a source tarball, either from the Percona website or by generating your own by following the instructions above(
Installing Percona Server for MySQL from the Git Source Tree).

Extract the source tarball:

$ tar xfz Percona-Server-8.0.13-3-Linux.x86_64.ssl102.tar.gz
$ cd Percona-Server-8.0.13-3

5.5. Compiling Percona Server for MySQL from Source 22

Percona Server Documentation, Release 8.0.18-9

Put the debian packaging in the directory that Debian expects it to be in:

$ cp -ap build-ps/debian debian

Update the changelog for your distribution (here we update for the unstable distribution - sid), setting the version
number appropriately. The trailing one in the version number is the revision of the Debian packaging.

$ dch -D unstable --force-distribution -v "8.0.13-3-1" "Update to 8.0.13-3"

Build the Debian source package:

$ dpkg-buildpackage -S

Use sbuild to build the binary package in a chroot:

$ sbuild -d sid percona-server-8.0_8.0.13-3-1.dsc

You can give different distribution options to dch and sbuild to build binary packages for all Debian and Ubuntu
releases.

Note: PAM Authentication Plugin is not built with the server by default. In order to build the Percona Server for
MySQL with PAM plugin, additional option -DWITH_PAM=ON should be used.

Running Percona Server for MySQL in a Docker Container

Docker images of Percona Server for MySQL are hosted publicly on Docker Hub at https://hub.docker.com/r/percona/
percona-server/.

For more information about using Docker, see the Docker Docs.

Note: Make sure that you are using the latest version of Docker. The ones provided via apt and yummay be outdated
and cause errors.

By default, Docker will pull the image from Docker Hub if it is not available locally.

Using the Percona Server for MySQL Images

The following procedure describes how to run and access Percona Server 8.0 using Docker.

Starting an Instance of Percona Server for MySQL in a Container

To start a container named ps running the latest version of Percona Server for MySQL 8.0, with the root password set
to root:

[root@docker-host] $ docker run -d \
--name ps \
-e MYSQL_ROOT_PASSWORD=root \
percona/percona-server:8.0

Important: root is not a secure password.

5.6. Building Percona Server for MySQL Debian/Ubuntu packages 23

https://hub.docker.com/r/percona/percona-server/
https://hub.docker.com/r/percona/percona-server/
https://docs.docker.com/

Percona Server Documentation, Release 8.0.18-9

Accessing the Percona Server for MySQL Container

To access the shell in the container:

[root@docker-host] $ docker exec -it ps /bin/bash

From the shell, you can view the error log:

[mysql@ps] $ more /var/log/mysql/error.log
2017-08-29T04:20:22.190474Z 0 [Warning] 'NO_ZERO_DATE', 'NO_ZERO_IN_DATE' and 'ERROR_
→˓FOR_DIVISION_BY_ZERO' sql modes should be used with strict mode. They will be
→˓merged with strict mode in a future release.
2017-08-29T04:20:22.190520Z 0 [Warning] 'NO_AUTO_CREATE_USER' sql mode was not set.
...

You can also run the MySQL command-line client to access the database directly:

[mysql@ps] $ mysql -uroot -proot
mysql: [Warning] Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 8.0.13-3 Percona Server (GPL), Release '17', Revision 'e19a6b7b73f'

Copyright (c) 2009-2017 Percona LLC and/or its affiliates
Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
→˓names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Accessing Percona Server for MySQL from Application in Another Container

The image exposes the standard MySQL port 3306, so container linking makes Percona Server instance available from
other containers. To link a container running your application (in this case, from image named app/image) with the
Percona Server container, run it with the following command:

[root@docker-host] $ docker run -d \
--name app \
--link ps \
app/image:latest

This application container will be able to access the Percona Server container via port 3306.

Environment Variables

When running a Docker container with Percona Server, you can adjust the configuration of the instance by passing
one or more environment variables with the docker run command.

Note: These variables will not have any effect if you start the container with a data directory that already contains a
database: any pre-existing database will always remain untouched on container startup.

5.6. Building Percona Server for MySQL Debian/Ubuntu packages 24

Percona Server Documentation, Release 8.0.18-9

The variables are optional, except that you must specify at least one of the following:

• MYSQL_ALLOW_EMPTY_PASSWORD: least secure, use only for testing.

• MYSQL_ROOT_PASSWORD: more secure, but setting the password on the command line is not recommended
for sensitive production setups.

• MYSQL_RANDOM_ROOT_PASSWORD: most secure, recommended for production.

Note: To further secure your instance, use the MYSQL_ONETIME_PASSWORD variable if you are running
version 5.6 or later.

variable MYSQL_ALLOW_EMPTY_PASSWORD
Specifies whether to allow the container to be started with a blank password for the MySQL root user. Disabled
by default. To enable, set MYSQL_ALLOW_EMPTY_PASSWORD=yes.

Note: Allowing empty root password is not recommended for production, because anyone will have full
superuser access to the database.

variable MYSQL_DATABASE
Specifies the name of the database to be created when running the container. To create a user with full access to
this database (GRANT ALL), set the MYSQL_USER and MYSQL_PASSWORD variables.

variable MYSQL_ONETIME_PASSWORD
Specifies whether the password for the MySQL root user should be set as expired. Disabled by default. If
enabled using MYSQL_ONETIME_PASSWORD=yes, the MySQL root password must be changed before using
it to log in.

variable MYSQL_PASSWORD
Specifies the password for the user with full access to the database specified by the MYSQL_DATABASE vari-
able. Setting the MYSQL_USER variable is also required.

variable MYSQL_RANDOM_ROOT_PASSWORD
Specifies whether a random password for the MySQL root user should be generated. Disabled by default. To
enable, set MYSQL_RANDOM_ROOT_PASSWORD=yes.

The password will be printed to stdout in the container, and it can be viewed using the docker logs
command.

variable MYSQL_ROOT_PASSWORD
Specifies the password for the MySQL root user.

Note: Setting the MySQL root password on the command line is insecure. It is recommended to set a random
password using the MYSQL_RANDOM_ROOT_PASSWORD variable.

variable MYSQL_ROOT_PASSWORD_FILE
Specifies a file that will be read for the root user account. This can be a mounted file when you run your
container. This can also be used in the scope of the Docker Secrets (Swarm mode) functionality.

variable MYSQL_USER
Specifies the name for the user with full access to the database specified by the MYSQL_DATABASE variable.
Setting the MYSQL_PASSWORD variable is also required.

variable INIT_TOKUDB
Specifies whether to allow the container to be started with enabled TokuDB engine. Disabled by default. To
enable, set INIT_TOKUDB=yes.

5.6. Building Percona Server for MySQL Debian/Ubuntu packages 25

Percona Server Documentation, Release 8.0.18-9

variable INIT_ROCKSDB
Specifies whether to allow the container to be started with enabled RocksDB engine. Disabled by default. To
enable, set INIT_ROCKSDB=yes.

Storing Data

There are two ways to store data used by applications that run in Docker containers:

• Let Docker manage the storage of your data by writing the database files to disk on the host system using its
own internal volume management.

• Create a data directory on the host system (outside the container on high performance storage) and mount it
to a directory visible from inside the container. This places the database files in a known location on the host
system, and makes it easy for tools and applications on the host system to access the files. The user should make
sure that the directory exists, and that permissions and other security mechanisms on the host system are set up
correctly.

For example, if you create a data directory on a suitable volume on your host system named /local/datadir, you
run the container with the following command:

[root@docker-host] $ docker run -d \
--name ps \
-e MYSQL_ROOT_PASSWORD=root \
-v /local/datadir:/var/lib/mysql \
percona/percona-server:8.0

The -v /local/datadir:/var/lib/mysql option mounts the /local/datadir directory on the host to
/var/lib/mysql in the container, which is the default data directory used by Percona Server for MySQL.

Note: If you the Percona Server container instance with a data directory that already contains data (the mysql
subdirectory where all our system tables are stored), the MYSQL_ROOT_PASSWORD variable should be omitted from
the docker run command.

Note: If you have SELinux enabled, assign the relevant policy type to the new data directory, so that the container
will be allowed to access it:

[root@docker-host] $ chcon -Rt svirt_sandbox_file_t /local/datadir

Port Forwarding

Docker allows mapping ports on the container to ports on the host system using the -p option. If you run the container
with this option, you can connect to the database by connecting your client to a port on the host machine. This can
greatly simplify consolidating many instances to a single host.

To map the standard MySQL port 3306 to port 6603 on the host:

[root@docker-host] $ docker run -d \
--name ps \
-e MYSQL_ROOT_PASSWORD=root \
-p 6603:3306 \
percona/percona-server:8.0

5.6. Building Percona Server for MySQL Debian/Ubuntu packages 26

Percona Server Documentation, Release 8.0.18-9

Passing Options to Percona Server for MySQL

You can pass options to Percona Server for MySQL when running the container by appending them to the docker
run command. For example, to start run Percona Server for MySQL with UTF-8 as the default setting for character
set and collation for all databases:

[root@docker-host] $ docker run -d \
--name ps \
-e MYSQL_ROOT_PASSWORD=root \
percona/percona-server:8.0 \
--character-set-server=utf8 \
--collation-server=utf8_general_ci

5.6. Building Percona Server for MySQL Debian/Ubuntu packages 27

CHAPTER

SIX

PERCONA SERVER FOR MYSQL IN-PLACE UPGRADING GUIDE:
FROM 5.7 TO 8.0

In-place upgrades are those which are done using the existing data in the server. Generally speaking, this is stopping
the server, installing the new server and starting it with the same data files. While they may not be suitable for
high-complexity environments, they may be adequate for many scenarios.

The following is a summary of the more relevant changes in the 8.0 series. It is strongly recommended that you read
the following guides as they contain the list of incompatible changes that could cause automatic upgrade to fail:

• changed_in_8.0

• Upgrading MySQL

• Upgrading from MySQL 5.7 to 8.0

• Upgrade Paths

• Preparing your Installation for Upgrade

Starting from release 8.0.15-5, Percona Server for MySQL uses the upstream implementation of binary log encryp-
tion. The variable encrypt_binlog is removed and the related command line option --encrypt_binlog is
not supported. It is important that you remove the encrypt_binlog variable from your configuration file before
you attempt to upgrade either from another release in the Percona Server for MySQL 8.0 series or from Percona Server
for MySQL 5.7. Otherwise, a server boot error will be produced reporting an unknown variable. The implemented
binary log encryption is compatible with the old format: the binary log encrypted in a previous version of MySQL 8.0
series or Percona Server for MySQL are supported.

See also:

MySQL Documentation

• Encrypting Binary Log Files and Relay Log Files

• binlog_encryption variable

Warning: Do not upgrade from 5.7 to 8.0 on a crashed instance. If the server instance has crashed, crash recovery
should be run before proceeding with the upgrade.

Note that in Percona Server for MySQL 8.0, the ROW FORMAT clause is not supported in CREATE TABLE and
ALTER TABLE statements. Instead, use the tokudb_row_format variable to set the default compression
algorithm.

With partitioned tables that use the TokuDB or MyRocks storage engine, the upgrade only works with native
partitioning.

28

http://dev.mysql.com/doc/refman/8.0/en/upgrading.html
http://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-paths.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_encryption

Percona Server Documentation, Release 8.0.18-9

• Upgrading using the Percona repositories

• Upgrading using Standalone Packages

• Upgrading from Systems that Use the TokuDB or MyRocks Storage Engine and Partitioned Tables

Upgrading using the Percona repositories

The easiest and recommended way of installing - where possible - is by using the Percona repositories.

Instructions for enabling the repositories in a system can be found in:

• Percona APT Repository

• Percona YUM Repository

DEB-based distributions

Run the following commands as root or by using the sudo command

Having done the full backup (or dump if possible), stop the server running and proceed to do the modifications needed
in your configuration file, as explained at the beginning of this guide.

Note: If you are running Debian/Ubuntu system with systemd as the default system and service manager you can
invoke the above command with systemctl instead of service. Currently both are supported.

Then install the new server with:

Enable the repository:

$ percona-release enable ps-80 release
$ apt-get update

$ apt-get install percona-server-server

If you used or TokuDB or MyRocks storage engines

The TokuDB and MyRocks storage engines are installed separately. The percona-server-tokudb package in-
stalls both of them.

$ apt-get install percona-server-tokudb

If you only used the MyRocks storage engine in Percona Server for MySQL 5.7, install the
percona-server-rocksdb package.

$ apt-get install percona-server-rocksdb

The installation script will NOT run automatically mysql_upgrade as it was the case in previous versions. You’ll
need to run the command manually and restart the service after it’s finished.

$ mysql_upgrade

Checking if update is needed.

6.1. Upgrading using the Percona repositories 29

http://freedesktop.org/wiki/Software/systemd/

Percona Server Documentation, Release 8.0.18-9

Checking server version.
Running queries to upgrade MySQL server.
Checking system database.
mysql.columns_priv OK
mysql.db OK
mysql.engine_cost OK
...
Upgrade process completed successfully.
Checking if update is needed.

$ service mysql restart

RPM-based distributions

Run the following commands as root or by using the sudo command

Having done the full backup (and dump if possible), stop the server: service mysql stop and check your
installed packages with rpm -qa | grep Percona-Server

Note: If you’re running RHEL/CentOS system with systemd as the default system and service manager you can
invoke the above command with systemctl instead of service. Currently both are supported.

Output of rpm -qa | grep Percona-Server

Percona-Server-57-debuginfo-5.7.10-3.1.el7.x86_64
Percona-Server-client-57-5.7.10-3.1.el7.x86_64
Percona-Server-devel-57-5.7.10-3.1.el7.x86_64
Percona-Server-server-57-5.7.10-3.1.el7.x86_64
Percona-Server-shared-57-5.7.10-3.1.el7.x86_64
Percona-Server-shared-compat-57-5.7.10-3.1.el7.x86_64
Percona-Server-test-57-5.7.10-3.1.el7.x86_64
Percona-Server-tokudb-57-5.7.10-3.1.el7.x86_64

After checking, proceed to remove them without dependencies:

$ rpm -qa | grep Percona-Server | xargs rpm -e --nodeps

It is important that you remove them without dependencies as many packages may depend on these (as they replace
mysql) and will be removed if omitted.

Important: /etc/my.cnf Backed Up in CentOS 7

In CentOS 7, the /etc/my.cnf configuration file is backed up when you uninstall the Percona Server for MySQL
packages with the rpm -e --nodeps command.

The backup file is stored in the same directory with the _backup suffix followed by a timestamp: etc/my.
cnf_backup-20181201-1802.

Substitute grep '^mysql-' for grep 'Percona-Server' in the previous command and remove the listed
packages.

You will have to install the percona-server-server package:

6.1. Upgrading using the Percona repositories 30

http://freedesktop.org/wiki/Software/systemd/

Percona Server Documentation, Release 8.0.18-9

$ yum install percona-server-server

The TokuDB and MyRocks storage engines are installed separately.

If you used TokuDB in Percona Server for MySQL 5.7, install the percona-server-tokudb package when doing
the upgrade. This command installs both

$ yum install percona-server-tokudb

If you used the MyRocks storage engine in Percona Server for MySQL 5.7, install the percona-server-rocksdb
package:

$ yum install percona-server-rocksdb

Once installed, proceed to modify your configuration file - my.cnf - and reinstall the plugins if necessary.

Note: If you are using TokuDB storage engine you’ll need to comment out all the TokuDB specific variables in
your configuration file(s) before starting the server, otherwise the server won’t be able to start. RHEL/CentOS 7
automatically backs up the previous configuration file to /etc/my.cnf.rpmsave and installs the default my.
cnf. After upgrade/install process completes you can move the old configuration file back (after you remove all the
unsupported system variables).

You can now start the mysql service using service mysql start and using mysql_upgrade to migrate to
the new grant tables, it will rebuild the indexes needed and do the modifications needed:

Note: If you’re using TokuDB storage engine you’ll need re-enable the storage engine plugin by running the:
ps-admin --enable-tokudb before running mysql_upgrade otherwise you’ll get errors.

$ mysql_upgrade

Output

Checking if update is needed.
Checking server version.
Running queries to upgrade MySQL server.
Checking system database.
mysql.columns_priv OK
mysql.db OK
...
pgrade process completed successfully.
Checking if update is needed.

Once this is done, just restart the server as usual: service mysql restart

After the service has been successfully restarted you can use the new Percona Server for MySQL 8.0.

6.1. Upgrading using the Percona repositories 31

Percona Server Documentation, Release 8.0.18-9

Upgrading using Standalone Packages

DEB-based distributions

Having done the full backup (and dump if possible), stop the server. Run this command as root or by using the sudo
command: /etc/init.d/mysql stop and remove the installed packages with their dependencies: apt-get
autoremove percona-server percona-client

Once removed, proceed to do the modifications needed in your configuration file, as explained at the beginning of this
guide.

Then, download the following packages for your architecture:

• percona-server-server

• percona-server-client

• percona-server-common

• libperconaserverclient21

The following example will download Percona Server for MySQL 8.0.13-3 release packages for Debian 9.0:

$ wget https://www.percona.com/downloads/Percona-Server-8.9/Percona-Server-8.0.13-3/
→˓binary/debian/stretch/x86_64/percona-server-8.0.13-3-r63dafaf-stretch-x86_64-bundle.
→˓tar

You should then unpack the bundle to get the packages: tar xvf Percona-Server-8.0.
13-3-r63dafaf-stretch-x86_64-bundle.tar

After you unpack the bundle you should see the following packages:

$ ls *.deb

libperconaserverclient21-dev_8.0.13-3-1.stretch_amd64.deb
libperconaserverclient21_8.0.13-3-1.stretch_amd64.deb
percona-server-dbg_8.0.13-3-1.stretch_amd64.deb
percona-server-client_8.0.13-3-1.stretch_amd64.deb
percona-server-common_8.0.13-3-1.stretch_amd64.deb
percona-server-server_8.0.13-3-1.stretch_amd64.deb
percona-server-source_8.0.13-3-1.stretch_amd64.deb
percona-server-test_8.0.13-3-1.stretch_amd64.deb
percona-server-tokudb_8.0.13-3-1.stretch_amd64.deb

Now you can install Percona Server for MySQL by running:

$ sudo dpkg -i *.deb

This will install all the packages from the bundle. Another option is to download/specify only the pack-
ages you need for running Percona Server for MySQL installation (libperconaserverclient21_8.
0.13-3.stretch_amd64.deb, percona-server-client-8.0.13-3.stretch_amd64.deb,
percona-server-common-8.0.13-3.stretch_amd64.deb, and percona-server-server-8.
0.13-3.stretch_amd64.deb. Optionally you can install percona-server-tokudb-8.0.13-3.
stretch_amd64.deb if you want TokuDB storage engine).

Note: Percona Server for MySQL 8.0 comes with the TokuDB storage engine. You can find more information on how
to install and enable the TokuDB storage in the TokuDB Installation guide.

6.2. Upgrading using Standalone Packages 32

Percona Server Documentation, Release 8.0.18-9

Warning: When installing packages manually like this, you’ll need to make sure to resolve all the dependencies
and install missing packages yourself. At least the following packages should be installed before installing Percona
Server for MySQL 8.0: libmecab2, libjemalloc1, zlib1g-dev, and libaio1.

The installation script will not run automatically mysql_upgrade, so you’ll need to run it yourself and restart the
service afterwards.

RPM-based distributions

Having done the full backup (and dump if possible), stop the server (command: service mysql stop) and check
your installed packages:

$ rpm -qa | grep Percona-Server

Percona-Server-57-debuginfo-5.7.10-3.1.el7.x86_64
Percona-Server-client-57-5.7.10-3.1.el7.x86_64
Percona-Server-devel-57-5.7.10-3.1.el7.x86_64
Percona-Server-server-57-5.7.10-3.1.el7.x86_64
Percona-Server-shared-57-5.7.10-3.1.el7.x86_64
Percona-Server-shared-compat-57-5.7.10-3.1.el7.x86_64
Percona-Server-test-57-5.7.10-3.1.el7.x86_64
Percona-Server-tokudb-57-5.7.10-3.1.el7.x86_64

You may have the shared-compat package, which is for compatibility purposes.

After checked that, proceed to remove them without dependencies: rpm -qa | grep percona-server |
xargs rpm -e --nodeps

It is important that you remove it without dependencies as many packages may depend on these (as they replace
mysql) and will be removed if ommited.

Note that this procedure is the same for upgrading from MySQL 5.7 to Percona Server for MySQL 8.0, just grep
'^mysql-' instead of Percona-Server and remove them.

Download the packages of the desired series for your architecture from the download page. The easiest way is to
download bundle which contains all the packages. The following example will download Percona Server for MySQL
8.0.13-3 release packages for CentOS 7:

$ wget https://www.percona.com/downloads/Percona-Server-8.0/Percona-Server-8.0.13-3/
→˓binary/redhat/7/x86_64/Percona-Server-8.0.13-3-r63dafaf-el7-x86_64-bundle.tar

You should then unpack the bundle to get the packages: tar xvf Percona-Server-8.0.
13-3-r63dafaf-el7-x86_64-bundle.tar

After you unpack the bundle you should see the following packages: ls *.rpm

Output

percona-server-debuginfo-8.0.13-3.1.el7.x86_64.rpm
percona-server-client-8.0.13-3.1.el7.x86_64.rpm
percona-server-devel-8.0.13-3.1.el7.x86_64.rpm
percona-server-server-8.0.13-3.1.el7.x86_64.rpm
percona-server-shared-8.0.13-3.1.el7.x86_64.rpm
percona-server-shared-compat-8.0.13-3.1.el7.x86_64.rpm
percona-server-test-8.0.13-3.1.el7.x86_64.rpm
percona-server-tokudb-8.0.13-3.1.el7.x86_64.rpm

6.2. Upgrading using Standalone Packages 33

http://www.percona.com/downloads/Percona-Server-8.0/

Percona Server Documentation, Release 8.0.18-9

Now, you can install Percona Server for MySQL 8.0 by running:

rpm -ivh percona-server-server_8.0.13-3.el7.x86_64.rpm \
percona-server-client_8.0.13-3.el7.x86_64.rpm \
percona-server-shared_8.0.13-3.el7.x86_64.rpm

This will install only packages required to run the Percona Server for MySQL 8.0. Optionally you can install TokuDB
storage engine by adding the percona-server-tokudb-8.0.13-3.el7.x86_64.rpm to the command
above. You can find more information on how to install and enable the TokuDB storage in the TokuDB Installation
guide.

To install all the packages (for debugging, testing, etc.) you should run: rpm -ivh *.rpm

Note: When installing packages manually like this, you’ll need to make sure to resolve all the dependencies and
install missing packages yourself.

Once installed, proceed to modify your configuration file - my.cnf - and install the plugins if necessary. If you’re
using TokuDB storage engine you’ll need to comment out all the TokuDB specific variables in your configuration file(s)
before starting the server, otherwise server won’t be able to start. RHEL/CentOS 7 automatically backs up the previ-
ous configuration file to /etc/my.cnf.rpmsave and installs the default my.cnf. After upgrade/install process
completes you can move the old configuration file back (after you remove all the unsupported system variables).

As the schema of the grant table has changed, the server must be started without reading them: service mysql
start

Then, use mysql_upgrade to migrate to the new grant tables. It will rebuild the indexes needed and do the modifi-
cations needed: mysql_upgrade

Note: If you’re using TokuDB storage engine you’ll need re-enable the storage engine plugin by running the:
ps-admin --enable-tokudb before running mysql_upgrade otherwise you’ll get errors.

After this is done, just restart the server as usual: service mysql restart

Upgrading from Systems that Use the TokuDB or MyRocks Storage
Engine and Partitioned Tables

Due to the limitation imposed by MySQL, it is the storage engine that must provide support for partitioning. MySQL
8.0 only provides support for partitioned table for the InnoDB storage engine.

If you use partitioned tables with the TokuDB or MyRocks storage engine, the upgrade may fail if the native partitioning
(i.e. provided by the storage engine itself) is not enabled.

Before you attempt the upgrade, check whether or not you have any tables that do not use the native partitioning.

$ mysqlcheck -u root --all-databases --check-upgrade

If such tables are found mysqlcheck issues a warning:

Output of mysqlcheck detecting a table that do not use the native partitioning

6.3. Upgrading from Systems that Use the TokuDB or MyRocks Storage Engine and Partitioned
Tables

34

Percona Server Documentation, Release 8.0.18-9

| comp_test.t1_RocksDB_lz4 OK
| warning : The partition engine, used by table 'comp_test.t1_RocksDB_lz4',
| is deprecated and will be removed in a future release. Please use native
→˓partitioning instead.

In this case comp_test.t1_RocksDB_lz4 is not using native partitions. To switch, enable either
rocksdb_enable_native_partition or tokudb_enable_native_partition variable depending on
the storage engine that you are using. Then restart the server. Your next step is to alter the tables that are not using the
native partitioning with the UPGRADE PARTITIONING clause:

ALTER TABLE comp_test.t1_RocksDB_lz4 UPGRADE PARTITIONING

In this example, the table comp_test.t1_RocksDB_lz4 to native partitioning. Unless you complete these steps
for each table that mysqlcheck complained about, the upgrade to MySQL 8.0 will fail and your error log will contain
messages like:

2018-12-17T18:34:14.152660Z 2 [ERROR] [MY-013140] [Server] The 'partitioning' feature
→˓is not available; you need to remove '--skip-partition' or use MySQL built with '-
→˓DWITH_PARTITION_STORAGE_ENGINE=1'
2018-12-17T18:34:14.152679Z 2 [ERROR] [MY-013140] [Server] Can't find file: './comp_
→˓test/t1_RocksDB_lz4.frm' (errno: 0 - Success)
2018-12-17T18:34:14.152691Z 2 [ERROR] [MY-013137] [Server] Can't find file: './comp_
→˓test/t1_RocksDB_lz4.frm' (OS errno: 0 - Success)

See also:

MySQL Documentation: Partitioning Limitations Relating to Storage Engines https://dev.mysql.com/doc/
refman/8.0/en/partitioning-limitations-storage-engines.html

Performing a Distribution upgrade in-place on a System with installed Percona
packages

The recommended process for performing a distribution upgrade on a system with the Percona packages installed is
the following:

1. Record the installed Percona packages

2. Backup the data and configurations

3. Uninstall the Percona packages without removing the configurations or data

4. Perform the upgrade by following the distribution upgrade instructions

5. Reboot the system

6. Install the Percona packages intended for the upgraded version of the distribution

6.3. Upgrading from Systems that Use the TokuDB or MyRocks Storage Engine and Partitioned
Tables

35

https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html

Part III

Scalability Improvements

36

CHAPTER

SEVEN

IMPROVED INNODB I/O SCALABILITY

Because InnoDB is a complex storage engine it must be configured properly in order to perform at its best. Some
points are not configurable in standard InnoDB. The goal of this feature is to provide a more exhaustive set of options
for XtraDB.

Version Specific Information

• 8.0.12-1 - the feature was ported from Percona Server for MySQL 5.7.

System Variables

variable innodb_flush_method

Command Line Yes

Config File Yes

Scope Global

Dyn No

Variable Type Enumeration

Default Value fdatasync

Allowed Values fdatasync, O_DSYNC, O_DIRECT, O_DIRECT_NO_FSYNC

See innodb_flush_method in the MySQL 8.0 Reference Manual).

This variable affects the parallel doublewrite buffer as follows

Value Usage
fdatasync Use fsync() to flush parallel doublewrite files.
O_SYNC Use O_SYNC to open and flush parallel doublewrite files; Do not use the fsync() system

call to flush the parallel doublewrite file.
O_DIRECT Use O_DIRECT to open the data files and the fsync() system call to flush parallel

doublewrite files.
O_DIRECT_NO_FSYNCUse O_DIRECT to open the data files but don’t use fsync() system call to flush

doublewrite files.

37

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_method

Percona Server Documentation, Release 8.0.18-9

Status Variables

The following information has been added to SHOW ENGINE INNODB STATUS to confirm the checkpointing ac-
tivity:

The max checkpoint age
The current checkpoint age target
The current age of the oldest page modification which has not been flushed to disk
→˓yet.
The current age of the last checkpoint
...

LOG

Log sequence number 0 1059494372
Log flushed up to 0 1059494372
Last checkpoint at 0 1055251010
Max checkpoint age 162361775
Checkpoint age target 104630090
Modified age 4092465
Checkpoint age 4243362
0 pending log writes, 0 pending chkp writes
...

7.3. Status Variables 38

Part IV

Performance Improvements

39

CHAPTER

EIGHT

MULTIPLE PAGE ASYNCHRONOUS I/O REQUESTS

I/O unit size in InnoDB is only one page, even if doing read ahead. 16KB I/O unit size is too small for sequential
reads, and much less efficient than larger I/O unit size.

InnoDB uses Linux asynchronous I/O (aio) by default. By submitting multiple consecutive 16KB read requests at
once, Linux internally can merge requests and reads can be done more efficiently.

On a HDD RAID 1+0 environment, more than 1000MB/s disk reads can be achieved by submitting 64 consecutive
pages requests at once, while only 160MB/s disk reads is shown by submitting single page request.

With this feature InnoDB submits multiple page I/O requests.

Version Specific Information

• 8.0.12-1 - The feature was ported from Percona Server for MySQL 5.7.

Status Variables

variable Innodb_buffered_aio_submitted

Variable Type Numeric

Scope Global

This variable shows the number of submitted buffered asynchronous I/O requests.

Other Reading

• Making full table scan 10x faster in InnoDB

• Bug #68659 InnoDB Linux native aio should submit more i/o requests at once

40

http://yoshinorimatsunobu.blogspot.hr/2013/10/making-full-table-scan-10x-faster-in.html
http://yoshinorimatsunobu.blogspot.hr/2013/10/making-full-table-scan-10x-faster-in.html
https://bugs.mysql.com/bug.php?id=68659

CHAPTER

NINE

THREAD POOL

MySQL executes statements using one thread per client connection. Once the number of connections increases past a
certain point performance will degrade.

This feature enables the server to keep the top performance even with a large number of client connections by intro-
ducing a dynamic thread pool. By using the thread pool server would decrease the number of threads, which will then
reduce the context switching and hot locks contentions. Using the thread pool will have the most effect with OLTP
workloads (relatively short CPU-bound queries).

In order to enable the thread pool variable thread_handling should be set up to pool-of-threads value.
This can be done by adding:

thread_handling=pool-of-threads

to the MySQL configuration file my.cnf.

Although the default values for the thread pool should provide good performance, additional tuning can be performed
with the dynamic system variables described below.

Note: Current implementation of the thread pool is built in the server, unlike the upstream version which is imple-
mented as a plugin. Another significant implementation difference is that this implementation doesn’t try to minimize
the number of concurrent transactions like the MySQL Enterprise Threadpool. Because of these things this
implementation isn’t compatible with the upstream one.

Priority connection scheduling

Even though thread pool puts a limit on the number of concurrently running queries, the number of open transactions
may remain high, because connections with already started transactions are put to the end of the queue. Higher number
of open transactions has a number of implications on the currently running queries. To improve the performance new
thread_pool_high_prio_tickets variable has been introduced.

This variable controls the high priority queue policy. Each new connection is assigned this many tickets to enter the
high priority queue. Whenever a query has to be queued to be executed later because no threads are available, the
thread pool puts the connection into the high priority queue if the following conditions apply:

1. The connection has an open transaction in the server.

2. The number of high priority tickets of this connection is non-zero.

If both the above conditions hold, the connection is put into the high priority queue and its tickets value is decremented.
Otherwise the connection is put into the common queue with the initial tickets value specified with this option.

41

https://kb.askmonty.org/en/threadpool-in-55/#optimizing-server-variables-on-unix

Percona Server Documentation, Release 8.0.18-9

Each time the thread pool looks for a new connection to process, first it checks the high priority queue, and picks
connections from the common queue only when the high priority one is empty.

The goal is to minimize the number of open transactions in the server. In many cases it is beneficial to give short-
running transactions a chance to commit faster and thus deallocate server resources and locks without waiting in the
same queue with other connections that are about to start a new transaction, or those that have run out of their high
priority tickets.

The default thread pool behavior is to always put events from already started transactions into the high priority queue,
as we believe that results in better performance in vast majority of cases.

With the value of 0, all connections are always put into the common queue, i.e. no priority scheduling is used as in
the original implementation in MariaDB. The higher is the value, the more chances each transaction gets to enter the
high priority queue and commit before it is put in the common queue.

In some cases it is required to prioritize all statements for a specific connection regardless of whether they
are executed as a part of a multi-statement transaction or in the autocommit mode. Or vice versa, some con-
nections may require using the low priority queue for all statements unconditionally. To implement this new
thread_pool_high_prio_mode variable has been introduced in Percona Server for MySQL.

Low priority queue throttling

One case that can limit thread pool performance and even lead to deadlocks under high concurrency is a situation when
thread groups are oversubscribed due to active threads reaching the oversubscribe limit, but all/most worker threads
are actually waiting on locks currently held by a transaction from another connection that is not currently in the thread
pool.

What happens in this case is that those threads in the pool that have marked themselves inactive are not accounted
to the oversubscribe limit. As a result, the number of threads (both active and waiting) in the pool grows until it hits
thread_pool_max_threads value. If the connection executing the transaction which is holding the lock has
managed to enter the thread pool by then, we get a large (depending on the thread_pool_max_threads value)
number of concurrently running threads, and thus, suboptimal performance as a result. Otherwise, we get a deadlock
as no more threads can be created to process those transaction(s) and release the lock(s).

Such situations are prevented by throttling the low priority queue when the total number of worker threads (both active
and waiting ones) reaches the oversubscribe limit. That is, if there are too many worker threads, do not start new
transactions and create new threads until queued events from the already started transactions are processed.

Handling of Long Network Waits

Certain types of workloads (large result sets, BLOBs, slow clients) can have longer waits on network I/O (socket reads
and writes). Whenever server waits, this should be communicated to the Thread Pool, so it can start new query by
either waking a waiting thread or sometimes creating a new one. This implementation has been ported from MariaDB
patch MDEV-156.

Version Specific Information

• 8.0.12-1 Thread Pool feature ported from Percona Server for MySQL 5.7.

9.2. Handling of Long Network Waits 42

https://mariadb.atlassian.net/browse/MDEV-156

Percona Server Documentation, Release 8.0.18-9

System Variables

variable thread_pool_idle_timeout

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 60 (seconds)

This variable can be used to limit the time an idle thread should wait before exiting.

variable thread_pool_high_prio_mode

Command Line Yes

Config File Yes

Scope Global, Session

Dynamic Yes

Variable Type String

Default Value transactions

Allowed Values transactions, statements, none

This variable is used to provide more fine-grained control over high priority scheduling either globally or per connec-
tion.

The following values are allowed:

• transactions (the default). In this mode only statements from already started transactions may go into the
high priority queue depending on the number of high priority tickets currently available in a connection (see
thread_pool_high_prio_tickets).

• statements. In this mode all individual statements go into the high priority queue, regardless of connec-
tion’s transactional state and the number of available high priority tickets. This value can be used to prioritize
AUTOCOMMIT transactions or other kinds of statements such as administrative ones for specific connections.
Note that setting this value globally essentially disables high priority scheduling, since in this case all statements
from all connections will use a single queue (the high priority one)

• none. This mode disables high priority queue for a connection. Some connections (e.g. monitoring) may
be insensitive to execution latency and/or never allocate any server resources that would otherwise impact
performance in other connections and thus, do not really require high priority scheduling. Note that set-
ting thread_pool_high_prio_mode to none globally has essentially the same effect as setting it to
statements globally: all connections will always use a single queue (the low priority one in this case).

variable thread_pool_high_prio_tickets

Command Line Yes

Config File Yes

Scope Global, Session

Dynamic Yes

Variable Type Numeric

9.4. System Variables 43

Percona Server Documentation, Release 8.0.18-9

Default Value 4294967295

This variable controls the high priority queue policy. Each new connection is assigned this many tickets to enter the
high priority queue. Setting this variable to 0 will disable the high priority queue.

variable thread_pool_max_threads

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 100000

This variable can be used to limit the maximum number of threads in the pool. Once this number is reached no new
threads will be created.

variable thread_pool_oversubscribe

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 3

The higher the value of this parameter the more threads can be run at the same time, if the values is lower than 3 it
could lead to more sleeps and wake-ups.

variable thread_pool_size

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value Number of processors

This variable can be used to define the number of threads that can use the CPU at the same time.

variable thread_pool_stall_limit

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

Default Value 500 (ms)

9.4. System Variables 44

Percona Server Documentation, Release 8.0.18-9

The number of milliseconds before a running thread is considered stalled. When this limit is reached thread pool will
wake up or create another thread. This is being used to prevent a long-running query from monopolizing the pool.

Upgrading from a version before 8.0.14 to 8.0.14 or higher

Starting with the release of version 8.0.141, Percona Server for MySQL uses the upstram implementation of the
admin_port. The variables extra_port and extra_max_connections are removed and not supported. It
is essential to remove the extra_port and extra_max_connections variables from your configuration file
before you attempt to upgrade from a release before 8.0.14 to Percona Server for MySQL version 8.0.14 or higher.
Otherwise, a server produces a boot error and refuses to start.

See also:

MySQL Documentation:

• admin_port

variable extra_port

Version_info removed in 8.0.14

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

Default Value 0

This variable can be used to specify an additional port for Percona Server for MySQL to listen on. This port can
be used in case no new connections can be established due to all worker threads being busy or being locked when
pool-of-threads feature is enabled.

To connect to the extra port following command can be used:

mysql --port='extra-port-number' --protocol=tcp

variable extra_max_connections

Version_info removed in 8.0.14

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 1

This variable can be used to specify the maximum allowed number of connections plus one extra SUPER users con-
nection on the extra_port. This can be used with the extra_port variable to access the server in case no
new connections can be established due to all worker threads being busy or being locked when pool-of-threads
feature is enabled.

9.4. System Variables 45

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_port

Percona Server Documentation, Release 8.0.18-9

Status Variables

variable Threadpool_idle_threads

Variable Type Numeric

Scope Global

This status variable shows the number of idle threads in the pool.

variable Threadpool_threads

Variable Type Numeric

Scope Global

This status variable shows the number of threads in the pool.

Other Reading

• Thread pool in MariaDB 5.5

• Thread pool implementation in Oracle MySQL

9.5. Status Variables 46

https://kb.askmonty.org/en/threadpool-in-55/
http://mikaelronstrom.blogspot.com/2011_10_01_archive.html

CHAPTER

TEN

XTRADB PERFORMANCE IMPROVEMENTS FOR I/O-BOUND
HIGHLY-CONCURRENT WORKLOADS

Priority refill for the buffer pool free list

In highly-concurrent I/O-bound workloads the following situation may happen:

1. Buffer pool free lists are used faster than they are refilled by the LRU cleaner thread.

2. Buffer pool free lists become empty and more and more query and utility (i.e. purge) threads stall, checking
whether a buffer pool free list has became non-empty, sleeping, performing single-page LRU flushes.

3. The number of buffer pool free list mutex waiters increases.

4. When the LRU manager thread (or a single page LRU flush by a query thread) finally produces a free page, it is
starved from putting it on the buffer pool free list as it must acquire the buffer pool free list mutex too. However,
being one thread in up to hundreds, the chances of a prompt acquisition are low.

This is addressed by delegating all the LRU flushes to the to the LRU manager thread, never attempting to evict a
page or perform a LRU single page flush by a query thread, and introducing a backoff algorithm to reduce buffer
pool free list mutex pressure on empty buffer pool free lists. This is controlled through a new system variable
innodb_empty_free_list_algorithm.

variable innodb_empty_free_list_algorithm

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Values legacy, backoff

Default Value legacy

When legacy option is set, server will use the upstream algorithm and when the backoff is selected, Percona
implementation will be used.

Multi-threaded LRU flusher

Percona Server for MySQL features a true multi-threaded LRU flushing. In this scheme, each buffer pool instance has
its own dedicated LRU manager thread that is tasked with performing LRU flushes and evictions to refill the free list
of that buffer pool instance. Existing multi-threaded flusher no longer does any LRU flushing and is tasked with flush
list flushing only.

47

Percona Server Documentation, Release 8.0.18-9

• All threads still synchronize on each coordinator thread iteration. If a particular flushing job is stuck on one of
the worker threads, the rest will idle until the stuck one completes.

• The coordinator thread heuristics focus on flush list adaptive flushing without considering the state of free lists,
which might be in need of urgent refill for a subset of buffer pool instances on a loaded server.

• LRU flushing is serialized with flush list flushing for each buffer pool instance, introducing the risk that the right
flushing mode will not happen for a particular instance because it is being flushed in the other mode.

The following InnoDB metrics are no longer accounted, as their semantics do not make sense
under the current LRU flushing design: buffer_LRU_batch_flush_avg_time_slot,
buffer_LRU_batch_flush_avg_pass, buffer_LRU_batch_flush_avg_time_thread,
buffer_LRU_batch_flush_avg_time_est.

The need for InnoDB recovery thread writer threads is also removed, consequently all associated code is deleted.

Parallel doublewrite buffer

The legacy doublewrite buffer is shared between all the buffer pool instances and all the flusher threads. It collects all
the page write requests into a single buffer, and, when the buffer fills, writes it out to disk twice, blocking any new
write requests until the writes complete. This becomes a bottleneck with increased flusher parallelism, limiting the
effect of extra cleaner threads. In addition, single page flushes, if they are performed, are subject to above and also
contend on the doublewrite mutex.

To address these issues Percona Server for MySQL uses private doublewrite buffers for each buffer pool instance,
for each batch flushing mode (LRU or flush list). For example, with four buffer pool instances, there will be eight
doublewrite shards. Only one flusher thread can access any shard at a time, and each shard is added to and flushed
completely independently from the rest. This does away with the mutex and the event wait does not block other threads
from proceeding anymore, it only waits for the asynchronous I/O to complete. The only inter-thread synchronization
is between the flusher thread and I/O completion threads.

The new doublewrite buffer is contained in a new file, where all the shards are contained, at different offsets. This file
is created on startup, and removed on a clean shutdown. If it’s found on a crashed instance startup, its contents are
read and any torn pages are restored. If it’s found on a clean instance startup, the server startup is aborted with an error
message.

The location of the doublewrite file is governed by a new innodb_parallel_doublewrite_path global, read-
only system variable. It defaults to xb_doublewrite in the data directory. The variable accepts both absolute and
relative paths. In the latter case they are treated as relative to the data directory. The doublewrite file is not a tablespace
from InnoDB internals point of view.

The legacy InnoDB doublewrite buffer in the system tablespace continues to address doublewrite needs of sin-
gle page flushes, and they are free to use the whole of that buffer (128 pages by default) instead of the last
eight pages as currently used. Note that single page flushes will not happen in Percona Server for MySQL unless
innodb_empty_free_list_algorithm is set to legacy value.

The existing system tablespace is not touched in any way for this feature implementation, ensuring that cleanly-
shutdown instances may be freely moved between different server flavors.

Interaction with innodb_flush_method

Regardless of innodb_flush_method setting, the parallel doublewrite file is opened with O_DIRECT flag to
remove OS caching, then its access is further governed by the exact value set: if it’s set to O_DSYNC, the parallel
doublewrite is opened with O_SYNC flag too. Further, if it’s one of O_DSYNC, O_DIRECT_NO_FSYNC, then the
doublewrite file is not flushed after a batch of writes to it is completed. With other innodb_flush_method values
the doublewrite buffer is flushed only if setting O_DIRECT has failed.

10.3. Parallel doublewrite buffer 48

Percona Server Documentation, Release 8.0.18-9

variable innodb_parallel_doublewrite_path

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value xb_doublewrite

This variable is used to specify the location of the parallel doublewrite file. It accepts both absolute and relative paths.
In the latter case they are treated as relative to the data directory.

Percona Server for MySQL has introduced several options, only available in builds compiled with
UNIV_PERF_DEBUG C preprocessor define.

variable innodb_sched_priority_master

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Boolean

Version Specific Information

• 8.0.12-1 Feature ported from Percona Server for MySQL 5.7

Other Reading

• Page cleaner thread tuning

• Bug #74637 - make dirty page flushing more adaptive

• Bug #67808 - in innodb engine, double write and multi-buffer pool instance reduce concurrency

• Bug #69232 - buf_dblwr->mutex can be splited into two

10.4. Version Specific Information 49

https://www.percona.com/doc/percona-server/5.6/performance/page_cleaner_tuning.html#page-cleaner-tuning
http://bugs.mysql.com/bug.php?id=74637
http://bugs.mysql.com/bug.php?id=67808
http://bugs.mysql.com/bug.php?id=69232

CHAPTER

ELEVEN

PREFIX INDEX QUERIES OPTIMIZATION

Percona Server for MySQL has ported Prefix Index Queries Optimization feature from Facebook patch for MySQL.

Prior to this InnoDB would always fetch the clustered index for all prefix columns in an index, even when the value of
a particular record was smaller than the prefix length. This implementation optimizes that case to use the record from
the secondary index and avoid the extra lookup.

Status Variables

variable Innodb_secondary_index_triggered_cluster_reads

Variable Type Numeric

Scope Global

This variable shows the number of times secondary index lookup triggered cluster lookup.

variable Innodb_secondary_index_triggered_cluster_reads_avoided

Variable Type Numeric

Scope Global

This variable shows the number of times prefix optimization avoided triggering cluster lookup.

Version Specific Information

• 8.0.12-1: The feature was ported from Percona Server for MySQL 5.7

50

CHAPTER

TWELVE

LIMITING THE ESTIMATION OF RECORDS IN A QUERY

Availability This feature is Experimental quality.

This page describes an alternative when running queries against a large number of table partitions. When a query
runs, InnoDB estimates the records in each partition. This process can result in more pages read and more disk I/O,
if the buffer pool must fetch the pages from disk. This process increases the query time if there are a large number of
partitions.

The addition of two variables make it possible to override records_in_range which effectively bypasses the process.

Warning: The use of these variables may result in improper index selection by the optimizer.

variable innodb_records_in_range

Command Line --innodb-records-in-range

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

The variable provides a method to limit the number of records estimated for a query.

mysql> SET @@GLOBAL.innodb_records_in_range=100;
100

variable innodb_force_index_records_in_range

Command Line --innodb-force-index-records-in-range

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

This variable provides a method to override the records_in_range result when a FORCE INDEX is used in a query.

mysql> SET @@GLOBAL.innodb_force_index_records_in_range=100;
100

51

https://dev.mysql.com/doc/internals/en/records-in-range.html

Part V

Flexibility Improvements

52

CHAPTER

THIRTEEN

SUPPRESS WARNING MESSAGES

This feature is intended to provide a general mechanism (using log_warnings_silence) to disable certain warn-
ing messages to the log file. Currently, it is only implemented for disabling message #1592 warnings. This feature
does not influence warnings delivered to a client. Please note that warning code needs to be a string:

mysql> SET GLOBAL log_warnings_suppress = '1592';
Query OK, 0 rows affected (0.00 sec)

Version Specific Information

• 8.0.12-1: The feature was ported from Percona Server for MySQL 5.7

System Variables

variable log_warnings_suppress

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type SET

Default Value (empty string)

Range (empty string), 1592

It is intended to provide a more general mechanism for disabling warnings than existed previously with variable
suppress_log_warning_1592. When set to the empty string, no warnings are disabled. When set to 1592,
warning #1592 messages (unsafe statement for binary logging) are suppressed. In the future, the ability to optionally
disable additional warnings may also be added.

Related Reading

• MySQL bug 42851

• MySQL InnoDB replication

• InnoDB Startup Options and System Variables

53

http://bugs.mysql.com/bug.php?id=42851
http://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html
http://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html

Percona Server Documentation, Release 8.0.18-9

• InnoDB Error Handling

13.3. Related Reading 54

http://dev.mysql.com/doc/refman/8.0/en/innodb-error-handling.html

CHAPTER

FOURTEEN

IMPROVED MEMORY STORAGE ENGINE

As of MySQL 5.5.15, a Fixed Row Format (FRF) is still being used in the MEMORY storage engine. The fixed row
format imposes restrictions on the type of columns as it assigns on advance a limited amount of memory per row. This
renders a VARCHAR field in a CHAR field in practice and makes impossible to have a TEXT or BLOB field with that
engine implementation.

To overcome this limitation, the Improved MEMORY Storage Engine is introduced in this release for supporting true
VARCHAR, VARBINARY, TEXT and BLOB fields in MEMORY tables.

This implementation is based on the Dynamic Row Format (DFR) introduced by the mysql-heap-dynamic-rows patch.

DFR is used to store column values in a variable-length form, thus helping to decrease memory footprint of those
columns and making possible BLOB and TEXT fields and real VARCHAR and VARBINARY.

Unlike the fixed implementation, each column value in DRF only uses as much space as required. This is, for variable-
length values, up to 4 bytes is used to store the actual value length, and then only the necessary number of blocks is
used to store the value.

Rows in DFR are represented internally by multiple memory blocks, which means that a single row can consist of
multiple blocks organized into one set. Each row occupies at least one block, there can not be multiple rows within a
single block. Block size can be configured when creating a table (see below).

This DFR implementation has two caveats regarding to ordering and indexes.

Caveats

Ordering of Rows

In the absence of ORDER BY, records may be returned in a different order than the previous MEMORY implementation.

This is not a bug. Any application relying on a specific order without an ORDER BY clause may deliver unexpected
results. A specific order without ORDER BY is a side effect of a storage engine and query optimizer implementation
which may and will change between minor MySQL releases.

Indexing

It is currently impossible to use indexes on BLOB columns due to some limitations of the Dynamic Row Format. Trying
to create such an index will fail with the following error:

BLOB column '<name>' can't be used in key specification with the used table type.

55

http://code.google.com/p/mysql-heap-dynamic-rows/

Percona Server Documentation, Release 8.0.18-9

Restrictions

For performance reasons, a mixed solution is implemented: the fixed format is used at the beginning of the row, while
the dynamic one is used for the rest of it.

The size of the fixed-format portion of the record is chosen automatically on CREATE TABLE and cannot be changed
later. This, in particular, means that no indexes can be created later with CREATE INDEX or ALTER TABLE when
the dynamic row format is used.

All values for columns used in indexes are stored in fixed format at the first block of the row, then the following
columns are handled with DRF.

This sets two restrictions to tables:

• the order of the fields and therefore,

• the minimum size of the block used in the table.

Ordering of Columns

The columns used in fixed format must be defined before the dynamic ones in the CREATE TABLE statement. If this
requirement is not met, the engine will not be able to add blocks to the set for these fields and they will be treated as
fixed.

Minimum Block Size

The block size has to be big enough to store all fixed-length information in the first block. If not, the CREATE TABLE
or ALTER TABLE statements will fail (see below).

Limitations

MyISAM tables are still used for query optimizer internal temporary tables where the MEMORY tables could be used
now instead: for temporary tables containing large VARCHAR``s, ``BLOB, and TEXT columns.

Setting Row Format

Taking the restrictions into account, the Improved MEMORY Storage Engine will choose DRF over FRF at the moment
of creating the table according to following criteria:

• There is an implicit request of the user in the column types OR

• There is an explicit request of the user AND the overhead incurred by DFR is beneficial.

Implicit Request

The implicit request by the user is taken when there is at least one BLOB or TEXT column in the table definition. If
there are none of these columns and no relevant option is given, the engine will choose FRF.

For example, this will yield the use of the dynamic format:

mysql> CREATE TABLE t1 (f1 VARCHAR(32), f2 TEXT, PRIMARY KEY (f1)) ENGINE=HEAP;

14.2. Restrictions 56

Percona Server Documentation, Release 8.0.18-9

While this will not:

mysql> CREATE TABLE t1 (f1 VARCHAR(16), f2 VARCHAR(16), PRIMARY KEY (f1)) ENGINE=HEAP;

Explicit Request

The explicit request is set with one of the following options in the CREATE TABLE statement:

• KEY_BLOCK_SIZE = <value>

– Requests the DFR with the specified block size (in bytes)

Despite its name, the KEY_BLOCK_SIZE option refers to a block size used to store data rather then indexes. The
reason for this is that an existing CREATE TABLE option is reused to avoid introducing new ones.

The Improved MEMORY Engine checks whether the specified block size is large enough to keep all key column values.
If it is too small, table creation will abort with an error.

After DRF is requested explicitly and there are no BLOB or TEXT columns in the table definition, the Improved
MEMORY Engine will check if using the dynamic format provides any space saving benefits as compared to the fixed
one:

• if the fixed row length is less than the dynamic block size (plus the dynamic row overhead - platform dependent)
OR

• there isn’t any variable-length columns in the table or VARCHAR fields are declared with length 31 or less,

the engine will revert to the fixed format as it is more space efficient in such case. The row format being used by the
engine can be checked using SHOW TABLE STATUS.

Examples

On a 32-bit platform:

mysql> CREATE TABLE t1 (f1 VARCHAR(32), f2 VARCHAR(32), f3 VARCHAR(32), f4
→˓VARCHAR(32),

PRIMARY KEY (f1)) KEY_BLOCK_SIZE=124 ENGINE=HEAP;

mysql> SHOW TABLE STATUS LIKE 't1';
Name Engine Version Rows Avg_row_length Data_length Max_data_length Index_
→˓length Data_free Auto_increment Create_time Update_time Check_
→˓time Collation Checksum Create_options Comment
t1 MEMORY 10 X 0 X 0 0 NULL NULL NULL
→˓NULL latin1_swedish_ci NULL row_format=DYNAMIC KEY_BLOCK_SIZE=124

On a 64-bit platform:

mysql> CREATE TABLE t1 (f1 VARCHAR(32), f2 VARCHAR(32), f3 VARCHAR(32), f4
→˓VARCHAR(32),

PRIMARY KEY (f1)) KEY_BLOCK_SIZE=124 ENGINE=HEAP;

mysql> SHOW TABLE STATUS LIKE 't1';
Name Engine Version Rows Avg_row_length Data_length Max_data_length Index_
→˓length Data_free Auto_increment Create_time Update_time Check_
→˓time Collation Checksum Create_options Comment
t1 MEMORY 10 X 0 X 0 0 NULL NULL NULL
→˓NULL latin1_swedish_ci NULL KEY_BLOCK_SIZE=124

14.5. Examples 57

Percona Server Documentation, Release 8.0.18-9

Implementation Details

MySQL MEMORY tables keep data in arrays of fixed-size chunks. These chunks are organized into two groups of
HP_BLOCK structures:

• group1 contains indexes, with one HP_BLOCK per key (part of HP_KEYDEF),

• group2 contains record data, with a single HP_BLOCK for all records.

While columns used in indexes are usually small, other columns in the table may need to accommodate larger data.
Typically, larger data is placed into VARCHAR or BLOB columns.

The Improved MEMORY Engine implements the concept of dataspace, HP_DATASPACE, which incorporates the
HP_BLOCK structures for the record data, adding more information for managing variable-sized records.

Variable-size records are stored in multiple “chunks”, which means that a single record of data (a database “row”) can
consist of multiple chunks organized into one “set”, contained in HP_BLOCK structures.

In variable-size format, one record is represented as one or many chunks depending on the actual data, while in fixed-
size mode, one record is always represented as one chunk. The index structures would always point to the first chunk
in the chunkset.

Variable-size records are necessary only in the presence of variable-size columns. The Improved Memory Engine will
be looking for BLOB or VARCHAR columns with a declared length of 32 or more. If no such columns are found, the
table will be switched to the fixed-size format. You should always put such columns at the end of the table definition
in order to use the variable-size format.

Whenever data is being inserted or updated in the table, the Improved Memory Engine will calculate how many chunks
are necessary.

For INSERT operations, the engine only allocates new chunksets in the recordspace. For UPDATE operations it will
modify the length of the existing chunkset if necessary, unlinking unnecessary chunks at the end, or allocating and
adding more if a larger length is needed.

When writing data to chunks or copying data back to a record, fixed-size columns are copied in their full format, while
VARCHAR and BLOB columns are copied based on their actual length, skipping any NULL values.

When allocating a new chunkset of N chunks, the engine will try to allocate chunks one-by-one, linking them as they
become allocated. For allocating a single chunk, it will attempt to reuse a deleted (freed) chunk. If no free chunks are
available, it will try to allocate a new area inside a HP_BLOCK.

When freeing chunks, the engine will place them at the front of a free list in the dataspace, each one containing a
reference to the previously freed chunk.

The allocation and contents of the actual chunks varies between fixed and variable-size modes:

• Format of a fixed-size chunk:

– uchar[]

* With sizeof=chunk_dataspace_length, but at least sizeof(uchar*) bytes. It keeps
actual data or pointer to the next deleted chunk, where chunk_dataspace_length equals to full
record length

– uchar

* Status field (1 means “in use”, 0 means “deleted”)

• Format of a variable-size chunk:

– uchar[]

14.6. Implementation Details 58

Percona Server Documentation, Release 8.0.18-9

* With sizeof=chunk_dataspace_length, but at least sizeof(uchar*) bytes. It keeps ac-
tual data or pointer to the next deleted chunk, where chunk_dataspace_length is set according
to table’s key_block_size

– uchar*

* Pointer to the next chunk in this chunkset, or NULL for the last chunk

– uchar

* Status field (1 means “first”, 0 means “deleted”, 2 means “linked”)

Total chunk length is always aligned to the next sizeof(uchar*).

See Also

• Dynamic row format for MEMORY tables

14.7. See Also 59

http://www.mysqlperformanceblog.com/2011/09/06/dynamic-row-format-for-memory-tables/

CHAPTER

FIFTEEN

EXTENDED MYSQLDUMP

Backup Locks support

When used together with the --single-transaction option, the lock-for-backup option makes
mysqldump issue LOCK TABLES FOR BACKUP before starting the dump operation to prevent unsafe statements
that would normally result in an inconsistent backup.

More information can be found on the Backup Locks feature documentation.

Compressed Columns support

mysqldump supports the Compressed columns with dictionaries feature. More information about the relevant options
can be found on the Compressed columns with dictionaries feature page.

Taking backup by descending primary key order

--order-by-primary-desc tells mysqldump to take the backup by descending primary key order (PRIMARY
KEY DESC) which can be useful if the storage engine is using the reverse order column for a primary key.

RocksDB support

mysqldump detects when MyRocks is installed and available. If there is a session variable named
rocksdb_skip_fill_cache mysqldump sets it to 1.

mysqldump will now automatically enable session the variable rocksdb_bulk_load if it is supported by the
target server.

Version Specific Information

• 8.0.12-1: The feature was ported from Percona Server for MySQL 5.7

60

CHAPTER

SIXTEEN

EXTENDED SELECT INTO OUTFILE/DUMPFILE

Percona Server for MySQL has extended the SELECT INTO ... OUTFILE and SELECT INTO DUMPFILE
commands to add the support for UNIX sockets and named pipes. Before this was implemented the database would
return an error for such files.

This feature allows using LOAD DATA LOCAL INFILE in combination with SELECT INTO OUTFILE to
quickly load multiple partitions across the network or in other setups, without having to use an intermediate file
which wastes space and I/O.

Version Specific Information

• 8.0.12-1 - Feature ported from Percona Server for MySQL 5.7.

Other Reading

• MySQL bug: #44835

61

http://dev.mysql.com/doc/refman/8.0/en/select-into.html
http://bugs.mysql.com/bug.php?id=44835

CHAPTER

SEVENTEEN

EXTENDED MYSQLBINLOG

Percona Server for MySQL has implemented compression support for mysqlbinlog. This is similar to support that
both mysql and mysqldump programs include (the -C, --compress options “Use compression in server/client
protocol”). Using the compressed protocol helps reduce the bandwidth use and speed up transfers.

Percona Server for MySQL has also implemented support for SSL. mysqlbinlog now accepts the SSL connection
options as all the other client programs. This feature can be useful with --read-from-remote-server option.
Following SSL options are now available:

• --ssl - Enable SSL for connection (automatically enabled with other flags).

• --ssl-ca=name - CA file in PEM format (check OpenSSL docs, implies –ssl).

• --ssl-capath=name - CA directory (check OpenSSL docs, implies –ssl).

• --ssl-cert=name - X509 cert in PEM format (implies –ssl).

• --ssl-cipher=name - SSL cipher to use (implies –ssl).

• --ssl-key=name - X509 key in PEM format (implies –ssl).

• --ssl-verify-server-cert - Verify server’s “Common Name” in its cert against hostname used when
connecting. This option is disabled by default.

Version Specific Information

• 8.0.12-1: The feature was ported from Percona Server for MySQL 5.7

62

CHAPTER

EIGHTEEN

SUPPORT FOR PROXY PROTOCOL

The proxy protocol allows an intermediate proxying server speaking proxy protocol (ie. HAProxy) between the server
and the ultimate client (i.e. mysql client etc) to provide the source client address to the server, which normally would
only see the proxying server address instead.

As the proxy protocol amounts to spoofing the client address, it is disabled by default, and can be enabled on per-
host or per-network basis for the trusted source addresses where trusted proxy servers are known to run. Unproxied
connections are not allowed from these source addresses.

Note: You need to ensure proper firewall ACL’s in place when this feature is enabled.

Proxying is supported for TCP over IPv4 and IPv6 connections only. UNIX socket connections can not be proxied
and do not fall under the effect of proxy-protocol-networks=’*’.

As a special exception, it is forbidden for the proxied IP address to be 127.0.0.1 or ::1.

Version Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7.

System Variables

variable proxy_protocol_networks

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Default Value (empty string)

This variable is a global-only, read-only variable, which is either a * (to enable proxying globally, a non-recommended
setting), or a list of comma-separated IPv4 and IPv6 network and host addresses, for which proxying is enabled.
Network addresses are specified in CIDR notation, i.e. 192.168.0.0/24. To prevent source host spoofing, the
setting of this variable must be as restrictive as possible to include only trusted proxy hosts.

63

Percona Server Documentation, Release 8.0.18-9

Related Reading

• PROXY protocol specification

18.3. Related Reading 64

http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt

CHAPTER

NINETEEN

COMPRESSED COLUMNS WITH DICTIONARIES

The per-column compression feature is a data type modifier, independent from user-level SQL and InnoDB
data compression, that causes the data stored in the column to be compressed on writing to storage and decompressed
on reading. For all other purposes, the data type is identical to the one without the modifier, i.e. no new data types are
created. Compression is done by using the zlib library.

Additionally, it is possible to pre-define a set of strings for each compressed column to achieve a better compression
ratio on relatively small individual data items.

This feature provides:

• a better compression ratio for text data which consist of a large number of predefined words (e.g. JSON or
XML) using compression methods with static dictionaries

• a way to select columns in the table to compress (in contrast to the InnoDB row compression method)

This feature is based on a patch provided by Weixiang Zhai.

Specifications

The feature is limited to InnoDB/XtraDB storage engine and to columns of the following data types:

• BLOB (including TINYBLOB, MEDIUMBLOB, LONGBLOG)

• TEXT (including TINYTEXT, MEDUUMTEXT, LONGTEXT)

• VARCHAR (including NATIONAL VARCHAR)

• VARBINARY

• JSON

A compressed column is declared by using the syntax that extends the existing COLUMN_FORMAT modifier:
COLUMN_FORMAT COMPRESSED. If this modifier is applied to an unsupported column type or storage engine, an
error is returned.

The compression can be specified:

• when creating a table: CREATE TABLE ... (..., foo BLOB COLUMN_FORMAT COMPRESSED, .
..);

• when altering a table and modifying a column to the compressed format: ALTER TABLE ... MODIFY
[COLUMN] ... COLUMN_FORMAT COMPRESSED, or ALTER TABLE ... CHANGE [COLUMN] ..
. COLUMN_FORMAT COMPRESSED.

Unlike Oracle MySQL, compression is applicable to generated stored columns. Use this syntax extension as follows:

65

Percona Server Documentation, Release 8.0.18-9

mysql> CREATE TABLE t1(
id INT,
a BLOB,
b JSON COLUMN_FORMAT COMPRESSED,
g BLOB GENERATED ALWAYS AS (a) STORED COLUMN_FORMAT COMPRESSED WITH

→˓COMPRESSION_DICTIONARY numbers
) ENGINE=InnoDB;

To decompress a column, specify a value other than COMPRESSED to COLUMN_FORMAT: FIXED, DYNAMIC, or
DEFAULT. If there is a column compression/decompression request in an ALTER TABLE, it is forced to the COPY
algorithm.

Two new variables: innodb_compressed_columns_zip_level and
innodb_compressed_columns_threshold have been implemented.

Compression dictionary support

To achieve a better compression ratio on relatively small individual data items, it is possible to predefine a compression
dictionary, which is a set of strings for each compressed column.

Compression dictionaries can be represented as a list of words in the form of a string (comma or any other character
can be used as a delimiter although not required). In other words, a,bb,ccc, a bb ccc and abbccc will have
the same effect. However, the latter is more compact. Quote symbol quoting is handled by regular SQL quoting. The
maximum supported dictionary length is 32506 bytes (zlib limitation).

The compression dictionary is stored in a new system InnoDB table. As this table is of the data dictionary kind,
concurrent reads are allowed, but writes are serialized, and reads are blocked by writes. Table read through old read
views are not supported, similar to InnoDB internal DDL transactions.

Interaction with innodb_force_recovery variable

Compression dictionary operations are treated like DDL operations with the exception when
innodb_force_value is set to 3: with values less than 3, compression dictionary operations are allowed,
and with values >= 3, they are forbidden.

Note: Prior to Percona Server for MySQL 8.0.15-6 using Compression dictionary operations with
innodb_force_recovery variable set to value > 0 would result in an error.

Example

In order to use the compression dictionary you need to create it. This can be done by running:

mysql> SET @dictionary_data = 'one' 'two' 'three' 'four';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE COMPRESSION_DICTIONARY numbers (@dictionary_data);
Query OK, 0 rows affected (0.00 sec)

To create a table that has both compression and compressed dictionary support you should run:

19.2. Compression dictionary support 66

Percona Server Documentation, Release 8.0.18-9

mysql> CREATE TABLE t1(
id INT,
a BLOB COLUMN_FORMAT COMPRESSED,
b BLOB COLUMN_FORMAT COMPRESSED WITH COMPRESSION_DICTIONARY numbers

) ENGINE=InnoDB;

The following example shows how to insert a sample of JSON data into the table:

SET @json_value =
'[\n'
' {\n'
' "one" = 0,\n'
' "two" = 0,\n'
' "three" = 0,\n'
' "four" = 0\n'
' },\n'
' {\n'
' "one" = 0,\n'
' "two" = 0,\n'
' "three" = 0,\n'
' "four" = 0\n'
' },\n'
' {\n'
' "one" = 0,\n'
' "two" = 0,\n'
' "three" = 0,\n'
' "four" = 0\n'
' },\n'
' {\n'
' "one" = 0,\n'
' "two" = 0,\n'
' "three" = 0,\n'
' "four" = 0\n'
' }\n'
']\n'
;

mysql> INSERT INTO t1 VALUES(0, @json_value, @json_value);
Query OK, 1 row affected (0.01 sec)

INFORMATION_SCHEMA Tables

This feature implements two new INFORMATION_SCHEMA tables.

table INFORMATION_SCHEMA.COMPRESSION_DICTIONARY

Columns

• dict_version (BIGINT(21)_UNSIGNED) – dictionary version

• dict_name (VARCHAR(64)) – dictionary name

• dict_data (BLOB) – compression dictionary string

This table provides a view over the internal compression dictionary. The SUPER privilege is required to query it.

table INFORMATION_SCHEMA.COMPRESSION_DICTIONARY_TABLES

19.3. INFORMATION_SCHEMA Tables 67

Percona Server Documentation, Release 8.0.18-9

Columns

• table_schema (BIGINT(21)_UNSIGNED) – table schema

• table_name (BIGINT(21)_UNSIGNED) – table ID from INFORMATION_SCHEMA.
INNODB_SYS_TABLES

• column_name (BIGINT(21)_UNSIGNED) – column position (starts from 0 as in
INFORMATION_SCHEMA.INNODB_SYS_COLUMNS)

• dict_name (BIGINT(21)_UNSIGNED) – dictionary ID

This table provides a view over the internal table that stores the mapping between the compression dictionaries and
the columns using them. The SUPER privilege is require to query it.

Limitations

Compressed columns cannot be used in indices (neither on their own nor as parts of composite keys).

Note: CREATE TABLE t2 AS SELECT * FROM t1 will create a new table with a compressed column,
whereas CREATE TABLE t2 AS SELECT CONCAT(a,'') AS a FROM t1 will not create compressed
columns.

At the same time, after executing CREATE TABLE t2 LIKE t1 statement, t2.a will have COMPRESSED at-
tribute.

ALTER TABLE ... DISCARD/IMPORT TABLESPACE is not supported for tables with compressed columns.
To export and import tablespaces with compressed columns, you need to uncompress them first with: ALTER TABLE
... MODIFY ... COLUMN_FORMAT DEFAULT.

mysqldump command line parameters

By default, with no additional options, mysqldump will generate a MySQL compatible SQL output.

All /*!50633 COLUMN_FORMAT COMPRESSED */ and /*!50633 COLUMN_FORMAT COMPRESSED
WITH COMPRESSION_DICTIONARY <dictionary> */ won’t be in the dump.

When a new option enable-compressed-columns is specified, all /*!50633 COLUMN_FORMAT
COMPRESSED */ will be left intact and all /*!50633 COLUMN_FORMAT COMPRESSED WITH
COMPRESSION_DICTIONARY <dictionary> */ will be transformed into /*!50633 COLUMN_FORMAT
COMPRESSED */. In this mode the dump will contain the necessary SQL statements to create compressed columns,
but without dictionaries.

When a new enable-compressed-columns-with-dictionaries option is specified, dump will contain
all compressed column attributes and compression dictionary.

Moreover, the following dictionary creation fragments will be added before CREATE TABLE statements which are
going to use these dictionaries for the first time.

/*!50633 DROP COMPRESSION_DICTIONARY IF EXISTS <dictionary>; */
/*!50633 CREATE COMPRESSION_DICTIONARY <dictionary>(...); */

Two new options add-drop-compression-dictionary and skip-add-drop-compression-dictionary
will control if /*!50633 DROP COMPRESSION_DICTIONARY IF EXISTS <dictionary> */ part from

19.4. Limitations 68

Percona Server Documentation, Release 8.0.18-9

previous paragraph will be skipped or not. By default, add-drop-compression-dictionary mode will be
used.

When both enable-compressed-columns-with-dictionaries and --tab=<dir> (separate file for
each table) options are specified, necessary compression dictionaries will be created in each output file
using the following fragment (regardless of the values of add-drop-compression-dictionary and
skip-add-drop-compression-dictionary options).

/*!50633 CREATE COMPRESSION_DICTIONARY IF NOT EXISTS <dictionary>(...); */

Version Specific Information

• 8.0.13-3 Feature ported from Percona Server for MySQL 5.7.

System Variables

variable innodb_compressed_columns_zip_level

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 6

Range 0-9

This variable is used to specify the compression level used for compressed columns. Specifying 0 will use no com-
pression, 1 the fastest and 9 the best compression. Default value is 6.

variable innodb_compressed_columns_threshold

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 96

Range 1 - 2^64-1 (or 2^32-1 for 32-bit release)

By default a value being inserted will be compressed if its length exceeds
innodb_compressed_columns_threshold bytes. Otherwise, it will be stored in raw (uncompressed)
form.

Please also notice that because of the nature of some data, its compressed representation can be longer than the original
value. In this case it does not make sense to store such values in compressed form as Percona Server for MySQL would
have to waste both memory space and CPU resources for unnecessary decompression. Therefore, even if the length of
such non-compressible values exceeds innodb_compressed_columns_threshold, they will be stored in an
uncompressed form (however, an attempt to compress them will still be made).

19.6. Version Specific Information 69

Percona Server Documentation, Release 8.0.18-9

This parameter can be tuned in order to skip unnecessary attempts of data compression for values that are known in
advance by the user to have bad compression ratio of their first N bytes.

See also:

How to find a good/optimal dictionary for zlib ‘setDictionary’ when processing a given set of data? http://
stackoverflow.com/questions/2011653/how-to-find-a-good-optimal-dictionary-for-zlib-setdictionary-when-processing-a

19.7. System Variables 70

http://stackoverflow.com/questions/2011653/how-to-find-a-good-optimal-dictionary-for-zlib-setdictionary-when-processing-a
http://stackoverflow.com/questions/2011653/how-to-find-a-good-optimal-dictionary-for-zlib-setdictionary-when-processing-a

CHAPTER

TWENTY

INNODB FULL-TEXT SEARCH IMPROVEMENTS

71

CHAPTER

TWENTYONE

IGNORING STOPWORD LIST

By default all Full-Text Search indexes check the stopwords list, to see if any indexed elements contain one of the
words on that list.

Using this list for n-gram indexes isn’t always suitable, as an example, any item that contains a or i will be ignored.
Another word that can’t be searched is east, this one will find no matches because a is on the FTS stopword list.

To resolve this issue, Percona Server for MySQL has the innodb_ft_ignore_stopwords variable to control
whether InnoDB Full-Text Search should ignore the stopword list.

Although this variable is introduced to resolve n-gram issues, it affects all Full-Text Search indexes as well.

Being a stopword doesn’t just mean to be a one of the predefined words from the list. Tokens shorter than inn-
odb_ft_min_token_size or longer than innodb_ft_max_token_size are also considered stopwords. Therefore, when
innodb_ft_ignore_stopwords is set to ON even for non-ngram FTS, innodb_ft_min_token_size /
innodb_ft_max_token_size will be ignored meaning that in this case very short and very long words will also
be indexed.

System Variables

variable innodb_ft_ignore_stopwords

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value OFF

When enabled, this variable will instruct InnoDB Full Text Search parser to ignore the stopword list when build-
ing/updating an FTS index.

72

https://dev.mysql.com/doc/refman/8.0/en/fulltext-stopwords.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_min_token_size
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_min_token_size
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_max_token_size

CHAPTER

TWENTYTWO

BINLOGGING AND REPLICATION IMPROVEMENTS

Due to continuous development, Percona Server for MySQL incorporated a number of improvements related to repli-
cation and binary logs handling. This resulted in replication specifics, which distinguishes it from MySQL.

Safety of statements with a LIMIT clause

Summary of the Fix

MySQL considers all UPDATE/DELETE/INSERT ... SELECT statements with LIMIT clause to be unsafe, no
matter wether they are really producing non-deterministic result or not, and switches from statement-based logging
to row-based one. Percona Server for MySQL is more accurate, it acknowledges such instructions as safe when they
include ORDER BY PK or WHERE condition. This fix has been ported from the upstream bug report #42415 (#44).

Performance improvement on relay log position update

Summary of the Fix

MySQL always updated relay log position in multi-source replications setups regardless of whether the committed
transaction has already been executed or not. Percona Server omitts relay log position updates for the already logged
GTIDs.

Details

Particularly, such unconditional relay log position updates caused additional fsync operations in case of
relay-log-info-repository=TABLE, and with the higher number of channels transmitting such duplicate
(already executed) transactions the situation became proportionally worse. Bug fixed #1786 (upstream #85141).

Performance improvement on master and connection status updates

Summary of the Fix

Slave nodes configured to update master status and connection information only on log file rotation did not experience
the expected reduction in load. MySQL was additionaly updating this information in case of multi-source replication
when slave had to skip the already executed GTID event.

73

http://bugs.mysql.com/bug.php?id=42415
https://jira.percona.com/browse/PS-44
https://jira.percona.com/browse/PS-1786
http://bugs.mysql.com/bug.php?id=85141

Percona Server Documentation, Release 8.0.18-9

Details

The configuration with master_info_repository=TABLE and sync_master_info=0 makes slave to up-
date master status and connection information in this table on log file rotation and not after each sync_master_info
event, but it didn’t work on multi-source replication setups. Heartbeats sent to the slave to skip GTID events
which it had already executed previously, were evaluated as relay log rotation events and reacted with mysql.
slave_master_info table sync. This inaccuracy could produce huge (up to 5 times on some setups) increase
in write load on the slave, before this problem was fixed in Percona Server for MySQL. Bug fixed #1812 (upstream
#85158).

Writing FLUSH Commands to the Binary Log

FLUSH commands, such as FLUSH SLOW LOGS, are not written to the binary log if the system variable
binlog_skip_flush_commands is set to ON.

In addition, the following changes were implemented in the behavior of read_only and super_read_only
modes:

• When read_only is set to ON, any FLUSH ... command executed by a normal user (without the SUPER
privilege) are not written to the binary log regardless of the value of the binlog_skip_flush_command
variable.

• When super_read_only is set to ON, any FLUSH ... command executed by any user (even
by those with the SUPER privilege) are not written to the binary log regardless of the value of the
binlog_skip_flush_command variable.

An attempt to run a FLUSH command without either SUPER or RELOAD privileges results
in the ER_SPECIFIC_ACCESS_DENIED_ERROR exception regardless of the value of the
binlog_skip_flush_command variable.

variable binlog_skip_flush_commands

Version Info

• 8.0.15-5 – Introduced

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Default Value OFF

When binlog_skip_flush_command is set to ON, FLUSH ... commands are not written to the binary log.
See Writing FLUSH Commands to the Binary Log for more information about what else affects the writing of FLUSH
commands to the binary log.

Note: FLUSH LOGS, FLUSH BINARY LOGS, FLUSH TABLES WITH READ LOCK, and FLUSH TABLES .
.. FOR EXPORT are not written to the binary log no matter what value the binlog_skip_flush_command
variable contains. The FLUSH command is not recorded to the binary log and the value of
binlog_skip_flush_command is ignored if the FLUSH command is run with the NO_WRITE_TO_BINLOG
keyword (or its alias LOCAL).

See also:

MySQL Documentation: FLUSH Syntax https://dev.mysql.com/doc/refman/8.0/en/flush.html

22.4. Writing FLUSH Commands to the Binary Log 74

https://jira.percona.com/browse/PS-1812
http://bugs.mysql.com/bug.php?id=85158
https://dev.mysql.com/doc/refman/8.0/en/flush.html

Percona Server Documentation, Release 8.0.18-9

22.4. Writing FLUSH Commands to the Binary Log 75

CHAPTER

TWENTYTHREE

EXTENDED SET VAR OPTIMIZER HINT

Percona Server for MySQL 8.0 extends the SET_VAR introduced in MySQL 8.0 effectively replacing the SET
STATEMENT ... FOR statement. SET_VAR is an optimizer hint that can be applied to session variables.

Percona Server for MySQL 8.0 extends the SET_VAR hint to support the following:

• The OPTIMIZE TABLE statement

• MyISAM session variables

• Plugin or Storage Engine variables

• InnoDB Session variables

• The ALTER TABLE statement

• CALL stored_proc() statement

• The ANALYZE TABLE statement

• The CHECK TABLE statement

• The LOAD INDEX statement (used for MyISAM)

• The CREATE TABLE statement

Percona Server for MySQL 8.0 also supports setting the following variables by using SET_VAR:

• innodb_lock_wait_timeout
• innodb_tmpdir
• innodb_ft_user_stopword_table
• block_encryption_mode
• histogram_generation_max_mem_size
• myisam_sort_buffer_size
• myisam_repair_threads
• myisam_stats_method
• preload_buffer_size (used by MyISAM only)

See also:

MySQL Documentation: Variable-setting hint syntax https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.
html#optimizer-hints-set-var

76

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Part VI

Reliability Improvements

77

CHAPTER

TWENTYFOUR

TOO MANY CONNECTIONS WARNING

This feature issues the warning Too many connections to the log, if log_error_verbosity is set to 2 or
higher.

Version-Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7.

78

CHAPTER

TWENTYFIVE

HANDLE CORRUPTED TABLES

When a server subsystem tries to access a corrupted table, the server may crash. If this outcome is not desirable when
a corrupted table is encountered, set the new system innodb_corrupt_table_action variable to a value which
allows the ongoing operation to continue without crashing the server.

The server error log registers attempts to access corrupted table pages.

Interacting with the innodb_force_recovery variable

The innodb_corrupt_table_action variable may work in conjunction with the
innodb_force_recovery variable which considerably reduces the effect of InnoDB subsystems running
in the background.

If the innodb_force_recovery variable is set to a low value and you expect the server to crash, it may still be
running due to a non-default value of the innodb_corrupt_table_action variable.

For more information about the innodb_force_recovery variable, see Forcing InnoDB Recovery from the
MySQL Reference Manual.

This feature adds a new system variable.

Version Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7.

System Variables

variable innodb_corrupt_table_action

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type ULONG

Range assert, warn, salvage

• With the default value XtraDB will intentionally crash the server with an assertion failure as it would normally
do when detecting corrupted data in a single-table tablespace.

79

https://dev.mysql.com/doc/refman/5.5/en/forcing-innodb-recovery.html

Percona Server Documentation, Release 8.0.18-9

• If the warn value is used it will pass corruption of the table as corrupt table instead of crashing itself.
For this to work innodb_file_per_table should be enabled. All file I/O for the datafile after detected as
corrupt is disabled, except for the deletion.

• When the option value is salvage, XtraDB allows read access to a corrupted tablespace, but ignores corrupted
pages”.

25.2. System Variables 80

Part VII

Management Improvements

81

CHAPTER

TWENTYSIX

PERCONA TOOLKIT UDFS

Three Percona Toolkit UDFs that provide faster checksums are provided:

• libfnv1a_udf

• libfnv_udf

• libmurmur_udf

Version Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7.

Other Information

• Author / Origin: Baron Schwartz

Installation

These UDFs are part of the Percona Server for MySQL packages. To install one of the UDFs into the server, execute
one of the following commands, depending on which UDF you want to install:

mysql -e "CREATE FUNCTION fnv1a_64 RETURNS INTEGER SONAME 'libfnv1a_udf.so'"
mysql -e "CREATE FUNCTION fnv_64 RETURNS INTEGER SONAME 'libfnv_udf.so'"
mysql -e "CREATE FUNCTION murmur_hash RETURNS INTEGER SONAME 'libmurmur_udf.so'"

Executing each of these commands will install its respective UDF into the server.

Troubleshooting

If you get the error:

ERROR 1126 (HY000): Can't open shared library 'fnv_udf.so' (errno: 22 fnv_udf.so:
→˓cannot open shared object file: No such file or directory)

Then you may need to copy the .so file to another location in your system. Try both /lib and /usr/lib. Look
at your environment’s $LD_LIBRARY_PATH variable for clues. If none is set, and neither /lib nor /usr/lib
works, you may need to set LD_LIBRARY_PATH to /lib or /usr/lib.

82

Percona Server Documentation, Release 8.0.18-9

Other Reading

• Percona Toolkit documentation

26.5. Other Reading 83

http://www.percona.com/doc/percona-toolkit/

CHAPTER

TWENTYSEVEN

KILL IDLE TRANSACTIONS

This feature limits the age of idle transactions, for all transactional storage engines. If a transaction is idle for more
seconds than the threshold specified, it will be killed. This prevents users from blocking InnoDB purge by mistake.

Version Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7

System Variables

variable kill_idle_transaction

Scope GLOBAL

Config YES

Dynamic YES

Variable Type INTEGER

Default Value 0 (disabled)

Units Seconds

If non-zero, any idle transaction will be killed after being idle for this many seconds.

84

CHAPTER

TWENTYEIGHT

XTRADB CHANGED PAGE TRACKING

XtraDB now tracks the pages that have changes written to them according to the redo log. This information is written
out in special changed page bitmap files. This information can be used to speed up incremental backups using Percona
XtraBackup by removing the need to scan whole data files to find the changed pages. Changed page tracking is done
by a new XtraDB worker thread that reads and parses log records between checkpoints. The tracking is controlled by
a new read-only server variable innodb_track_changed_pages.

Bitmap filename format used for changed page tracking is ib_modified_log_<seq>_<startlsn>.xdb. The
first number is the sequence number of the bitmap log file and the startlsn number is the starting LSN number of data
tracked in that file. Example of the bitmap log files should look like this:

ib_modified_log_1_0.xdb
ib_modified_log_2_1603391.xdb

Sequence number can be used to easily check if all the required bitmap files are present. Start LSN number will be
used in XtraBackup and INFORMATION_SCHEMA queries to determine which files have to be opened and read for the
required LSN interval data. The bitmap file is rotated on each server restart and whenever the current file size reaches
the predefined maximum. This maximum is controlled by a new innodb_max_bitmap_file_size variable.

Old bitmap files may be safely removed after a corresponding incremental backup is taken. For that there are server
User statements for handling the XtraDB changed page bitmaps. Removing the bitmap files from the filesystem
directly is safe too, as long as care is taken not to delete data for not-yet-backuped LSN range.

This feature will be used for implementing faster incremental backups that use this information to avoid full data scans
in Percona XtraBackup.

User statements for handling the XtraDB changed page bitmaps

New statements have been introduced for handling the changed page bitmap tracking. All of these statements require
SUPER privilege.

• FLUSH CHANGED_PAGE_BITMAPS - this statement can be used for synchronous bitmap write for immediate
catch-up with the log checkpoint. This is used by innobackupex to make sure that XtraBackup indeed has all
the required data it needs.

• RESET CHANGED_PAGE_BITMAPS - this statement will delete all the bitmap log files and restart the bitmap
log file sequence.

• PURGE CHANGED_PAGE_BITMAPS BEFORE <lsn> - this statement will delete all the change page
bitmap files up to the specified log sequence number.

85

http://www.percona.com/doc/percona-xtrabackup/
http://www.percona.com/doc/percona-xtrabackup/

Percona Server Documentation, Release 8.0.18-9

Additional information in SHOW ENGINE INNODB STATUS

When log tracking is enabled, the following additional fields are displayed in the LOG section of the SHOW ENGINE
INNODB STATUS output:

• “Log tracked up to:” displays the LSN up to which all the changes have been parsed and stored as a bitmap on
disk by the log tracking thread

• “Max tracked LSN age:” displays the maximum limit on how far behind the log tracking thread may be.

INFORMATION_SCHEMA Tables

This table contains a list of modified pages from the bitmap file data. As these files are generated by the log tracking
thread parsing the log whenever the checkpoint is made, it is not real-time data.

table INFORMATION_SCHEMA.INNODB_CHANGED_PAGES

Columns

• space_id (INT(11)) – space id of modified page

• page_id (INT(11)) – id of modified page

• start_lsn (BIGINT(21)) – start of the interval

• end_lsn (BIGINT(21)) – end of the interval

The start_lsn and the end_lsn columns denote between which two checkpoints this page was changed at least
once. They are also equal to checkpoint LSNs.

Number of records in this table can be limited by using the variable innodb_max_changed_pages.

Version Specific Information

• 8.0.12-1 Feature ported from Percona Server for MySQL 5.7.

System Variables

variable innodb_max_changed_pages

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 1000000

Range 1 - 0 (unlimited)

This variable is used to limit the result row count for the queries from INNODB_CHANGED_PAGES table.

variable innodb_track_changed_pages

28.2. Additional information in SHOW ENGINE INNODB STATUS 86

Percona Server Documentation, Release 8.0.18-9

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Boolean

Default Value 0 - False

Range 0-1

This variable is used to enable/disable XtraDB changed page tracking feature.

variable innodb_max_bitmap_file_size

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 104857600 (100 MB)

Range 4096 (4KB) - 18446744073709551615 (16EB)

This variable is used to control maximum bitmap size after which the file will be rotated.

28.5. System Variables 87

CHAPTER

TWENTYNINE

PAM AUTHENTICATION PLUGIN

This page has been moved or been replaced. The new page is located here:

PAM Authentication Plugin

Please update any bookmarks that point to the old page.

88

CHAPTER

THIRTY

EXPANDED FAST INDEX CREATION

Availability This feature is Experimental qualtiy.

Percona has implemented several changes related to MySQL‘s fast index creation feature. Fast index creation was
implemented in MySQL as a way to speed up the process of adding or dropping indexes on tables with many rows.

This feature implements a session variable that enables extended fast index creation. Besides optimizing DDL directly,
expand_fast_index_creation may also optimize index access for subsequent DML statements because using
it results in much less fragmented indexes.

The mysqldump Command

A new option, --innodb-optimize-keys, was implemented in mysqldump. It changes the way InnoDB tables
are dumped, so that secondary and foreign keys are created after loading the data, thus taking advantage of fast index
creation. More specifically:

• KEY, UNIQUE KEY, and CONSTRAINT clauses are omitted from CREATE TABLE statements corresponding
to InnoDB tables.

• An additional ALTER TABLE is issued after dumping the data, in order to create the previously omitted keys.

ALTER TABLE

When ALTER TABLE requires a table copy, secondary keys are now dropped and recreated later, after copying the
data. The following restrictions apply:

• Only non-unique keys can be involved in this optimization.

• If the table contains foreign keys, or a foreign key is being added as a part of the current ALTER TABLE
statement, the optimization is disabled for all keys.

OPTIMIZE TABLE

Internally, OPTIMIZE TABLE is mapped to ALTER TABLE ... ENGINE=innodb for InnoDB tables. As a
consequence, it now also benefits from fast index creation, with the same restrictions as for ALTER TABLE.

89

Percona Server Documentation, Release 8.0.18-9

Caveats

InnoDB fast index creation uses temporary files in tmpdir for all indexes being created. So make sure you have enough
tmpdir space when using expand_fast_index_creation. It is a session variable, so you can temporarily
switch it off if you are short on tmpdir space and/or don’t want this optimization to be used for a specific table.

There’s also a number of cases when this optimization is not applicable:

• UNIQUE indexes in ALTER TABLE are ignored to enforce uniqueness where necessary when copying the data
to a temporary table;

• ALTER TABLE and OPTIMIZE TABLE always process tables containing foreign keys as if
expand_fast_index_creation is OFF to avoid dropping keys that are part of a FOREIGN KEY
constraint;

• mysqldump --innodb-optimize-keys ignores foreign keys because InnoDB requires a full table re-
build on foreign key changes. So adding them back with a separate ALTER TABLE after restoring the data
from a dump would actually make the restore slower;

• mysqldump --innodb-optimize-keys ignores indexes on AUTO_INCREMENT columns, because they
must be indexed, so it is impossible to temporarily drop the corresponding index;

• mysqldump --innodb-optimize-keys ignores the first UNIQUE index on non-nullable columns when
the table has no PRIMARY KEY defined, because in this case InnoDB picks such an index as the clustered one.

System Variables

variable expand_fast_index_creation

Command Line Yes

Config File No

Scope Local/Global

Dynamic Yes

Variable Type Boolean

Default Value OFF

Range ON/OFF

See also:

Improved InnoDB fast index creation http://www.mysqlperformanceblog.com/2011/11/06/
improved-innodb-fast-index-creation/

Thinking about running OPTIMIZE on your InnoDB Table? Stop! http://www.mysqlperformanceblog.com/
2010/12/09/thinking-about-running-optimize-on-your-innodb-table-stop/

30.4. Caveats 90

http://www.mysqlperformanceblog.com/2011/11/06/improved-innodb-fast-index-creation/
http://www.mysqlperformanceblog.com/2011/11/06/improved-innodb-fast-index-creation/
http://www.mysqlperformanceblog.com/2010/12/09/thinking-about-running-optimize-on-your-innodb-table-stop/
http://www.mysqlperformanceblog.com/2010/12/09/thinking-about-running-optimize-on-your-innodb-table-stop/

CHAPTER

THIRTYONE

BACKUP LOCKS

Percona Server for MySQL offers the LOCK TABLES FOR BACKUP statement as a lightweight alternative to FLUSH
TABLES WITH READ LOCK for both physical and logical backups.

LOCK TABLES FOR BACKUP

LOCK TABLES FOR BACKUP uses a new MDL lock type to block updates to non-transactional tables and DDL
statements for all tables. If there is an active LOCK TABLES FOR BACKUP lock then all DDL statements and all
updates to MyISAM, CSV, MEMORY, ARCHIVE, TokuDB, and MyRocks tables will be blocked in the Waiting
for backup lock status, visible in PERFORMANCE_SCHEMA or PROCESSLIST.

LOCK TABLES FOR BACKUP has no effect on SELECT queries for all mentioned storage engines. Against InnoDB,
MyRocks, Blackhole and Federated tables, the LOCK TABLES FOR BACKUP is not applicable to the INSERT,
REPLACE, UPDATE, DELETE statements: Blackhole tables obviously have no relevance to backups, and Federated
tables are ignored by both logical and physical backup tools.

Unlike FLUSH TABLES WITH READ LOCK, LOCK TABLES FOR BACKUP does not flush tables, i.e. storage
engines are not forced to close tables and tables are not expelled from the table cache. As a result, LOCK TABLES
FOR BACKUP only waits for conflicting statements to complete (i.e. DDL and updates to non-transactional tables). It
never waits for SELECTs, or UPDATEs to InnoDB or MyRocks tables to complete, for example.

If an “unsafe” statement is executed in the same connection that is holding a LOCK TABLES FOR BACKUP lock, it
fails with the following error:

ERROR 1880 (HY000): Can't execute the query because you have a conflicting backup lock

UNLOCK TABLES releases the lock acquired by LOCK TABLES FOR BACKUP.

The intended use case for Percona XtraBackup is:

LOCK TABLES FOR BACKUP
... copy .frm, MyISAM, CSV, etc. ...
UNLOCK TABLES
... get binlog coordinates ...
... wait for redo log copying to finish ...

Privileges

The LOCK TABLES FOR BACKUP requires the BACKUP_ADMIN privilege.

91

Percona Server Documentation, Release 8.0.18-9

Interaction with other global locks

The LOCK TABLES FOR BACKUP has no effect if the current connection already owns a FLUSH TABLES WITH
READ LOCK lock, as it is a more restrictive lock. If FLUSH TABLES WITH READ LOCK is executed in a connec-
tion that has acquired LOCK TABLES FOR BACKUP, FLUSH TABLES WITH READ LOCK fails with an error.

If the server is operating in the read-only mode (i.e. read_only set to 1), statements that are unsafe for backups
will be either blocked or fail with an error, depending on whether they are executed in the same connection that owns
LOCK TABLES FOR BACKUP lock, or other connections.

MyISAM index and data buffering

MyISAM key buffering is normally write-through, i.e. by the time each update to a MyISAM table is completed, all
index updates are written to disk. The only exception is delayed key writing feature which is disabled by default.

When the global system variable delay_key_write is set to ALL, key buffers for all MyISAM tables are not
flushed between updates, so a physical backup of those tables may result in broken MyISAM indexes. To prevent
this, LOCK TABLES FOR BACKUP will fail with an error if delay_key_write is set to ALL. An attempt to set
delay_key_write to ALL when there’s an active backup lock will also fail with an error.

Another option to involve delayed key writing is to create MyISAM tables with the DELAY_KEY_WRITE op-
tion and set the delay_key_write variable to ON (which is the default). In this case, LOCK TABLES FOR
BACKUP will not be able to prevent stale index files from appearing in the backup. Users are encouraged to set
delay_key_writes to OFF in the configuration file, my.cnf, or repair MyISAM indexes after restoring from a
physical backup created with backup locks.

MyISAM may also cache data for bulk inserts, e.g. when executing multi-row INSERTs or LOAD DATA statements.
Those caches, however, are flushed between statements, so have no effect on physical backups as long as all statements
updating MyISAM tables are blocked.

The mysqldump Command

mysqldump has also been extended with a new option, lock-for-backup (disabled by default). When used
together with the --single-transaction option, the option makes mysqldump issue LOCK TABLES FOR
BACKUP before starting the dump operation to prevent unsafe statements that would normally result in an inconsistent
backup.

When used without the single-transaction option, lock-for-backup is automatically converted to
lock-all-tables.

The option lock-for-backup is mutually exclusive with lock-all-tables, i.e. specifying both on the com-
mand line will lead to an error.

If the backup locks feature is not supported by the target server, but lock-for-backup is specified on the command
line, mysqldump aborts with an error.

Version Specific Information

• 8.0.12-1 Feature ported from Percona Server for MySQL 5.7.

31.3. Interaction with other global locks 92

Percona Server Documentation, Release 8.0.18-9

System Variables

variable have_backup_locks

Command Line Yes

Config File No

Scope Global

Dynamic No

Variable Type Boolean

Default Value YES

This is a server variable implemented to help other utilities decide what locking strategy can be implemented for a
server. When available, the backup locks feature is supported by the server and the variable value is always YES.

Status Variables

variable Com_lock_tables_for_backup

Variable Type Numeric

Scope Global/Session

This status variable indicates the number of times the corresponding statements have been executed.

Client Command Line Parameter

option lock-for-backup

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value Off

When used together with the --single-transaction option, the option makes mysqldump issue LOCK
TABLES FOR BACKUP before starting the dump operation to prevent unsafe statements that would normally re-
sult in an inconsistent backup.

31.7. System Variables 93

CHAPTER

THIRTYTWO

AUDIT LOG PLUGIN

Percona Audit Log Plugin provides monitoring and logging of connection and query activity that were performed on
specific server. Information about the activity will be stored in the XML log file where each event will have its NAME
field, its own unique RECORD_ID field and a TIMESTAMP field. This implementation is alternative to the MySQL
Enterprise Audit Log Plugin

Audit Log plugin produces the log of following events:

• Audit - Audit event indicates that audit logging started or finished. NAME field will be Audit when logging
started and NoAudit when logging finished. Audit record also includes server version and command-line
arguments.

Example of the Audit event:

<AUDIT_RECORD
"NAME"="Audit"
"RECORD"="1_2014-04-29T09:29:40"
"TIMESTAMP"="2014-04-29T09:29:40 UTC"
"MYSQL_VERSION"="5.6.17-65.0-655.trusty"
"STARTUP_OPTIONS"="--basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib/
→˓mysql/plugin --user=mysql --log-error=/var/log/mysql/error.log --pid-file=/var/
→˓run/mysqld/mysqld.pid --socket=/var/run/mysqld/mysqld.sock --port=3306"
"OS_VERSION"="x86_64-debian-linux-gnu",
/>

• Connect/Disconnect - Connect record event will have NAME field Connect when user logged in or login
failed, or Quit when connection is closed. Additional fields for this event are CONNECTION_ID, STATUS,
USER, PRIV_USER, OS_LOGIN, PROXY_USER, HOST, and IP. STATUS will be 0 for successful logins and
non-zero for failed logins.

Example of the Disconnect event:

<AUDIT_RECORD
"NAME"="Quit"
"RECORD"="24_2014-04-29T09:29:40"
"TIMESTAMP"="2014-04-29T10:20:13 UTC"
"CONNECTION_ID"="49"
"STATUS"="0"
"USER"=""
"PRIV_USER"=""
"OS_LOGIN"=""
"PROXY_USER"=""
"HOST"=""
"IP"=""
"DB"=""
/>

94

Percona Server Documentation, Release 8.0.18-9

• Query - Additional fields for this event are: COMMAND_CLASS (values come from the com_status_vars
array in the sql/mysqld.cc` file in a MySQL source distribution. Examples are select, alter_table,
create_table, etc.), CONNECTION_ID, STATUS (indicates error when non-zero), SQLTEXT (text of SQL-
statement), USER, HOST, OS_USER, IP. Possible values for the NAME name field for this event are Query,
Prepare, Execute, Change user, etc.

Example of the Query event:

<AUDIT_RECORD
"NAME"="Query"
"RECORD"="23_2014-04-29T09:29:40"
"TIMESTAMP"="2014-04-29T10:20:10 UTC"
"COMMAND_CLASS"="select"
"CONNECTION_ID"="49"
"STATUS"="0"
"SQLTEXT"="SELECT * from mysql.user"
"USER"="root[root] @ localhost []"
"HOST"="localhost"
"OS_USER"=""
"IP"=""
/>

Installation

Audit Log plugin is shipped with Percona Server for MySQL, but it is not installed by default. To enable the plugin
you must run the following command:

INSTALL PLUGIN audit_log SONAME 'audit_log.so';

You can check if the plugin is loaded correctly by running:

SHOW PLUGINS;

Audit log should be listed in the output:

+--------------------------------+----------+--------------------+--------------+-----
→˓----+
| Name | Status | Type | Library |
→˓License |
+--------------------------------+----------+--------------------+--------------+-----
→˓----+
...
| audit_log | ACTIVE | AUDIT | audit_log.so | GPL
→˓ |
+--------------------------------+----------+--------------------+--------------+-----
→˓----+

Log Format

The audit log plugin supports four log formats: OLD, NEW, JSON, and CSV. OLD and NEW formats are based on XML,
where the former outputs log record properties as XML attributes and the latter as XML tags. Information logged is
the same in all four formats. The log format choice is controlled by audit_log_format variable.

Example of the OLD format:

32.1. Installation 95

Percona Server Documentation, Release 8.0.18-9

<AUDIT_RECORD
"NAME"="Query"
"RECORD"="2_2014-04-28T09:29:40"
"TIMESTAMP"="2014-04-28T09:29:40 UTC"
"COMMAND_CLASS"="install_plugin"
"CONNECTION_ID"="47"
"STATUS"="0"
"SQLTEXT"="INSTALL PLUGIN audit_log SONAME 'audit_log.so'"
"USER"="root[root] @ localhost []"
"HOST"="localhost"
"OS_USER"=""
"IP"=""

/>

Example of the NEW format:

<AUDIT_RECORD>
<NAME>Quit</NAME>
<RECORD>10902_2014-04-28T11:02:54</RECORD>
<TIMESTAMP>2014-04-28T11:02:59 UTC</TIMESTAMP>
<CONNECTION_ID>36</CONNECTION_ID>
<STATUS>0</STATUS>
<USER></USER>
<PRIV_USER></PRIV_USER>
<OS_LOGIN></OS_LOGIN>
<PROXY_USER></PROXY_USER>
<HOST></HOST>
<IP></IP>
<DB></DB>

</AUDIT_RECORD>

Example of the JSON format:

{"audit_record":{"name":"Query","record":"4707_2014-08-27T10:43:52","timestamp":"2014-
→˓08-27T10:44:19 UTC","command_class":"show_databases","connection_id":"37","status
→˓":0,"sqltext":"show databases","user":"root[root] @ localhost []","host":"localhost
→˓","os_user":"","ip":""}}

Example of the CSV format:

"Query","49284_2014-08-27T10:47:11","2014-08-27T10:47:23 UTC","show_databases","37",0,
→˓"show databases","root[root] @ localhost []","localhost","",""

Streaming the audit log to syslog

To stream the audit log to syslog you’ll need to set audit_log_handler variable to SYSLOG. To
control the syslog file handler, the following variables can be used: audit_log_syslog_ident,
audit_log_syslog_facility , and audit_log_syslog_priority These variables have the same
meaning as appropriate parameters described in the syslog(3) manual.

Note: Variables: audit_log_strategy , audit_log_buffer_size, audit_log_rotate_on_size,
audit_log_rotations have effect only with FILE handler.

32.3. Streaming the audit log to syslog 96

http://linux.die.net/man/3/syslog

Percona Server Documentation, Release 8.0.18-9

Filtering by user

The filtering by user feature adds two new global variables: audit_log_include_accounts and
audit_log_exclude_accounts to specify which user accounts should be included or excluded from audit
logging.

Warning: Only one of these variables can contain a list of users to be either included or excluded, while the other
needs to be NULL. If one of the variables is set to be not NULL (contains a list of users), the attempt to set another
one will fail. Empty string means an empty list.

Note: Changes of audit_log_include_accounts and audit_log_exclude_accounts do not apply to
existing server connections.

Example

Following example shows adding users who will be monitored:

mysql> SET GLOBAL audit_log_include_accounts = 'user1@localhost,root@localhost';
Query OK, 0 rows affected (0.00 sec)

If you you try to add users to both include and exclude lists server will show you the following error:

mysql> SET GLOBAL audit_log_exclude_accounts = 'user1@localhost,root@localhost';
ERROR 1231 (42000): Variable 'audit_log_exclude_accounts' can't be set to the value
→˓of 'user1@localhost,root@localhost'

To switch from filtering by included user list to the excluded one or back, first set the currently active filtering variable
to NULL:

mysql> SET GLOBAL audit_log_include_accounts = NULL;
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL audit_log_exclude_accounts = 'user1@localhost,root@localhost';
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL audit_log_exclude_accounts = "'user'@'host'";
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL audit_log_exclude_accounts = '''user''@''host''';
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL audit_log_exclude_accounts = '\'user\'@\'host\'';
Query OK, 0 rows affected (0.00 sec)

To see what users are currently in the on the list you can run:

mysql> SELECT @@audit_log_exclude_accounts;
+------------------------------+
| @@audit_log_exclude_accounts |
+------------------------------+
| 'user'@'host' |

32.4. Filtering by user 97

Percona Server Documentation, Release 8.0.18-9

+------------------------------+
1 row in set (0.00 sec)

Account names from mysql.user table are the one that are logged in the audit log. For example when you create a
user:

mysql> CREATE USER 'user1'@'%' IDENTIFIED BY '111';
Query OK, 0 rows affected (0.00 sec)

This is what you’ll see when user1 connected from localhost:

<AUDIT_RECORD
NAME="Connect"
RECORD="4971917_2016-08-22T09:09:10"
TIMESTAMP="2016-08-22T09:12:21 UTC"
CONNECTION_ID="6"
STATUS="0"
USER="user1" ;; this is a 'user' part of account in 8.0
PRIV_USER="user1"
OS_LOGIN=""
PROXY_USER=""
HOST="localhost" ;; this is a 'host' part of account in 8.0
IP=""
DB=""

/>

To exclude user1 from logging in Percona Server for MySQL 8.0 you must set:

SET GLOBAL audit_log_exclude_accounts = 'user1@%';

The value can be NULL or comma separated list of accounts in form user@host or 'user'@'host' (if user or
host contains comma).

Filtering by SQL command type

The filtering by SQL command type adds two new global variables: audit_log_include_commands and
audit_log_exclude_commands to specify which command types should be included or excluded from audit
logging.

Warning: Only one of these variables can contain a list of command types to be either included or excluded,
while the other needs to be NULL. If one of the variables is set to be not NULL (contains a list of command types),
the attempt to set another one will fail. Empty string means an empty list.

Note: If both audit_log_exclude_commands and audit_log_include_commands are NULL all com-
mands will be logged.

Example

The available command types can be listed by running:

32.5. Filtering by SQL command type 98

Percona Server Documentation, Release 8.0.18-9

mysql> SELECT name FROM performance_schema.setup_instruments WHERE name LIKE
→˓"statement/sql/%" ORDER BY name;
+--+
| name |
+--+
| statement/sql/alter_db |
| statement/sql/alter_db_upgrade |
| statement/sql/alter_event |
| statement/sql/alter_function |
| statement/sql/alter_procedure |
| statement/sql/alter_server |
| statement/sql/alter_table |
| statement/sql/alter_tablespace |
| statement/sql/alter_user |
| statement/sql/analyze |
| statement/sql/assign_to_keycache |
| statement/sql/begin |
| statement/sql/binlog |
| statement/sql/call_procedure |
| statement/sql/change_db |
| statement/sql/change_master |
...
| statement/sql/xa_rollback |
| statement/sql/xa_start |
+--+
145 rows in set (0.00 sec)

You can add commands to the include filter by running:

mysql> SET GLOBAL audit_log_include_commands= 'set_option,create_db';

If you now create a database:

mysql> CREATE DATABASE world;

You’ll see it the audit log:

<AUDIT_RECORD
NAME="Query"
RECORD="10724_2016-08-18T12:34:22"
TIMESTAMP="2016-08-18T15:10:47 UTC"
COMMAND_CLASS="create_db"
CONNECTION_ID="61"
STATUS="0"
SQLTEXT="create database world"
USER="root[root] @ localhost []"
HOST="localhost"
OS_USER=""
IP=""
DB=""

/>

To switch command type filtering type from included type list to excluded one or back, first reset the currently-active
list to NULL:

mysql> SET GLOBAL audit_log_include_commands = NULL;
Query OK, 0 rows affected (0.00 sec)

32.5. Filtering by SQL command type 99

Percona Server Documentation, Release 8.0.18-9

mysql> SET GLOBAL audit_log_exclude_commands= 'set_option,create_db';
Query OK, 0 rows affected (0.00 sec)

Note: Invocation of stored procedures have command type call_procedure, and all the statements executed
within the procedure have the same type call_procedure as well.

Filtering by database

The filtering by an SQL database is implemented via two global variables: audit_log_include_databases
and audit_log_exclude_databases to specify which databases should be included or excluded from audit
logging.

Warning: Only one of these variables can contain a list of databases to be either included or excluded, while the
other needs to be NULL. If one of the variables is set to be not NULL (contains a list of databases), the attempt to
set another one will fail. Empty string means an empty list.

If query is accessing any of databases listed in audit_log_include_databases, the query will be logged.
If query is accessing only databases listed in audit_log_exclude_databases, the query will not be logged.
CREATE TABLE statements are logged unconditionally.

Note: Changes of audit_log_include_databases and audit_log_exclude_databases do not apply
to existing server connections.

Example

To add databases to be monitored you should run:

mysql> SET GLOBAL audit_log_include_databases = 'test,mysql,db1';
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL audit_log_include_databases= 'db1,```db3"`';
Query OK, 0 rows affected (0.00 sec)

If you you try to add databases to both include and exclude lists server will show you the following error:

mysql> SET GLOBAL audit_log_exclude_databases = 'test,mysql,db1';
ERROR 1231 (42000): Variable 'audit_log_exclude_databases can't be set to the value
→˓of 'test,mysql,db1'

To switch from filtering by included database list to the excluded one or back, first set the currently active filtering
variable to NULL:

mysql> SET GLOBAL audit_log_include_databases = NULL;
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL audit_log_exclude_databases = 'test,mysql,db1';
Query OK, 0 rows affected (0.00 sec)

32.6. Filtering by database 100

Percona Server Documentation, Release 8.0.18-9

System Variables

variable audit_log_strategy

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value ASYNCHRONOUS

Allowed values ASYNCHRONOUS, PERFORMANCE, SEMISYNCHRONOUS, SYNCHRONOUS

This variable is used to specify the audit log strategy, possible values are:

• ASYNCHRONOUS - (default) log using memory buffer, do not drop messages if buffer is full

• PERFORMANCE - log using memory buffer, drop messages if buffer is full

• SEMISYNCHRONOUS - log directly to file, do not flush and sync every event

• SYNCHRONOUS - log directly to file, flush and sync every event

This variable has effect only when audit_log_handler is set to FILE.

variable audit_log_file

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value audit.log

This variable is used to specify the filename that’s going to store the audit log. It can contain the path relative to the
datadir or absolute path.

variable audit_log_flush

Command Line Yes

Scope Global

Dynamic Yes

Variable Type String

Default Value OFF

When this variable is set to ON log file will be closed and reopened. This can be used for manual log rotation.

variable audit_log_buffer_size

Command Line Yes

Scope Global

Dynamic No

Variable Type Numeric

Default Value 1 Mb

32.7. System Variables 101

Percona Server Documentation, Release 8.0.18-9

This variable can be used to specify the size of memory buffer used for logging, used when audit_log_strategy
variable is set to ASYNCHRONOUS or PERFORMANCE values. This variable has effect only when
audit_log_handler is set to FILE.

variable audit_log_exclude_accounts

Command Line Yes

Scope Global

Dynamic Yes

Variable Type String

This variable is used to specify the list of users for which Filtering by user is applied. The value can be NULL or
comma separated list of accounts in form user@host or 'user'@'host' (if user or host contains comma). If this
variable is set, then audit_log_include_accounts must be unset, and vice versa.

variable audit_log_exclude_commands

Command Line Yes

Scope Global

Dynamic Yes

Variable Type String

This variable is used to specify the list of commands for which Filtering by SQL command type is applied. The value
can be NULL or comma separated list of commands. If this variable is set, then audit_log_include_commands
must be unset, and vice versa.

variable audit_log_exclude_databases

Command Line Yes

Scope Global

Dynamic Yes

Variable Type String

This variable is used to specify the list of commands for which Filtering by database is applied. The value can be
NULL or comma separated list of commands. If this variable is set, then audit_log_include_databases must
be unset, and vice versa.

variable audit_log_format

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value OLD

Allowed values OLD, NEW, CSV, JSON

This variable is used to specify the audit log format. The audit log plugin supports four log formats: OLD, NEW, JSON,
and CSV. OLD and NEW formats are based on XML, where the former outputs log record properties as XML attributes
and the latter as XML tags. Information logged is the same in all four formats.

variable audit_log_include_accounts

Command Line Yes

32.7. System Variables 102

Percona Server Documentation, Release 8.0.18-9

Scope Global

Dynamic Yes

Variable Type String

This variable is used to specify the list of users for which Filtering by user is applied. The value can be NULL or
comma separated list of accounts in form user@host or 'user'@'host' (if user or host contains comma). If this
variable is set, then audit_log_exclude_accounts must be unset, and vice versa.

variable audit_log_include_commands

Command Line Yes

Scope Global

Dynamic Yes

Variable Type String

This variable is used to specify the list of commands for which Filtering by SQL command type is applied. The value
can be NULL or comma separated list of commands. If this variable is set, then audit_log_exclude_commands
must be unset, and vice versa.

variable audit_log_include_databases

Command Line Yes

Scope Global

Dynamic Yes

Variable Type String

This variable is used to specify the list of commands for which Filtering by database is applied. The value can be
NULL or comma separated list of commands. If this variable is set, then audit_log_exclude_databases must
be unset, and vice versa.

variable audit_log_policy

Command Line Yes

Scope Global

Dynamic Yes

Variable Type String

Default Value ALL

Allowed values ALL, LOGINS, QUERIES, NONE

This variable is used to specify which events should be logged. Possible values are:

• ALL - all events will be logged

• LOGINS - only logins will be logged

• QUERIES - only queries will be logged

• NONE - no events will be logged

variable audit_log_rotate_on_size

Command Line Yes

Scope Global

Dynamic No

32.7. System Variables 103

Percona Server Documentation, Release 8.0.18-9

Variable Type Numeric

Default Value 0 (don’t rotate the log file)

This variable is used to specify the maximum audit log file size. Upon reaching this size the log will be rotated. The
rotated log files will be present in the same same directory as the current log file. A sequence number will be appended
to the log file name upon rotation. This variable has effect only when audit_log_handler is set to FILE.

variable audit_log_rotations

Command Line Yes

Scope Global

Dynamic No

Variable Type Numeric

Default Value 0

This variable is used to specify how many log files should be kept when audit_log_rotate_on_size variable
is set to non-zero value. This variable has effect only when audit_log_handler is set to FILE.

variable audit_log_handler

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value FILE

Allowed values FILE, SYSLOG

This variable is used to configure where the audit log will be written. If it is set to FILE, the log will be written into a
file specified by audit_log_file variable. If it is set to SYSLOG, the audit log will be written to syslog.

variable audit_log_syslog_ident

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value percona-audit

This variable is used to specify the ident value for syslog. This variable has the same meaning as the appropriate
parameter described in the syslog(3) manual.

variable audit_log_syslog_facility

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value LOG_USER

This variable is used to specify the facility value for syslog. This variable has the same meaning as the appropriate
parameter described in the syslog(3) manual.

32.7. System Variables 104

http://linux.die.net/man/3/syslog
http://linux.die.net/man/3/syslog

Percona Server Documentation, Release 8.0.18-9

variable audit_log_syslog_priority

Command Line Yes

Scope Global

Dynamic No

Variable Type String

Default Value LOG_INFO

This variable is used to specify the priority value for syslog. This variable has the same meaning as the appropriate
parameter described in the syslog(3) manual.

Status Variables

variable Audit_log_buffer_size_overflow

Variable Type Numeric

Scope Global

The number of times an audit log entry was either dropped or written directly to the file due to its size being bigger
than audit_log_buffer_size variable.

Version Specific Information

• 8.0.12-1 Feature ported from Percona Server for MySQL 5.7

• 8.0.15-6 Audit_log_buffer_size_overflow variable implemented

32.8. Status Variables 105

http://linux.die.net/man/3/syslog

CHAPTER

THIRTYTHREE

START TRANSACTION WITH CONSISTENT SNAPSHOT

Percona Server for MySQL has ported MariaDB enhancement for START TRANSACTION WITH CONSISTENT
SNAPSHOTS feature to MySQL 5.6 group commit implementation. This enhancement makes binary log positions
consistent with InnoDB transaction snapshots.

This feature is quite useful to obtain logical backups with correct positions without running a FLUSH
TABLES WITH READ LOCK. Binary log position can be obtained by two newly implemented status variables:
Binlog_snapshot_file and Binlog_snapshot_position. After starting a transaction using the START
TRANSACTION WITH CONSISTENT SNAPSHOT, these two variables will provide you with the binlog position
corresponding to the state of the database of the consistent snapshot so taken, irrespectively of which other transactions
have been committed since the snapshot was taken.

Snapshot Cloning

The Percona Server for MySQL implementation extends the START TRANSACTION WITH CONSISTENT
SNAPSHOT syntax with the optional FROM SESSION clause:

START TRANSACTION WITH CONSISTENT SNAPSHOT FROM SESSION <session_id>;

When specified, all participating storage engines and binary log instead of creating a new snapshot of data (or binary
log coordinates), create a copy of the snapshot which has been created by an active transaction in the specified session.
session_id is the session identifier reported in the Id column of SHOW PROCESSLIST.

Currently snapshot cloning is only supported by XtraDB and the binary log. As with the regular START
TRANSACTION WITH CONSISTENT SNAPSHOT, snapshot clones can only be created with the REPEATABLE
READ isolation level.

For XtraDB, a transaction with a cloned snapshot will only see data visible or changed by the donor transaction. That
is, the cloned transaction will see no changes committed by transactions that started after the donor transaction, not
even changes made by itself. Note that in case of chained cloning the donor transaction is the first one in the chain.
For example, if transaction A is cloned into transaction B, which is in turn cloned into transaction C, the latter will
have read view from transaction A (i.e. the donor transaction). Therefore, it will see changes made by transaction A,
but not by transaction B.

mysqldump

mysqldump has been updated to use new status variables automatically when they are supported by the server
and both --single-transaction and --master-data are specified on the command line. Along with the
mysqldump improvements introduced in Backup Locks there is now a way to generate mysqldump backups that
are guaranteed to be consistent without using FLUSH TABLES WITH READ LOCK even if --master-data is
requested.

106

https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent/

Percona Server Documentation, Release 8.0.18-9

System Variables

variable have_snapshot_cloning

Command Line Yes

Config File No

Scope Global

Dynamic No

Variable Type Boolean

This server variable is implemented to help other utilities detect if the server supports the FROM SESSION ex-
tension. When available, the snapshot cloning feature and the syntax extension to START TRANSACTION WITH
CONSISTENT SNAPSHOT are supported by the server, and the variable value is always YES.

Status Variables

variable Binlog_snapshot_file

Variable Type String

Scope Global

variable Binlog_snapshot_position

Variable Type Numeric

Scope Global

These status variables are only available when the binary log is enabled globally.

Other Reading

• MariaDB Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT

33.3. System Variables 107

https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent/

CHAPTER

THIRTYFOUR

EXTENDED SHOW GRANTS

In Oracle MySQL SHOW GRANTS displays only the privileges granted explicitly to the named account. Other priv-
ileges might be available to the account, but they are not displayed. For example, if an anonymous account exists,
the named account might be able to use its privileges, but SHOW GRANTS will not display them. Percona Server for
MySQL offers the SHOW EFFECTIVE GRANTS command to display all the effectively available privileges to the
account, including those granted to a different account.

Example

If we create the following users:

mysql> CREATE USER grantee@localhost IDENTIFIED BY 'grantee1';
Query OK, 0 rows affected (0.50 sec)

mysql> CREATE USER grantee IDENTIFIED BY 'grantee2';
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE DATABASE db2;
Query OK, 1 row affected (0.20 sec)

mysql> GRANT ALL PRIVILEGES ON db2.* TO grantee WITH GRANT OPTION;
Query OK, 0 rows affected (0.12 sec)

• SHOW EFFECTIVE GRANTS output before the change:

mysql> SHOW EFFECTIVE GRANTS;
+---
→˓---------------------------+
| Grants for grantee@localhost
→˓ |
+---
→˓---------------------------+
| GRANT USAGE ON *.* TO 'grantee'@'localhost' IDENTIFIED BY PASSWORD
→˓'*9823FF338D44DAF02422CF24DD1F879FB4F6B232' |
+---
→˓---------------------------+
1 row in set (0.04 sec)

Although the grant for the db2 database isn’t shown, grantee user has enough privileges to create the table in that
database:

user@trusty:~$ mysql -ugrantee -pgrantee1 -h localhost

108

Percona Server Documentation, Release 8.0.18-9

mysql> CREATE TABLE db2.t1(a int);
Query OK, 0 rows affected (1.21 sec)

• The output of SHOW EFFECTIVE GRANTS after the change shows all the privileges for the grantee user:

mysql> SHOW EFFECTIVE GRANTS;
+---
→˓---------------------------+
| Grants for grantee@localhost
→˓ |
+---
→˓---------------------------+
| GRANT USAGE ON *.* TO 'grantee'@'localhost' IDENTIFIED BY PASSWORD
→˓'*9823FF338D44DAF02422CF24DD1F879FB4F6B232' |
| GRANT ALL PRIVILEGES ON `db2`.* TO 'grantee'@'%' WITH GRANT OPTION
→˓ |
+---
→˓---------------------------+
2 rows in set (0.00 sec)

Version-Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7.

Other reading

• #53645 - SHOW GRANTS not displaying all the applicable grants

34.2. Version-Specific Information 109

http://bugs.mysql.com/bug.php?id=53645

CHAPTER

THIRTYFIVE

DATA AT REST ENCRYPTION

This page has been moved or been replaced. The new page is located here:

Transparent Data Encryption

Please update any bookmarks that point to the old page.

110

CHAPTER

THIRTYSIX

SSL IMPROVEMENTS

This page has been moved or been replaced. The new page is located here:

SSL Improvements

Please update any bookmarks that point to the old page.

111

CHAPTER

THIRTYSEVEN

UTILITY USER

Availability This feature is Experimental quality.

Percona Server for MySQL has implemented ability to have a MySQL user who has system access to do administrative
tasks but limited access to user schema. This feature is especially useful to those operating MySQL As A Service.

This user has a mixed and special scope of abilities and protection:

• Utility user will not appear in the mysql.user table and can not be modified by any other user, including root.

• Utility user will not appear in USER_STATISTICS, CLIENT_STATISTICS or THREAD_STATISTICS
tables or in any performance_schema tables.

• Utility user’s queries may appear in the general and slow logs.

• Utility user doesn’t have the ability create, modify, delete or see any schemas or data not specified (except for
information_schema).

• Utility user may modify all visible, non read-only system variables (see Expanded Program Option Modifiers
functionality).

• Utility user may see, create, modify and delete other system users only if given access to the mysql schema.

• Regular users may be granted proxy rights to the utility user but any attempt to impersonate the utility user
will fail. The utility user may not be granted proxy rights on any regular user. For example running: GRANT
PROXY ON utility_user TO regular_user; will not fail, but any actual attempt to impersonate as the utility user
will fail. Running: GRANT PROXY ON regular_user TO utility_user; will fail when utility_user is an exact
match or is more specific than than the utility user specified.

When the server starts, it will note in the log output that the utility user exists and the schemas that it has access to.

In order to have the ability for a special type of MySQL user, which will have a very limited and special amount of
control over the system and can not be see or modified by any other user including the root user, three new options
have been added.

Option utility_user specifies the user which the system will create and recognize as the utility user. The host
in the utility user specification follows conventions described in the MySQL manual, i.e. it allows wildcards and IP
masks. Anonymous user names are not permitted to be used for the utility user name.

This user must not be an exact match to any other user that exists in the mysql.user table. If the server detects that the
user specified with this option exactly matches any user within the mysql.user table on start up, the server will report
an error and shut down gracefully. If host name wildcards are used and a more specific user specification is identified
on start up, the server will report a warning and continue.

Example: --utility_user =frank@% and frank@localhost exists within the mysql.user table.

If a client attempts to create a MySQL user that matches this user specification exactly or if host name wildcards are
used for the utility user and the user being created has the same name and a more specific host, the creation attempt
will fail with an error.

112

https://dev.mysql.com/doc/dev/mysql-server/latest/group__performance__schema__tables.html
https://www.percona.com/doc/percona-server/5.7/management/expanded_program_option_modifiers.html#expanded-option-modifiers
http://dev.mysql.com/doc/refman/5.7/en/connection-access.html
mailto:frank@localhost

Percona Server Documentation, Release 8.0.18-9

Example: --utility_user =frank@% and CREATE USER ‘frank@localhost‘;

As a result of these requirements, it is strongly recommended that a very unique user name and reasonably specific
host be used and that any script or tools test that they are running within the correct user by executing ‘SELECT
CURRENT_USER()’ and comparing the result against the known utility user.

Option utility_user_password specifies the password for the utility user and MUST be specified or the server
will shut down gracefully with an error.

Example: --utility_user_password =‘Passw0rD‘

Option utility_user_schema_access specifies the name(s) of the schema(s) that the utility user will have
access to read write and modify. If a particular schema named here does not exist on start up it will be ignored. If a
schema by the name of any of those listed in this option is created after the server is started, the utility user will have
full access to it.

Example: --utility_user_schema_access =schema1,schema2,schema3

Option utility_user_privileges allows a comma-separated list of extra access privileges to grant to the
utility user.

Example: --utility-user-privileges =”CREATE,DROP,LOCK TABLES”

Version Specific Information

• 8.0.17-8 Feature ported from Percona Server for MySQL 5.7

System Variables

variable utility_user

Command Line Yes

Config File utility_user=<user@host>

Scope Global

Dynamic No

Variable Type String

Default Value NULL

Specifies a MySQL user that will be added to the internal list of users and recognized as the utility user.

variable utility_user_password

Command Line Yes

Config File utility_user_password=<password>

Scope Global

Dynamic No

Variable Type String

Default Value NULL

Specifies the password required for the utility user.

variable utility_user_schema_access

37.1. Version Specific Information 113

mailto:'frank@localhost
mailto:user@host

Percona Server Documentation, Release 8.0.18-9

Command Line Yes

Config File utility_user_schema_access=<schema>,<schema>,<schema>

Scope Global

Dynamic No

Variable Type String

Default Value NULL

Specifies the schemas that the utility user has access to in a comma delimited list.

variable utility_user_privileges

Command Line Yes

Config File utility_user_privileges=<privilege1>,<privilege2>,<privilege3>

Scope Global

Dynamic No

Variable Type String

Default Value NULL

This variable can be used to specify a comma-separated list of extra access privileges to grant to the utility
user. Supported values for the privileges list are: SELECT, INSERT, UPDATE, DELETE, CREATE,
DROP, RELOAD, SHUTDOWN, PROCESS, FILE, GRANT, REFERENCES, INDEX, ALTER, SHOW
DATABASES, SUPER, CREATE TEMPORARY TABLES, LOCK TABLES, EXECUTE, REPLICATION
SLAVE, REPLICATION CLIENT, CREATE VIEW, SHOW VIEW, CREATE ROUTINE, ALTER
ROUTINE, CREATE USER, EVENT, TRIGGER, CREATE TABLESPACE

37.2. System Variables 114

Part VIII

Security Improvements

115

CHAPTER

THIRTYEIGHT

PAM AUTHENTICATION PLUGIN

Percona PAM Authentication Plugin is a free and Open Source implementation of the MySQL‘s authentication plugin.
This plugin acts as a mediator between the MySQL server, the MySQL client, and the PAM stack. The server plugin
requests authentication from the PAM stack, forwards any requests and messages from the PAM stack over the wire to
the client (in cleartext) and reads back any replies for the PAM stack.

PAM plugin uses dialog as its client side plugin. Dialog plugin can be loaded to any client application
that uses libperconaserverclient/libmysqlclient library.

Here are some of the benefits that Percona dialog plugin offers over the default one:

• It correctly recognizes whether PAM wants input to be echoed or not, while the default one always echoes the
input on the user’s console.

• It can use the password which is passed to MySQL client via “-p” parameter.

• Dialog client installation bug has been fixed.

• This plugin works on MySQL and Percona Server for MySQL.

Percona offers two versions of this plugin:

• Full PAM plugin called auth_pam. This plugin uses dialog.so. It fully supports the PAM protocol with arbitrary
communication between client and server.

• Oracle-compatible PAM called auth_pam_compat. This plugin uses mysql_clear_password which is a part of
Oracle MySQL client. It also has some limitations, such as, it supports only one password input. You must use
-p option in order to pass the password to auth_pam_compat.

These two versions of plugins are physically different. To choose which one you want used, you must use IDENTI-
FIED WITH ‘auth_pam’ for auth_pam, and IDENTIFIED WITH ‘auth_pam_compat’ for auth_pam_compat.

Installation

This plugin requires manual installation because it isn’t installed by default.

mysql> INSTALL PLUGIN auth_pam SONAME 'auth_pam.so';

After the plugin has been installed it should be present in the plugins list. To check if the plugin has been correctly
installed and active

mysql> SHOW PLUGINS;
...
...
| auth_pam | ACTIVE | AUTHENTICATION | auth_pam.so | GPL
→˓ |

116

http://bugs.mysql.com/bug.php?id=60745

Percona Server Documentation, Release 8.0.18-9

Configuration

In order to use the plugin, authentication method should be configured. Simple setup can be to use the standard UNIX
authentication method (pam_unix).

Note: To use pam_unix, mysql will need to be added to the shadow group in order to have enough privileges to
read the /etc/shadow.

A sample /etc/pam.d/mysqld file:

auth required pam_unix.so
account required pam_unix.so

For added information in the system log, you can expand it to be:

auth required pam_warn.so
auth required pam_unix.so audit
account required pam_unix.so audit

Creating a user

After the PAM plugin has been configured, users can be created with the PAM plugin as authentication method

mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED WITH auth_pam;

This will create a user newuser that can connect from localhostwho will be authenticated using the PAM plugin.
If the pam_unix method is being used user will need to exist on the system.

Supplementary groups support

Percona Server for MySQL has implemented PAM plugin support for supplementary groups. Supplementary or sec-
ondary groups are extra groups a specific user is member of. For example user joemight be a member of groups: joe
(his primary group) and secondary groups developers and dba. A complete list of groups and users belonging to
them can be checked with cat /etc/group command.

This feature enables using secondary groups in the mapping part of the authentication string, like “mysql,
developers=joe, dba=mark”. Previously only primary groups could have been specified there. If user is a
member of both developers and dba, PAM plugin will map it to the joe because developers matches first.

Known issues

Default mysql stack size is not enough to handle pam_ecryptfs module. Workaround is to increase the MySQL
stack size by setting the thread-stack variable to at least 512KB or by increasing the old value by 256KB.

PAM authentication can fail with mysqld: pam_unix(mysqld:account): Fork failed: Cannot
allocate memory error in the /var/log/secure even when there is enough memory available. Current
workaround is to set vm.overcommit_memory to 1:

38.2. Configuration 117

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_stack
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Percona Server Documentation, Release 8.0.18-9

echo 1 > /proc/sys/vm/overcommit_memory

and by adding the vm.overcommit_memory = 1 to /etc/sysctl.conf to make the change permanent after
reboot. Authentication of internal (i.e. non PAM) accounts continues to work fine when mysqld reaches this memory
utilization level. NOTE: Setting the vm.overcommit_memory to 1 will cause kernel to perform no memory
overcommit handling which could increase the potential for memory overload and invoking of OOM killer.

Version Specific Information

• 8.0.12-1 Feature ported from Percona Server for MySQL 5.7.

38.6. Version Specific Information 118

CHAPTER

THIRTYNINE

TRANSPARENT DATA ENCRYPTION

Data security is a concern for institutions and organizations. Transparent Data Encryption (TDE) or
Data at Rest Encryption encrypts data files. Data at rest is any data which is not accessed or changed
frequently, stored on different types of storage devices. Encryption ensures that if an unauthorized user accesses the
data files from the file system, the user cannot read contents.

If the user uses master key encryption, the MySQL keyring plugin stores the InnoDB master key, used for the master
key encryption implemented by MySQL. The master key is also used to encrypt redo logs, and undo logs, along with
the tablespaces.

The InnoDB tablespace encryption has the following components:

• The database instance has a master key for tablespaces and a master key for binary log encryption.

• Each tablespace has a tablespace key. The key is used to encrypt the Tablespace data pages. Encrypted ta-
blespace keys are written on tablespace header. In the master key implementation, the tablespace key cannot be
changed unless you rebuild the table.

Two separate keys allow the master key to be rotated in a minimal operation. When the master key is rotated, each
tablespace key is decrypted and re-encrypted with the new master key. Only the first page of every tablespace (.ibd)
file is read and written during the key rotation.

An InnoDB tablespace file is comprised of multiple logical and physical pages. Page 0 is the tablespace header page
and keeps the metadata for the tablespace. The encryption information is stored on page 0 and the tablespace key is
encrypted.

A buffer pool page is not encrypted. An encrypted page is decrypted at the I/O layer and added to the buffer pool and
used to access the data. The page is encrypted by the I/O layer before the page is flushed to disk.

Note: Percona XtraBackup version 8 supports the backup of encrypted general tablespaces. Features which are not
Generally Available (GA) in Percona Server for MySQL are not supported in version 8.

See also:

Information about HashiCorp Vault

Using the Keyring Plugin

Encrypting File-Per-Tablespace Tables

Encrypting a Schema or a General Tablespace

Encrypting the System Tablespace

Encrypting Temporary Files

Verifying the Encryption for Tables, Tablespaces, and Schemas

119

Percona Server Documentation, Release 8.0.18-9

Encrypting Doublewrite Buffers

Encrypting Binary Logs

Encrypting the Redo Log

Encrypting the Undo Tablespace

Rotating the Master Key

Working with Background Encryption Threads

120

CHAPTER

FORTY

INFORMATION ABOUT HASHICORP VAULT

The keyring_vault plugin can store the encryption keys inside the HashiCorp Vault.

Important: The keyring_vault plugin works with kv secrets engine version 1.

See also:

HashiCorp Documentation:

Installing Vault https://www.vaultproject.io/docs/install/index.html

KV Secrets Engine - Version 1 https://www.vaultproject.io/docs/secrets/kv/kv-v1.html

Production Hardening https://learn.hashicorp.com/vault/operations/production-hardening

See also:

Using the Keyring Plugin

Rotating the Master Key

121

https://www.hashicorp.com/products/vault/data-protection
https://www.vaultproject.io/docs/install/index.html
https://www.vaultproject.io/docs/secrets/kv/kv-v1.html
https://learn.hashicorp.com/vault/operations/production-hardening

CHAPTER

FORTYONE

USING THE KEYRING PLUGIN

Percona Server for MySQL may use the following plugins:

• keyring_file stores the keyring data locally

• keyring_vault provides an interface for the database with a HashiCorp Vault server to store key and secure
encryption keys.

Note: The keyring_file plugin should not be used for regulatory compliance.

To install the plugin, follow the installing and uninstalling plugins instructions.

Loading the Keyring Plugin

You should load the plugin at server startup with the -early-plugin-load option to enable keyrings.

We recommend the plugin should be loaded in the configuration file to facilitate recovery for encrypted tables. Also,
the redo log and undo log encryption cannot be used without --early-plugin-load. The normal plugin load
happens too late in startup.

To use the keyring_vault, you can add this option to your configuration file:

[mysqld]
early-plugin-load="keyring_vault=keyring_vault.so"
loose-keyring_vault_config="/home/mysql/keyring_vault.conf"

Note: The keyring_vault extension, ”.so” and the file location for the vault configuration should be changed to match
your operating system’s extension and operating system location.

You could also run the following command which loads the keyring_file plugin:

$ mysqld --early-plugin-load="keyring_file=keyring_file.so"

Warning: Only one keyring plugin should be enabled at a time. Enabling multiple keyring plugins is not sup-
ported and may result in data loss.

122

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html

Percona Server Documentation, Release 8.0.18-9

Note: If server is started with different plugins loaded early, the --early-plugin-load option should contain
the plugin names in a double-quoted list with each plugin name separated by a semicolon. The use of double quotes
ensures the semicolons do not create issues when the list is executed in a script.

See also:

MySQL Documentation:

• Installing a Keyring Plugin

• The ‘ –early-plugin-load Option

Apart from installing the plugin you also must set the keyring_vault_config variable to point to the
keyring_vault configuration file.

The keyring_vault_config file has the following information:

• vault_url - the Vault server address

• secret_mount_point - the mount point name where the keyring_vault stores the keys

• token - a token generated by the Vault server

• vault_ca [optional] - if the machine does not trust the Vault’s CA certificate, this variable points to the
CA certificate used to sign the Vault’s certificates

This is an example of a configuration file:

vault_url = https://vault.public.com:8202
secret_mount_point = secret
token = 58a20c08-8001-fd5f-5192-7498a48eaf20
vault_ca = /data/keyring_vault_confs/vault_ca.crt

Warning: Each secret_mount_point must be used by only one server. If multiple server use the same
secret_mount_point, the behavior is unpredictable.

The first time a key is fetched from a keyring, the keyring_vault communicates with the Vault server to retrieve the key
type and data.

A user-created key deletion is only possible with the use of the keyring_udf plugin and deletes the key from the
in-memory hash map and the Vault server. You cannot delete system keys, such as the master key.

This plugin supports the SQL interface for keyring key management described in General-Purpose Keyring Key-
Management Functions manual.

The plugin library contains keyring user-defined functions (UDFs) which allow access to the internal keyring service
functions. To enable the functions you must enable the keyring_udf plugin:

mysql> INSTALL PLUGIN keyring_udf SONAME 'keyring_udf.so';

Note: The keyring_udf plugin must be installed. Attempts to use the UDFs without the keyring_udf plugin
generates an error.

You must also create keyring encryption UDFs.

41.1. Loading the Keyring Plugin 123

https://dev.mysql.com/doc/refman/8.0/en/keyring-installation.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/keyring-udfs-general-purpose.html
https://dev.mysql.com/doc/refman/8.0/en/keyring-udfs-general-purpose.html

Percona Server Documentation, Release 8.0.18-9

System Variables

variable keyring_vault_config

Command Line --keyring-vault-config

Dynamic Yes

Scope Global

Variable Type Text

Default Value

This variable is used to define the location of the Keyring Vault plugin configuration file.

variable keyring_vault_timeout

Command Line --keyring-vault-timeout

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 15

Set the duration in seconds for the Vault server connection timeout. The default value is 15. The allowed range is
from 0 to 86400. The timeout can be also disabled to wait an infinite amount of time by setting this variable to 0.

See also:

Information about HashiCorp Vault

Rotating the Master Key

41.2. System Variables 124

https://www.percona.com/doc/percona-server/5.7/management/data_at_rest_encryption.html#keyring-vault-plugin

CHAPTER

FORTYTWO

ROTATING THE MASTER KEY

The Master key should be periodically rotated. You should rotate the key if you believe the key has been compromised.
The Master key rotation changes the Master key and tablespace keys are re-encrypted and updated in the tablespace
headers. The operation does not affect tablespace data.

If the master key rotation is interrupted, the rotation operation is rolled forward when the server restarts. InnoDB
reads the encryption data from the tablespace header, if certain tablespace keys have been encrypted with the prior
master key, InnoDB retrieves the master key from the keyring to decrypt the tablespace key. InnoDB re-encrypts the
tablespace key with the new Master key.

To allow for Master Key rotation, you can encrypt an already encrypted InnoDB system tablespace with a new master
key by running the following ALTER INSTANCE statement:

mysql> ALTER INSTANCE ROTATE INNODB MASTER KEY;

The rotation operation must complete before any tablespace encryption operation can begin.

Note: The rotation re-encrypts each tablespace key. The tablespace key is not changed. If you want to change a
tablespace key, you should disable and then re-enable encryption.

125

CHAPTER

FORTYTHREE

ENCRYPTING FILE-PER-TABLESPACE TABLES

InnoDB can use a tablespace file for each InnoDB table and creates and stores the table data and the indexes in a single
data file. In this tablespace configuration, each table is stored in an .ibd file.

If you require a specific table to be encrypted, configure the InnoDB table stored in innodb_file_per_table
tablespace. The default value is enabled for the innodb_file_per_table option, unless you have explicitly specified the
innodb_file_per_table to be OFF in your my.cnf file.

The architecture for data at rest encryption has two tiers:

• Master key

• Tablespace keys.

For encryption, you must have the keyring plugin installed and enabled. The file_per_table tablespace inherits the
schema default encryption setting,unless you explicitly define encryption in the CREATE TABLE statement.

An example of the CREATE TABLE statement:

mysql> CREATE TABLE myexample (id INT, mytext varchar(255)) ENCRYPTION='Y';

An example of an ALTER TABLE statement.

mysql> ALTER TABLE myexample ENCRYPTION='Y';

Without the ENCRYPTION option in the ALTER TABLE statement, the table’s encryption state does not change. An
encrypted table remains encrypted. An unencrypted table remains unencrypted.

See also:

MySQL Documentation: - File-Per-Table Encryption

See also:

Encrypting a Schema or a General Tablespace

Encrypting Temporary Files

126

https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-data-encryption-enabling-disabling

CHAPTER

FORTYFOUR

ENCRYPTING A SCHEMA OR A GENERAL TABLESPACE

Percona Server for MySQL uses the same encryption architecture as MySQL, a two-tier system consisting of a master
key and tablespace keys. The master key can be changed, or rotated in the keyring, as needed. Each of the tablespace
keys, when decrypted, remain the same.

The feature requires the keyring plugin.

Setting the Default for Schemas and General Tablespace Encryption

The tables in a general tablespace are either all encrypted or all unencrypted. A tablespace cannot contain a mixture
of encrypted tables and unencrypted tables.

In versions before Percona Server for MySQL 8.0.16-7, use the variable innodb_encrypt_tables.

variable innodb_encrypt_tables

Command Line --innodb-encrypt-tables

Removed version 8.0.16-7

Dynamic Yes

Scope Global

Variable Type Text

Default Value OFF

The variable is considered deprecated and was removed in version 8.0.16-7. The default setting is “OFF”.

The encryption of a schema or a general tablespace is determined by the default_table_encryption variable
unless you specify the ENCRYPTION clause in the CREATE SCHEMA or CREATE TABLESPACE statement. This
variable is implemented in Percona Server for MySQL version 8.0.16-7.

You can set the default_table_encryption variable in an individual connection.

mysql> SET default_table_encryption=ON;

System Variable

variable default_table_encryption

Command Line default-table-encryption

Dynamic Yes

Scope Session

127

Percona Server Documentation, Release 8.0.18-9

Variable Type Text

Default Value OFF

Defines the default encryption setting for schemas and general tablespaces. The variable allows you to create or alter
schemas or tablespaces without specifying the ENCRYPTION clause. The default encryption setting applies only to
schemas and general tablespaces and is not applied to the MySQL system tablespace.

The variable has the following possible values:

ON

New tables are encrypted. To create unencrypted tables add ENCRYPTION="N" to the CREATE TABLE or ALTER
TABLE statement.

OFF

By default, new tables are unencrypted. To create encrypted tables add ENCRYPTION="Y" to the CREATE TABLE
or ALTER TABLE statement.

FORCE

New tables are created with the Master key. Using the ENCRYPTION=NO to CREATE TABLE or ALTER TABLE
generates an error and the table is not created or altered.

To encrypt an unencrypted table with an ALTER TABLE statement the ENCRYPTION=YES must be explicitly used.

KEYRING_ON

Availablilty This value is Experimental quality.

New tables are created with the keyring as the default encryption. You may specify a numeric key identifier and use a
specific percona-innodb- key from the keyring instead of the default key:

mysql> CREATE TABLE ... ENCRYPTION=`KEYRING` ENCRYPTION_KEY=ID=NEW_ID

NEW_ID is an unsigned 32-bit integer that refers to the numerical part of the percona-innodb- key. When you assign a
numerical identifier in the ENCRYPTION_KEY_ID clause, the server uses the latest version of the corresponding key.
For example, ENCRYPTION_KEY_ID=2 refers to the latest version of the percona_innodb-2 key from the keyring.

FORCE_KEYRING

Availablilty This value is Experimental quality.

New tables are created encrypted and the keyring encryption is enforced.

ONLINE_TO_KEYRING

Availablilty This value is Experimental quality.

44.1. Setting the Default for Schemas and General Tablespace Encryption 128

Percona Server Documentation, Release 8.0.18-9

It is only possible to apply the keyring encryption when creating or altering tables.

Note: The ALTER TABLE statement changes the current encryption mode only if you use the ENCRYPTION clause.

See also:

MySQL Documentation: default_table_encryption https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.
html

Merge-sort-encryption

variable innodb_encrypt_online_alter_logs

Command Line --innodb_encrypt-online-alter-logs

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

This variable simultaneously turns on the encryption of files used by InnoDB for full text search using parallel sorting,
building indexes using merge sort, and online DDL logs created by InnoDB for online DDL. Encryption is available
for file merges used in queries and backend processes.

Setting Tablespace ENCRYPTION without the Default Setting

If you do not set the default encryption setting, you can create general tablespaces with the ENCRYPTION setting.

mysql> CREATE TABLESPACE tablespace_name ENCRYPTION='Y';

All tables contained in the tablespace are either encrypted or not encrypted. You cannot encrypted only some
of the tables in a general tablespace. This feature extends the CREATE TABLESPACE statement to accept the
ENCRYPTION='Y/N' option.

Note: Prior to Percona Server for MySQL 8.0.13, the ENCRYPTION option was specific to the CREATE TABLE
or SHOW CREATE TABLE statement. As of Percona Server for MySQL 8.0.13, this option is a tablespace attribute
and no longer allowed with the CREATE TABLE or SHOW CREATE TABLE statement except for file-per-table ta-
blespaces.

In an encrypted general tablespace, an attempt to create an unencrypted table generates the following error:

mysql> CREATE TABLE t3 (a INT, b TEXT) TABLESPACE foo ENCRYPTION='N';
ERROR 1478 (HY0000): InnoDB: Tablespace 'foo' can contain only ENCRYPTED tables.

An attempt to create or to move any tables, including partitioned ones, to a general tablespace with an incompatible
encryption setting are diagnosed and the process is aborted.

If you must move tables between incompatible tablespaces, create tables with the same structure in another tablespace
and run INSERT INTO SELECT from each of the source tables into the destination tables.

44.1. Setting the Default for Schemas and General Tablespace Encryption 129

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html

Percona Server Documentation, Release 8.0.18-9

Exporting an Encrypted General Tablespace

You can only export encrypted file-per-table tablespaces

See also:

Encrypting File-Per-Tablespace Tables

Encrypting the System Tablespace

Encrypting Temporary Files

Verifying the Encryption for Tables, Tablespaces, and Schemas

44.1. Setting the Default for Schemas and General Tablespace Encryption 130

CHAPTER

FORTYFIVE

ENCRYPTING THE SYSTEM TABLESPACE

Percona Server for MySQL supports system tablespace encryption. The InnoDB system tablespace may be encrypted
with the Master key encryption or may use keyring encryption with encryption threads.

See also:

Working with Background Encryption Threads.

The limitation is the following:

• You cannot convert the system tablespace from the encrypted state to the unencrypted state, or the unencrypted
state to the encrypted state. If a conversion is needed, you should create a new instance with the system ta-
blespace in the required state and transfer the user tables to that instance.

Important: A server instance initialized with the encrypted InnoDB system tablespace cannot be downgraded. It is
not possible to parse encrypted InnoDB system tablespace pages in a version of Percona Server for MySQL lower than
the version where the InnoDB system tablespace has been encrypted.

To enable system tablespace encryption, edit the my.cnf file with the following:

• Add the innodb_sys_tablespace_encrypt

• Edit the innodb_sys_tablespace_encrypt value to “ON”

System tablespace encryption can only be enabled with the --initialize option

You can create an encrypted table as follows:

mysql> CREATE TABLE table_name TABLESPACE=innodb_system ENCRYPTION='Y';

System Variables

variable innodb_sys_tablespace_encrypt

Command Line --innodb-sys-tablespace-encrypt

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

131

Percona Server Documentation, Release 8.0.18-9

Enables the encryption of the InnoDB system tablespace.

See also:

MySQL Documentation: mysql system Tablespace Encryption https://dev.mysql.com/doc/refman/8.0/en/
innodb-data-encryption.html#innodb-mysql-tablespace-encryption-enabling-disabling

MySQL Documentation: --initialize option https://dev.mysql.com/doc/refman/8.0/en/server-options.html#
option_mysqld_initialize

Re-Encrypt the System Tablespace

You can re-encrypt the system tablespace key with master key rotation. When the master key is rotated, the tablespace
key is decrypted and re-encrypte with the new master key. Only the first page of the tablespace (.ibd) file is read and
written during the key rotation. The tables in the tablespace are not re-encrypted.

The command is as follows:

mysql> ALTER INSTANCE ROTATE INNODB MASTER KEY;

See also:

Rotating the Master Key

Using the Keyring Plugin

45.2. Re-Encrypt the System Tablespace 132

https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-mysql-tablespace-encryption-enabling-disabling
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-mysql-tablespace-encryption-enabling-disabling
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize

CHAPTER

FORTYSIX

ENCRYPTING TEMPORARY FILES

Availability This feature is of Experimental quality.

For InnoDB user-created temporary tables, created in a temporary tablespace file, use the
innodb_temp_tablespace_encrypt variable.

variable innodb_temp_tablespace_encrypt

Command Line innodb-temp-tablespace-encrypt

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

When this variable is set to ON, the server encrypts the global temporary tablespace (:file: ibtmp* files) and the
session temporary tablespaces (:file: #innodb_temp/temp_*.ibt files). The variable does not enforce the encryption of
currently open temporary files and does not rebuild the system temporary tablespace to encrypt data which has already
been written.

The CREATE TEMPORARY TABLE does not support the ENCRYPTION clause. The TABLESPACE clause cannot
be set to innodb_temporary.

The global temporary tablespace datafile ibtmp1 contains temporary table undo logs while intrinsic temporary tables
and user-created temporary tables are located in the encrypted session temporary tablespace.

To create new temporary tablespaces unencrypted, the following variables must be set to OFF at runtime:

• innodb_temp_tablespace_encrypt

• default_table_encryption

Any existing encrypted user-created temporary files and intrinsic temporary tables remain in an encrypted session.

Temporary tables are only destroyed when the session is disconnected.

The default_table_encryption setting in my.cnf determines if a temporary table is encrypted.

If the innodb_temp_tablespace_encrypt = “OFF” and the default_table_encryption =”ON”, the user-created temporary
tables are encrypted. The temporary tablespace datafile ibtmp1, which contains undo logs, is not encrypted.

If the innodb_temp_tablespace_encrypt is “ON” for the system tablespace, InnoDB generates an encryp-
tion key and encrypts the system temporary tablespace. If you reset the encryption to “OFF”, all subsequent pages are
written to an unencrypted tablespace. Any generated keys are not erased to allow encrypted tables and undo data to be
decrypted.

133

Percona Server Documentation, Release 8.0.18-9

Important: To use this option, the keyring plugin must be loaded. If the keyring is not loaded the server generates
an error and refuses to create new temporary tables.

Temporary files are currently used in Percona Server for MySQL for the following purposes:

• Filesort - for example, when you run a SELECT statement with SQL_BIG_RESULT hints

• Binary log transactional caches

• Group Replication caches

For each temporary file, an encryption key is generated locally and only maintained in memory for the lifetime of the
temporary file and the key is discarded afterwards.

System Variables

variable encrypt_tmp_files

Command Line --encrypt_tmp_files

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

This variable turns “ON” the encryption of temporary files created by Percona Server for MySQL.

See also:

MySQL Documentation https://dev.mysql.com/doc/refman/8.0/en/create-temporary-table.html

See also:

Using the Keyring Plugin

Encrypting the System Tablespace

46.1. System Variables 134

https://dev.mysql.com/doc/refman/8.0/en/create-temporary-table.html

CHAPTER

FORTYSEVEN

ENCRYPTING BINARY LOGS

Binary log encryption at rest ensures the server-generated binary logs are encrypted in persistent storage.

After you have enabled the binlog_encryption option and the keyring is available, you can encrypt new binary
logs and relay logs on disk. Only the data content is encrypted.

In replication, the master sends the stream of decrypted binary log events to a slave, in transport the data is encrypted
by SSL connections. Master and slaves use separate keyring storages and are able to use different keyring plugins.

When an encrypted binary log is dumped, and the operation involves decryption, and done using mysqlbinlog with
--read-from-remote-server option.

Note: The –read-from-remote-server option only applies to the binary logs. Encrypted relay logs can not be dumped
or decrypted with this option.

Attempting a binary log encryption without the keyring generates a MySQL error.

The Binary log encryption uses two tiers:

• File password

• Binary log encryption key

The file password encrypts the content of a single binary file or relay log file. The binary log encryption key is used to
encrypt the file password and is stored in the keyring.

Enabling Binary Log Encryption

To enable the binlog_encryption option you must set the option in a startup configuration file, such as the
my.cnf file.

binlog_encryption=ON

Verifying the Encryption Setting

To verify if the binary log encryption option is enabled, run the following statement:

mysql>SHOW BINARY LOGS;

+-------------------+----------------+---------------+
| Log_name | File_size | Encrypted |

135

Percona Server Documentation, Release 8.0.18-9

+-------------------+----------------+---------------+
binlog.00011	72367	No
binlog:00012	71503	No
binlog:00013	73762	Yes
+-------------------+----------------+---------------+

See also:

MySQL Documentation: Encrypting Binary Log Files and Relay Log Files

Upgrading from Percona Server for MySQL 8.0.15-5 to any Higher Ver-
sion

Starting from release 8.0.15-5, Percona Server for MySQL uses the upstream implementation of binary log encryp-
tion. The variable encrypt-binlog is removed and the related command line option –encrypt-binlog is not supported.
It is important to remove the encrypt-binlog variable from your configuration file before you attempt to upgrade either
from another release in the Percona Server for MySQL 8.0 series or from Percona Server for MySQL 5.7. Otherwise,
a server boot error will be generated reporting an unknown variable. The implemented binary log encryption is com-
patible with the older format. The encrypted binary log used in a previous version of MySQL 8.0 series or Percona
Server for MySQL series is supported.

variable encrypt_binlog

Version-info removed in 8.0.15-5

Command Line --encrypt-binlog

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

The variable turns on binary log and relay log encryption.

See also:

Encrypting File-Per-Tablespace Tables

Encrypting a Schema or a General Tablespace

Encrypting the System Tablespace

Encrypting Temporary Files

Encrypting Doublewrite Buffers

Encrypting the Redo Log

Encrypting the Undo Tablespace

47.3. Upgrading from Percona Server for MySQL 8.0.15-5 to any Higher Version 136

https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html

CHAPTER

FORTYEIGHT

ENCRYPTING THE REDO LOG

The Redo log can be encrypted with the :variable: innodb_redo_log_encrypt variable. The default value for the
variable is OFF. The Redo log uses the tablespace encryption key.

variable innodb_redo_log_encrypt

Command Line --innodb-redo-log-encrypt

Dynamic Yes

Scope Global

Variable Type Text

Default Value OFF

Determines the encryption for redo log data for tables. The encryption of redo log data, by default, is ‘OFF’.

When you enable innodb_redo_log_encrypt any existing redo log pages stay unencrypted, and new pages are encrypted
when they are written to disk. If you disable innodb_redo_log_encrypt, any encrypted pages remain encrypted, but
new pages are unencrypted.

As implemented in 8.0.16-7, the supported values for :variable: innodb_redo_log_encrypt are the following:

• ON

• OFF

• master_key

• keyring_key

The keyring_key is an Experimental value.

See also:

For more information on the keyring_key - Working with Background Encryption Threads

Note: For innodb_redo_log_encrypt, the “ON” value is a compatibility alias for master_key.

After starting the server, an attempt to encrypt the redo log fails in the following conditions:

• Server started with no keyring specified

• Server started with a keyring, but you have specified a different redo log encryption method that what the same
server previously used.

See also:

Encrypting File-Per-Tablespace Tables

137

Percona Server Documentation, Release 8.0.18-9

Encrypting a Schema or a General Tablespace

138

CHAPTER

FORTYNINE

ENCRYPTING THE UNDO TABLESPACE

The undo data may contain sensitive information about the database operations.

You can encrypt the data in an undo log using the innodb_undo_log_encrypt option. You can change the
setting for this variable in the configuration file, as a startup parameter, or during runtime as a global variable. The
undo data encryption must be enabled; the feature is disabled by default.

variable innodb_undo_log_encrypt

Command Line --innodb_undo-log_encrypt

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

Defines if an undo log data is encrypted. The default for the undo log is “OFF”, which disables the encryption.

You can create up to 127 undo tablespaces and you can, with the server running, add or reduce the number of undo
tablespaces.

Note: If you disable encryption, any encrypted undo data remains encrypted. To remove this data, truncate the undo
tablespace.

See also:

MySQL Documentation

innodb_undo_log_encrypt

How to Enable Encryption on an Undo Log

You enable encryption for an undo log by adding the following to the my.cnf file:

[mysqld]
innodb_undo_log_encrypt=ON

See also:

Encrypting the Redo Log

139

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_undo_log_encrypt

CHAPTER

FIFTY

WORKING WITH BACKGROUND ENCRYPTION THREADS

Availabiliity This feature is Experimental.

Encryption threads in the background allow you to perform some encryption and decryption tasks in real-time.

You would use encryption threads for the following purposes:

• Encryption threads can encrypt existing tablespaces. Encryption threads allow encryption to be applied to all or
some of the existing tablespaces, you can exclude tablespaces from rotation, in a background process. You can
encrypt existing tablespaces with the Master key, but you must do this operation by tablespace.

• Encryption threads encrypt tables with a key from a keyring. The Master key encrypts tables by a key and is
stored in the encryption header of the tablespace.

• Encryption threads allow key rotation. In an encryption thread rotation, the operation re-encrypts each ta-
blespace page by page. The Master key rotation does not re-encrypt each page, only the tablespace encryption
header.

If you have tablespaces encrypted with the Master key and you enable encryption threads, the tablespaces are re-
encrypted with the keyring key in a background process.

Note: While encryption threads are enabled, you cannot convert the tablespaces to Master key encryption. To convert
the tablespaces, you must disable the encryption threads.

Availability This feature is Experimental quality.

variable innodb_encryption_threads

Command Line --innodb-encryption-threads

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

This variable works in combination with the default_table_encryption variable set to
ONLINE_TO_KEYRING. This variable configures the number of threads for background encryption. For the
online encryption, the value must be greater than zero.

variable innodb_online_encryption_rotate_key_age

Command Line --innodb-online-encryption-rotate-key-age

Dynamic Yes

Scope Global

140

Percona Server Documentation, Release 8.0.18-9

Variable Type Numeric

Default Value 1

Defines the rotation for the re-encryption of a table encrypted using KEYRING. The value of this variable determines
the how frequently the encrypted tables are re-encrypted.

For example, the following values would trigger a re-encryption in the following intervals:

• The value is 1, the table is re-encrypted on each key rotation.

• The value is 2, the table is re-encrypted on every other key rotation.

• The value is 10, the table is re-encrypted on every tenth key rotation.

You should select the value which best fits your operational requirements.

Using Keyring Encryption

Availability This feature is Experimental quality.

Keyring management is enabled for each table, per file table, separately when you set encryption in the ENCRYPTION
clause to KEYRING in the supported SQL statement.

• CREATE TABLE ... ENCRYPTION=’KEYRING’

• ALTER TABLE ... ENCRYPTION=’KEYRING’

Note: Running an ALTER TABLE ... ENCRYPTION='N' on a table created with ENCRYPTION='KEYRING'
converts the table to the existing MySQL schema, tablespace, or table encryption state.

See also:

Using the Keyring Plugin

50.1. Using Keyring Encryption 141

CHAPTER

FIFTYONE

ENCRYPTING DOUBLEWRITE BUFFERS

The two types of doublewrite buffers used in Percona Server for MySQL are encrypted differently.

When the InnoDB system tablespace is encrypted, the doublewrite buffer pages are encrypted as well. The
key which was used to encrypt the InnoDB system tablespace is also used to encrypt the doublewrite buffer.

Percona Server for MySQL encrypts the parallel doublewrite buffer with the respective tablespace keys.
Only encrypted tablespace pages are written as encrypted in the parallel doublewrite buffer. Unencrypted tablespace
pages will be written as unencrypted.

variable innodb_parallel_dblwr_encrypt

Command Line --innodb-parallel-dblwr-encrypt

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

Enables the encryption of the parallel doublewrite buffer. For encryption, uses the key of the tablespace where the
parallel doublewrite buffer is used.

See also:

Encrypting the System Tablespace

Encrypting a Schema or a General Tablespace

Encrypting File-Per-Tablespace Tables

142

CHAPTER

FIFTYTWO

VERIFYING THE ENCRYPTION FOR TABLES, TABLESPACES, AND
SCHEMAS

If a general tablespace contains tables, check the table information to see if the table is encrypted. When the general
tablespace contains no tables, you may verify if the tablespace is encrypted or not.

For single tablespaces, verify the ENCRYPTION option using INFORMATION_SCHEMA.TABLES and the CREATE
OPTIONS settings.

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, CREATE_OPTIONS FROM
INFORMATION_SCHEMA.TABLES WHERE CREATE_OPTIONS LIKE '%ENCRYPTION%';

+----------------------+-------------------+------------------------------+
| TABLE_SCHEMA | TABLE_NAME | CREATE_OPTIONS |
+----------------------+-------------------+------------------------------+
|sample | t1 | ENCRYPTION="Y" |
+----------------------+-------------------+------------------------------+

A flag field in the INFORMATION_SCHEMA.INNODB_TABLESPACES has bit number 13 set if the tablespace is
encrypted. This bit can be checked with the flag & 8192 expression in the following way:

SELECT space, name, flag, (flag & 8192) != 0 AS encrypted FROM
INFORMATION_SCHEMA.INNODB_TABLESPACES WHERE name in ('foo', 'test/t2', 'bar',
'noencrypt');

Output

+-------+-----------+-------+-----------+
| space | name | flag | encrypted |
+-------+-----------+-------+-----------+
29	foo	10240	8192
30	test/t2	8225	8192
31	bar	10240	8192
32	noencrypt	2048	0
+-------+-----------+-------+-----------+
4 rows in set (0.01 sec)

Availabiliity This feature is Experimental.

The encrypted table metadata is contained in the INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION
table. You must have the Process privilege to view the table information.

143

Percona Server Documentation, Release 8.0.18-9

Note: This table is Experimental and may change in future releases.

>desc INNODB_TABLESPACES_ENCRYPTION:

+-----------------------------+--------------------+-----+----+--------+------+
| Field | Type | Null| Key| Default| Extra|
+-----------------------------+--------------------+-----+----+--------+------+
SPACE	int(11) unsigned	NO			
NAME	varchar(655)	YES			
ENCRYPTION_SCHEME	int(11) unsigned	NO			
KEYSERVER_REQUESTS	int(11) unsigned	NO			
MIN_KEY_VERSION	int(11) unsigned	NO			
CURRENT_KEY_VERSION	int(11) unsigned	NO			
KEY_ROTATION_PAGE_NUMBER	bigint(21) unsigned	YES			
KEY_ROTATION_MAX_PAGE_NUMBER	bigint(21) unsigned	YES			
CURRENT_KEY_ID	int(11) unsigned	NO			
ROTATING_OR_FLUSHING	int(1) unsigned	NO			
+-----------------------------+--------------------+-----+----+--------+------+

To identify encryption-enabled schemas, query the INFORMATION_SCHEMA.SCHEMATA table:

mysql> SELECT SCHEMA_NAME, DEFAULT_ENCRYPTION FROM
INFORMATION_SCHEMA.SCHEMATA WHERE DEFAULT_ENCRYPTION='YES';

+------------------------------+---------------------------------+
| SCHEMA_NAME | DEFAULT_ENCRYPTION |
+------------------------------+---------------------------------+
| samples | YES |
+------------------------------+---------------------------------+

Note: The SHOW CREATE SCHEMA statement returns the DEFAULT ENCRYPTION clause.

See also:

MariaDB Documentation https://mariadb.com/kb/en/library/information-schema-innodb_tablespaces_
encryption-table/

144

https://mariadb.com/kb/en/library/information-schema-innodb_tablespaces_encryption-table/
https://mariadb.com/kb/en/library/information-schema-innodb_tablespaces_encryption-table/

CHAPTER

FIFTYTHREE

DATA SCRUBBING

Availability This feature is Experimental quality

While data encryption ensures that the existing data are not stored in plain form, the data scrubbing literally removes
the data once the user decides they should be deleted. Compare this behavior with how the DELETE statement works
which only marks the affected data as deleted - the space claimed by this data is overwritten with new data later.

Once enabled, data scrubbing works automatically on each tablespace separately. To enable data scrubbing, you need
to set the following variables:

• innodb-background-scrub-data-uncompressed

• innodb-background-scrub-data-compressed

Uncompressed tables can also be scrubbed immediately, independently of key rotation or background threads. This
can be enabled by setting the variable innodb-immediate-scrub-data-uncompressed. This option is not
supported for compressed tables.

Note that data scrubbing is made effective by setting the innodb_online_encryption_threads variable to a
value greater than zero.

System Variables

variable innodb_background_scrub_data_compressed

Command Line --innodb-background-scrub-data-compressed

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

variable innodb_background_scrub_data_uncompressed

Command Line --innodb-background-scrub-data-uncompressed

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

See also:

Vault Documentation https://www.vaultproject.io/docs/index.html

145

https://www.vaultproject.io/docs/index.html

Percona Server Documentation, Release 8.0.18-9

General-Purpose Keyring Key-Management Functions https://dev.mysql.com/doc/refman/8.0/en/
keyring-udfs-general-purpose.html

53.1. System Variables 146

https://dev.mysql.com/doc/refman/8.0/en/keyring-udfs-general-purpose.html
https://dev.mysql.com/doc/refman/8.0/en/keyring-udfs-general-purpose.html

CHAPTER

FIFTYFOUR

SSL IMPROVEMENTS

By default, Percona Server for MySQL passes elliptic-curve crypto-based ciphers to OpenSSL, such as ECDHE-RSA-
AES128-GCM-SHA256.

Note: Although documented as supported, elliptic-curve crypto-based ciphers do not work with MySQL.

See also:

MySQL Bug System (solved for Percona Server for MySQL): #82935 Cipher ECDHE-RSA-AES128-GCM-
SHA256 listed in man/Ssl_cipher_list, not supported

147

https://bugs.mysql.com/bug.php?id=82935
https://bugs.mysql.com/bug.php?id=82935

CHAPTER

FIFTYFIVE

DATA MASKING

This feature is Experimental quality.

This feature was implemented in Percona Server for MySQL version 8.0.17-8.

The Percona Data Masking plugin is a free and Open Source implementation of the MySQL‘s data masking plugin.
Data Masking provides a set of functions to hide sensitive data with modified content.

The data masking functions are the following:

148

Percona Server Documentation, Release 8.0.18-9

Type Description Sample
mask_inner() Masks the

inner part
of a string.
The string
ends are not
masked.

mysql>
→˓SELECT
→˓mask_
→˓inner(
→˓'123456789
→˓', 1,
→˓1);

+---------
→˓--------
→˓--------
→˓--------
→˓--+
| mask_
→˓inner(
→˓"123456789
→˓", 1,
→˓1) |
+---------
→˓--------
→˓--------
→˓--------
→˓--+
|1XXXXXXX9
→˓

→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓--+

mask_outer() Masks the
outer part of
the string.
The inner
section is not
masked.

mysql>
→˓SELECT
→˓mask_
→˓outer(
→˓'123456789
→˓', 2,
→˓2);

+---------
→˓--------
→˓--------
→˓--------
→˓---+
| mask_
→˓outer(
→˓"123456789
→˓", 2,
→˓2).
→˓|
+---------
→˓--------
→˓--------
→˓--------
→˓---+
|
→˓XX34567XX
→˓

→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓---+

mask_pan() Masks the
Primary
Account
Number
(PAN) by
replacing
the string
with an “X”
except for
the last four
characters.

mysql>
→˓SELECT
→˓mask_
→˓pan (
→˓'123456789
→˓');

+---------
→˓--------
→˓--------
→˓--------
→˓---+
| mask_
→˓pan(
→˓"123456789
→˓").
→˓

→˓|
+---------
→˓--------
→˓--------
→˓--------
→˓---+
|
→˓XXXXX6789
→˓

→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓---+

mask_pan_relaxed()Returns the
first six num-
bers and the
last four num-
bers. The rest
of the string
is replaced by
“X”.

mysql>
→˓SELECT
→˓mask_
→˓pan_
→˓relaxed(gen_
→˓rnd_
→˓pan(16));
→˓

+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓-+
| mask_
→˓pan_
→˓relaxed(gen_
→˓rnd_
→˓pan())
→˓

→˓|
+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓-+
|
→˓444224XXXXXX5555
→˓

→˓

→˓

→˓|
+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓-+

mask_ssn() Returns the
string with
only the last
four numbers
replaced by
“X”.

mysql>
→˓SELECT
→˓mask_
→˓ssn(
→˓'555-55-
→˓5555');

+---------
→˓--------
→˓--------
→˓--------
→˓-----+
| mask_
→˓ssn(
→˓'555-55-
→˓5555')
→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓-----+
| XXX-XX_
→˓5555
→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓-----+

gen_range() Generates
a random
number based
on a selected
range.

mysql>
→˓SELECT
→˓gen_
→˓range(10,
→˓ 100);

+---------
→˓--------
→˓--------
→˓--------
→˓-----+
| gen_
→˓range(10,
→˓100)
→˓

→˓

→˓|
+---------
→˓--------
→˓--------
→˓--------
→˓-----+
| 56
→˓

→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓-----+

gen_rnd_email() Generates a
random email
address. The
domain is
example.
com.

mysql>
→˓SELECT
→˓gen_rnd_
→˓email();

+---------
→˓--------
→˓--------
→˓--------
→˓------+
| gen_rnd_
→˓email()
→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓------+
| sma.
→˓jrts@example.
→˓com
→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓------+

gen_rnd_pan() Generates a
random pri-
mary account
number.

mysql>
→˓SELECT
→˓mask_
→˓pan(gen_
→˓rnd_
→˓pan());

+---------
→˓--------
→˓--------
→˓--------
→˓----+
| mask_
→˓pan(gen_
→˓rnd_
→˓pan())
→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓----+
|
→˓XXXXXXXXXXXX4444
→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓----+

gen_rnd_us_phone()Generates
a random
U.S. phone
number. The
generated
number adds
the 1 dialiing
code and is
in the 555
area code.
The 555 area
code is not
valid for any
U.S. phone
number.

mysql>
→˓SELECT
→˓gen_rnd_
→˓us_
→˓phone();

+---------
→˓--------
→˓--------
→˓------+
| gen_rnd_
→˓us_
→˓phone()
→˓

→˓ |
+---------
→˓--------
→˓--------
→˓------+
| 1-
→˓555635-
→˓5709
→˓

→˓ |
+---------
→˓--------
→˓--------
→˓------+

gen_blacklist(str,
dictio-
nary_name,
replace-
ment_dictionary_name)

Replaces a value with a value from a second dictionary.

•
str:
Value
to
be
re-
placed

•
dictionary_name:
Con-
tains
the
dic-
tio-
nary

•
replacement_dictionary_name:
Se-
lect
a
value
from
this
dic-
tio-
nary

mysql>
→˓SELECT
→˓gen_
→˓blacklist(
→˓'apple',
→˓ 'fruit
→˓', 'nut
→˓');

+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓+
| gen_
→˓blacklist(
→˓'apple',
→˓ 'fruit
→˓', 'nut
→˓') |
+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓+
| walnut
→˓

→˓

→˓

→˓

→˓|
+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓+

gen_dictionary(dictionary_name)Returns
a random
term from
the selected
dictionary.

mysql>
→˓SELECT
→˓gen_
→˓dictionary(dictionary_
→˓name);

+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓--------
→˓-+
| gen_
→˓dictionary(
→˓'trees
→˓')
→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓--------
→˓-+
| Norway
→˓spruce
→˓

→˓

→˓

→˓

→˓ |
+---------
→˓--------
→˓--------
→˓--------
→˓--------
→˓--------
→˓-+

149

Percona Server Documentation, Release 8.0.18-9

See also:

MySQL Documentation https://dev.mysql.com/doc/refman/8.0/en/data-masking-reference.html

150

https://dev.mysql.com/doc/refman/8.0/en/data-masking-reference.html

Part IX

Diagnostics Improvements

151

CHAPTER

FIFTYSIX

USER STATISTICS

This feature adds several INFORMATION_SCHEMA tables, several commands, and the userstat variable. The tables
and commands can be used to understand the server activity better and identify the source of the load.

The functionality is disabled by default, and must be enabled by setting userstat to ON. It works by keeping several
hash tables in memory. To avoid contention over global mutexes, each connection has its own local statistics, which
are occasionally merged into the global statistics, and the local statistics are then reset to 0.

Version Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7.

Other Information

• Author/Origin: Google; Percona added the INFORMATION_SCHEMA tables and the userstat variable.

System Variables

variable userstat

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type BOOLEAN

Default Value OFF

Range ON/OFF

Enables or disables collection of statistics. The default is OFF, meaning no statistics are gathered. This is to ensure
that the statistics collection doesn’t cause any extra load on the server unless desired.

variable thread_statistics

Command Line Yes

Config File Yes

152

Percona Server Documentation, Release 8.0.18-9

Scope Global

Dynamic Yes

Variable Type BOOLEAN

Default Value OFF

Range ON/OFF

Enables or disables collection of thread statistics. The default is OFF, meaning no thread statistics are gathered. This
is to ensure that the statistics collection doesn’t cause any extra load on the server unless desired. Variable userstat
needs to be enabled as well in order for thread statistics to be collected.

INFORMATION_SCHEMA Tables

table INFORMATION_SCHEMA.CLIENT_STATISTICS

Columns

• CLIENT – The IP address or hostname from which the connection originated.

• TOTAL_CONNECTIONS – The number of connections created for this client.

• CONCURRENT_CONNECTIONS – The number of concurrent connections for this client.

• CONNECTED_TIME – The cumulative number of seconds elapsed while there were con-
nections from this client.

• BUSY_TIME – The cumulative number of seconds there was activity on connections from
this client.

• CPU_TIME – The cumulative CPU time elapsed, in seconds, while servicing this client‘‘s
connections.

• BYTES_RECEIVED – The number of bytes received from this client’s connections.

• BYTES_SENT – The number of bytes sent to this client’s connections.

• BINLOG_BYTES_WRITTEN – The number of bytes written to the binary log from this
client’s connections.

• ROWS_FETCHED – The number of rows fetched by this client’s connections.

• ROWS_UPDATED – The number of rows updated by this client’s connections.

• TABLE_ROWS_READ – The number of rows read from tables by this client’s connections.
(It may be different from ROWS_FETCHED.)

• SELECT_COMMANDS – The number of SELECT commands executed from this client’s
connections.

• UPDATE_COMMANDS – The number of UPDATE commands executed from this client’s
connections.

• OTHER_COMMANDS – The number of other commands executed from this client’s connec-
tions.

• COMMIT_TRANSACTIONS – The number of COMMIT commands issued by this client’s
connections.

• ROLLBACK_TRANSACTIONS – The number of ROLLBACK commands issued by this
client’s connections.

56.4. INFORMATION_SCHEMA Tables 153

Percona Server Documentation, Release 8.0.18-9

• DENIED_CONNECTIONS – The number of connections denied to this client.

• LOST_CONNECTIONS – The number of this client’s connections that were terminated un-
cleanly.

• ACCESS_DENIED – The number of times this client’s connections issued commands that
were denied.

• EMPTY_QUERIES – The number of times this client’s connections sent empty queries to
the server.

This table holds statistics about client connections. The Percona version of the feature restricts this table’s visibility to
users who have the SUPER or PROCESS privilege.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.CLIENT_STATISTICS\G

*************************** 1. row ***************************
CLIENT: 10.1.12.30

TOTAL_CONNECTIONS: 20
CONCURRENT_CONNECTIONS: 0

CONNECTED_TIME: 0
BUSY_TIME: 93
CPU_TIME: 48

BYTES_RECEIVED: 5031
BYTES_SENT: 276926

BINLOG_BYTES_WRITTEN: 217
ROWS_FETCHED: 81
ROWS_UPDATED: 0

TABLE_ROWS_READ: 52836023
SELECT_COMMANDS: 26
UPDATE_COMMANDS: 1
OTHER_COMMANDS: 145

COMMIT_TRANSACTIONS: 1
ROLLBACK_TRANSACTIONS: 0

DENIED_CONNECTIONS: 0
LOST_CONNECTIONS: 0

ACCESS_DENIED: 0
EMPTY_QUERIES: 0

table INFORMATION_SCHEMA.INDEX_STATISTICS

Columns

• TABLE_SCHEMA – The schema (database) name.

• TABLE_NAME – The table name.

• INDEX_NAME – The index name (as visible in SHOW CREATE TABLE).

• ROWS_READ – The number of rows read from this index.

This table shows statistics on index usage. An older version of the feature contained a single column that had the
TABLE_SCHEMA, TABLE_NAME and INDEX_NAME columns concatenated together. The Percona version of the
feature separates these into three columns. Users can see entries only for tables to which they have SELECT access.

This table makes it possible to do many things that were difficult or impossible previously. For example, you can use
it to find unused indexes and generate DROP commands to remove them.

Example:

56.4. INFORMATION_SCHEMA Tables 154

Percona Server Documentation, Release 8.0.18-9

mysql> SELECT * FROM INFORMATION_SCHEMA.INDEX_STATISTICS
WHERE TABLE_NAME='tables_priv';

+--------------+-----------------------+--------------------+-----------+
| TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | ROWS_READ |
+--------------+-----------------------+--------------------+-----------+
| mysql | tables_priv | PRIMARY | 2 |
+--------------+-----------------------+--------------------+-----------+

Note: Current implementation of index statistics doesn’t support partitioned tables.

table INFORMATION_SCHEMA.TABLE_STATISTICS

Columns

• TABLE_SCHEMA – The schema (database) name.

• TABLE_NAME – The table name.

• ROWS_READ – The number of rows read from the table.

• ROWS_CHANGED – The number of rows changed in the table.

• ROWS_CHANGED_X_INDEXES – The number of rows changed in the table, multiplied by
the number of indexes changed.

This table is similar in function to the INDEX_STATISTICS table.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.TABLE_STATISTICS
WHERE TABLE_NAME=``tables_priv``;

+--------------+-------------------------------+-----------+--------------+-----------
→˓-------------+
| TABLE_SCHEMA | TABLE_NAME | ROWS_READ | ROWS_CHANGED | ROWS_
→˓CHANGED_X_INDEXES |
+--------------+-------------------------------+-----------+--------------+-----------
→˓-------------+
| mysql | tables_priv | 2 | 0 |
→˓ 0 |
+--------------+-------------------------------+-----------+--------------+-----------
→˓-------------+

Note: Current implementation of table statistics doesn’t support partitioned tables.

table INFORMATION_SCHEMA.THREAD_STATISTICS

Columns

• THREAD_ID – Thread ID

• TOTAL_CONNECTIONS – The number of connections created from this thread.

• CONNECTED_TIME – The cumulative number of seconds elapsed while there were con-
nections from this thread.

• BUSY_TIME – The cumulative number of seconds there was activity from this thread.

• CPU_TIME – The cumulative CPU time elapsed while servicing this thread.

• BYTES_RECEIVED – The number of bytes received from this thread.

56.4. INFORMATION_SCHEMA Tables 155

Percona Server Documentation, Release 8.0.18-9

• BYTES_SENT – The number of bytes sent to this thread.

• BINLOG_BYTES_WRITTEN – The number of bytes written to the binary log from this
thread.

• ROWS_FETCHED – The number of rows fetched by this thread.

• ROWS_UPDATED – The number of rows updated by this thread.

• TABLE_ROWS_READ – The number of rows read from tables by this tread.

• SELECT_COMMANDS – The number of SELECT commands executed from this thread.

• UPDATE_COMMANDS – The number of UPDATE commands executed from this thread.

• OTHER_COMMANDS – The number of other commands executed from this thread.

• COMMIT_TRANSACTIONS – The number of COMMIT commands issued by this thread.

• ROLLBACK_TRANSACTIONS – The number of ROLLBACK commands issued by this
thread.

• DENIED_CONNECTIONS – The number of connections denied to this thread.

• LOST_CONNECTIONS – The number of thread connections that were terminated un-
cleanly.

• ACCESS_DENIED – The number of times this thread issued commands that were denied.

• EMPTY_QUERIES – The number of times this thread sent empty queries to the server.

• TOTAL_SSL_CONNECTIONS – The number of thread connections that used SSL.

In order for this table to be populated with statistics, additional variable thread_statistics should be set to ON.

table INFORMATION_SCHEMA.USER_STATISTICS

Columns

• USER – The username. The value #mysql_system_user# appears when there is no
username (such as for the slave SQL thread).

• TOTAL_CONNECTIONS – The number of connections created for this user.

• CONCURRENT_CONNECTIONS – The number of concurrent connections for this user.

• CONNECTED_TIME – The cumulative number of seconds elapsed while there were con-
nections from this user.

• BUSY_TIME – The cumulative number of seconds there was activity on connections from
this user.

• CPU_TIME – The cumulative CPU time elapsed, in seconds, while servicing this user’s
connections.

• BYTES_RECEIVED – The number of bytes received from this user’s connections.

• BYTES_SENT – The number of bytes sent to this user’s connections.

• BINLOG_BYTES_WRITTEN – The number of bytes written to the binary log from this
user’s connections.

• ROWS_FETCHED – The number of rows fetched by this user’s connections.

• ROWS_UPDATED – The number of rows updated by this user’s connections.

56.4. INFORMATION_SCHEMA Tables 156

Percona Server Documentation, Release 8.0.18-9

• TABLE_ROWS_READ – The number of rows read from tables by this user’s connections.
(It may be different from ROWS_FETCHED.)

• SELECT_COMMANDS – The number of SELECT commands executed from this user’s con-
nections.

• UPDATE_COMMANDS – The number of UPDATE commands executed from this user’s con-
nections.

• OTHER_COMMANDS – The number of other commands executed from this user’s connec-
tions.

• COMMIT_TRANSACTIONS – The number of COMMIT commands issued by this user’s
connections.

• ROLLBACK_TRANSACTIONS – The number of ROLLBACK commands issued by this
user’s connections.

• DENIED_CONNECTIONS – The number of connections denied to this user.

• LOST_CONNECTIONS – The number of this user’s connections that were terminated un-
cleanly.

• ACCESS_DENIED – The number of times this user’s connections issued commands that
were denied.

• EMPTY_QUERIES – The number of times this user’s connections sent empty queries to the
server.

This table contains information about user activity. The Percona version of the patch restricts this table’s visibility to
users who have the SUPER or PROCESS privilege.

The table gives answers to questions such as which users cause the most load, and whether any users are being
abusive. It also lets you measure how close to capacity the server may be. For example, you can use it to find out
whether replication is likely to start falling behind.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_STATISTICS\G

*************************** 1. row ***************************
USER: root

TOTAL_CONNECTIONS: 5592
CONCURRENT_CONNECTIONS: 0

CONNECTED_TIME: 6844
BUSY_TIME: 179
CPU_TIME: 72

BYTES_RECEIVED: 603344
BYTES_SENT: 15663832

BINLOG_BYTES_WRITTEN: 217
ROWS_FETCHED: 9793
ROWS_UPDATED: 0

TABLE_ROWS_READ: 52836023
SELECT_COMMANDS: 9701
UPDATE_COMMANDS: 1
OTHER_COMMANDS: 2614

COMMIT_TRANSACTIONS: 1
ROLLBACK_TRANSACTIONS: 0

DENIED_CONNECTIONS: 0
LOST_CONNECTIONS: 0

ACCESS_DENIED: 0
EMPTY_QUERIES: 0

56.4. INFORMATION_SCHEMA Tables 157

Percona Server Documentation, Release 8.0.18-9

Commands Provided

• FLUSH CLIENT_STATISTICS

• FLUSH INDEX_STATISTICS

• FLUSH TABLE_STATISTICS

• FLUSH THREAD_STATISTICS

• FLUSH USER_STATISTICS

These commands discard the specified type of stored statistical information.

• SHOW CLIENT_STATISTICS

• SHOW INDEX_STATISTICS

• SHOW TABLE_STATISTICS

• SHOW THREAD_STATISTICS

• SHOW USER_STATISTICS

These commands are another way to display the information you can get from the INFORMATION_SCHEMA tables.
The commands accept WHERE clauses. They also accept but ignore LIKE clauses.

Status Variables

variable Com_show_client_statistics

Variable Type numeric

Scope Global/Session

The Com_show_client_statistics statement counter variable indicates the number of times the statement
SHOW CLIENT_STATISTICS has been executed.

variable Com_show_index_statistics

Variable Type numeric

Scope Global/Session

The Com_show_index_statistics statement counter variable indicates the number of times the statement
SHOW INDEX_STATISTICS has been executed.

variable Com_show_table_statistics

Variable Type numeric

Scope Global/Session

The Com_show_table_statistics statement counter variable indicates the number of times the statement
SHOW TABLE_STATISTICS has been executed.

variable Com_show_thread_statistics

Variable Type numeric

Scope Global/Session

The Com_show_thread_statistics statement counter variable indicates the number of times the statement
SHOW THREAD_STATISTICS has been executed.

56.5. Commands Provided 158

Percona Server Documentation, Release 8.0.18-9

variable Com_show_user_statistics

Variable Type numeric

Scope Global/Session

The Com_show_user_statistics statement counter variable indicates the number of times the statement SHOW
USER_STATISTICS has been executed.

56.6. Status Variables 159

CHAPTER

FIFTYSEVEN

SLOW QUERY LOG

This feature adds microsecond time resolution and additional statistics to the slow query log output. It lets you enable
or disable the slow query log at runtime, adds logging for the slave SQL thread, and adds fine-grained control over
what and how much to log into the slow query log.

You can use Percona-Toolkit‘s pt-query-digest tool to aggregate similar queries together and report on those that
consume the most execution time.

Version Specific Information

• 8.0.12-1:

– Feature ported from Percona Server for MySQL 5.7.

System Variables

variable log_slow_filter

Command Line Yes

Config File Yes

Scope Global, Session

Dynamic Yes

Filters the slow log by the query’s execution plan. The value is a comma-delimited string, and can contain any
combination of the following values:

• full_scan: The query performed a full table scan.

• full_join: The query performed a full join (a join without indexes).

• tmp_table: The query created an implicit internal temporary table.

• tmp_table_on_disk: The query’s temporary table was stored on disk.

• filesort: The query used a filesort.

• filesort_on_disk: The filesort was performed on disk.

Values are OR’ed together. If the string is empty, then the filter is disabled. If it is not empty, then queries will only be
logged to the slow log if their execution plan matches one of the types of plans present in the filter.

160

http://www.percona.com/doc/percona-toolkit/2.1/pt-query-digest.html

Percona Server Documentation, Release 8.0.18-9

For example, to log only queries that perform a full table scan, set the value to full_scan. To log only
queries that use on-disk temporary storage for intermediate results, set the value to tmp_table_on_disk,
filesort_on_disk.

variable log_slow_rate_type

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Enumerated

Default Value session

Range session, query

Specifies semantic of log_slow_rate_limit - session or query.

variable log_slow_rate_limit

Command Line Yes

Config File Yes

Scope Global, session

Dynamic Yes

Default Value 1

Range 1-1000

Behavior of this variable depends from log_slow_rate_type.

Specifies that only a fraction of session/query should be logged. Logging is enabled for every nth
session/query. By default, n is 1, so logging is enabled for every session/query. Please note: when
log_slow_rate_type is session rate limiting is disabled for the replication thread.

Logging all queries might consume I/O bandwidth and cause the log file to grow large.

• When log_slow_rate_type is session, this option lets you log full sessions, so you have complete
records of sessions for later analysis; but you can rate-limit the number of sessions that are logged. Note
that this feature will not work well if your application uses any type of connection pooling or persistent
connections. Note that you change log_slow_rate_limit in session mode, you should reconnect
for get effect.

• When log_slow_rate_type is query, this option lets you log just some queries for later analysis.
For example, if you set the value to 100, then one percent of queries will be logged.

Note that every query has global unique query_id and every connection can has it own (session)
log_slow_rate_limit. Decision “log or no” calculated in following manner:

• if log_slow_rate_limit is 1 - log every query

• If log_slow_rate_limit > 1 - randomly log every 1/log_slow_rate_limit query.

This allows flexible setup logging behavior.

For example, if you set the value to 100, then one percent of sessions/queries will be logged. In Percona Server
for MySQL information about the log_slow_rate_limit has been added to the slow query log. This means that
if the log_slow_rate_limit is effective it will be reflected in the slow query log for each written query. Example
of the output looks like this:

57.2. System Variables 161

Percona Server Documentation, Release 8.0.18-9

Log_slow_rate_type: query Log_slow_rate_limit: 10

variable log_slow_sp_statements

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Boolean

Default Value TRUE

Range TRUE/FALSE

If TRUE, statements executed by stored procedures are logged to the slow if it is open.

Percona Server for MySQL implemented improvements for logging of stored procedures to the slow query log:

• Each query from a stored procedure is now logged to the slow query log individually

• CALL itself isn’t logged to the slow query log anymore as this would be counting twice for the same query
which would lead to incorrect results

• Queries that were called inside of stored procedures are annotated in the slow query log with the stored
procedure name in which they run.

Example of the improved stored procedure slow query log entry:

mysql> DELIMITER //
mysql> CREATE PROCEDURE improved_sp_log()

BEGIN
SELECT * FROM City;
SELECT * FROM Country;

END//
mysql> DELIMITER ;
mysql> CALL improved_sp_log();

When we check the slow query log after running the stored procedure ,with variable:log_slow_sp_statements set to
TRUE, it should look like this:

Time: 150109 11:38:55
User@Host: root[root] @ localhost []
Thread_id: 40 Schema: world Last_errno: 0 Killed: 0
Query_time: 0.012989 Lock_time: 0.000033 Rows_sent: 4079 Rows_examined: 4079
→˓Rows_affected: 0 Rows_read: 4079
Bytes_sent: 161085
Stored routine: world.improved_sp_log
SET timestamp=1420803535;
SELECT * FROM City;
User@Host: root[root] @ localhost []
Thread_id: 40 Schema: world Last_errno: 0 Killed: 0
Query_time: 0.001413 Lock_time: 0.000017 Rows_sent: 4318 Rows_examined: 4318
→˓Rows_affected: 0 Rows_read: 4318
Bytes_sent: 194601
Stored routine: world.improved_sp_log
SET timestamp=1420803535;

57.2. System Variables 162

Percona Server Documentation, Release 8.0.18-9

If variable log_slow_sp_statements is set to FALSE:

• Entry is added to a slow-log for a CALL statement only and not for any of the individual statements run in that
stored procedure

• Execution time is reported for the CALL statement as the total execution time of the CALL including all its
statements

If we run the same stored procedure with the variable log_slow_sp_statements is set to FALSE slow query
log should look like this:

Time: 150109 11:51:42
User@Host: root[root] @ localhost []
Thread_id: 40 Schema: world Last_errno: 0 Killed: 0
Query_time: 0.013947 Lock_time: 0.000000 Rows_sent: 4318 Rows_examined: 4318
→˓Rows_affected: 0 Rows_read: 4318
Bytes_sent: 194612
SET timestamp=1420804302;
CALL improved_sp_log();

Note: Support for logging stored procedures doesn’t involve triggers, so they won’t be logged even if this feature is
enabled.

variable log_slow_verbosity

Command Line Yes

Config File Yes

Scope Global, session

Dynamic Yes

Specifies how much information to include in your slow log. The value is a comma-delimited string, and can contain
any combination of the following values:

• microtime: Log queries with microsecond precision.

• query_plan: Log information about the query’s execution plan.

• innodb: Log InnoDB statistics.

• minimal: Equivalent to enabling just microtime.

• standard: Equivalent to enabling microtime,innodb.

• full: Equivalent to all other values OR’ed together without the profiling and
profiling_use_getrusage options.

• profiling: Enables profiling of all queries in all connections.

• profiling_use_getrusage: Enables usage of the getrusage function.

Values are OR’ed together.

For example, to enable microsecond query timing and InnoDB statistics, set this option to microtime,innodb or
standard. To turn all options on, set the option to full.

variable slow_query_log_use_global_control

Command Line Yes

Config File Yes

57.2. System Variables 163

Percona Server Documentation, Release 8.0.18-9

Scope Global

Dynamic Yes

Default Value None

Specifies which variables have global scope instead of local. For such variables, the global variable value is used in
the current session, but without copying this value to the session value. Value is a “flag” variable - you can specify
multiple values separated by commas

• none: All variables use local scope

• log_slow_filter: Global variable log_slow_filter has effect (instead of local)

• log_slow_rate_limit: Global variable log_slow_rate_limit has effect (instead of local)

• log_slow_verbosity: Global variable log_slow_verbosity has effect (instead of local)

• long_query_time: Global variable long_query_time has effect (instead of local)

• min_examined_row_limit: Global variable min_examined_row_limit has effect (instead of local)

• all Global variables has effect (instead of local)

variable slow_query_log_always_write_time

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Default Value 10

This variable can be used to specify the query execution time after which the query will be written to the slow query
log. It can be used to specify an additional execution time threshold for the slow query log, that, when exceeded, will
cause a query to be logged unconditionally, that is, log_slow_rate_limit will not apply to it.

Other Information

Changes to the Log Format

The feature adds more information to the slow log output. Here is a sample log entry:

Time: 130601 8:01:06.058915
User@Host: root[root] @ localhost [] Id: 42
Schema: imdb Last_errno: 0 Killed: 0
Query_time: 7.725616 Lock_time: 0.000328 Rows_sent: 4 Rows_examined: 1543720
→˓Rows_affected: 0
Bytes_sent: 272 Tmp_tables: 0 Tmp_disk_tables: 0 Tmp_table_sizes: 0
Full_scan: Yes Full_join: No Tmp_table: No Tmp_table_on_disk: No
Filesort: No Filesort_on_disk: No Merge_passes: 0
SET timestamp=1370073666;
SELECT id,title,production_year FROM title WHERE title = 'Bambi';

Another example (log_slow_verbosity =profiling):

57.3. Other Information 164

Percona Server Documentation, Release 8.0.18-9

Time: 130601 8:03:20.700441
User@Host: root[root] @ localhost [] Id: 43
Schema: imdb Last_errno: 0 Killed: 0
Query_time: 7.815071 Lock_time: 0.000261 Rows_sent: 4 Rows_examined: 1543720
→˓Rows_affected: 0
Bytes_sent: 272
Profile_starting: 0.000125 Profile_starting_cpu: 0.000120
Profile_checking_permissions: 0.000021 Profile_checking_permissions_cpu: 0.000021
Profile_Opening_tables: 0.000049 Profile_Opening_tables_cpu: 0.000048 Profile_init: 0.
→˓000048
Profile_init_cpu: 0.000049 Profile_System_lock: 0.000049 Profile_System_lock_cpu: 0.
→˓000048
Profile_optimizing: 0.000024 Profile_optimizing_cpu: 0.000024 Profile_statistics: 0.
→˓000036
Profile_statistics_cpu: 0.000037 Profile_preparing: 0.000029 Profile_preparing_cpu: 0.
→˓000029
Profile_executing: 0.000012 Profile_executing_cpu: 0.000012 Profile_Sending_data: 7.
→˓814583
Profile_Sending_data_cpu: 7.811634 Profile_end: 0.000013 Profile_end_cpu: 0.000012
Profile_query_end: 0.000014 Profile_query_end_cpu: 0.000014 Profile_closing_tables: 0.
→˓000023
Profile_closing_tables_cpu: 0.000023 Profile_freeing_items: 0.000051
Profile_freeing_items_cpu: 0.000050 Profile_logging_slow_query: 0.000006
Profile_logging_slow_query_cpu: 0.000006
Profile_total: 7.815085 Profile_total_cpu: 7.812127
SET timestamp=1370073800;
SELECT id,title,production_year FROM title WHERE title = 'Bambi';

Notice that the Killed: `` keyword is followed by zero when the query successfully
completes. If the query was killed, the ``Killed: keyword is followed by a number other than
zero:

Killed Numeric Code Exception
0 NOT_KILLED
1 KILL_BAD_DATA
1053 ER_SERVER_SHUTDOWN (see MySQL Documentation)
1317 ER_QUERY_INTERRUPTED (see MySQL Documentation)
3024 ER_QUERY_TIMEOUT (see MySQL Documentation)
Any other number KILLED_NO_VALUE (Catches all other cases)

See also:

MySQL Documentation: MySQL Server Error Codes https://dev.mysql.com/doc/refman/8.0/en/
server-error-reference.html

Connection and Schema Identifier

Each slow log entry now contains a connection identifier, so you can trace all the queries coming from a single
connection. This is the same value that is shown in the Id column in SHOW FULL PROCESSLIST or returned from
the CONNECTION_ID() function.

Each entry also contains a schema name, so you can trace all the queries whose default database was set to a particular
schema.

Id: 43 Schema: imdb

57.3. Other Information 165

https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-error-reference.html

Percona Server Documentation, Release 8.0.18-9

Microsecond Time Resolution and Extra Row Information

This is the original functionality offered by the microslow feature. Query_time and Lock_time are logged
with microsecond resolution.

The feature also adds information about how many rows were examined for SELECT queries, and how many were
analyzed and affected for UPDATE, DELETE, and INSERT queries,

Query_time: 0.962742 Lock_time: 0.000202 Rows_sent: 4 Rows_examined: 1543719
→˓Rows_affected: 0

Values and context:

• Rows_examined: Number of rows scanned - SELECT

• Rows_affected: Number of rows changed - UPDATE, DELETE, INSERT

Memory Footprint

The feature provides information about the amount of bytes sent for the result of the query and the number of temporary
tables created for its execution - differentiated by whether they were created on memory or on disk - with the total
number of bytes used by them.

Bytes_sent: 8053 Tmp_tables: 1 Tmp_disk_tables: 0 Tmp_table_sizes: 950528

Values and context:

• Bytes_sent: The amount of bytes sent for the result of the query

• Tmp_tables: Number of temporary tables created on memory for the query

• Tmp_disk_tables: Number of temporary tables created on disk for the query

• Tmp_table_sizes: Total Size in bytes for all temporary tables used in the query

Query Plan Information

Each query can be executed in various ways. For example, it may use indexes or do a full table scan, or a temporary
table may be needed. These are the things that you can usually see by running EXPLAIN on the query. The feature
will now allow you to see the most important facts about the execution in the log file.

Full_scan: Yes Full_join: No Tmp_table: No Tmp_table_on_disk: No
Filesort: No Filesort_on_disk: No Merge_passes: 0

The values and their meanings are documented with the log_slow_filter option.

InnoDB Usage Information

The final part of the output is the InnoDB usage statistics. MySQL currently shows many per-session statistics for
operations with SHOW SESSION STATUS, but that does not include those of InnoDB, which are always global and
shared by all threads. This feature lets you see those values for a given query.

InnoDB_IO_r_ops: 6415 InnoDB_IO_r_bytes: 105103360 InnoDB_IO_r_wait: 0.001279
InnoDB_rec_lock_wait: 0.000000 InnoDB_queue_wait: 0.000000
InnoDB_pages_distinct: 6430

57.3. Other Information 166

Percona Server Documentation, Release 8.0.18-9

Values:

• innodb_IO_r_ops: Counts the number of page read operations scheduled. The actual number of read
operations may be different, but since this can be done asynchronously, there is no good way to measure it.

• innodb_IO_r_bytes: Similar to innodb_IO_r_ops, but the unit is bytes.

• innodb_IO_r_wait: Shows how long (in seconds) it took InnoDB to actually read the data from storage.

• innodb_rec_lock_wait: Shows how long (in seconds) the query waited for row locks.

• innodb_queue_wait: Shows how long (in seconds) the query spent either waiting to enter the InnoDB
queue or inside that queue waiting for execution.

• innodb_pages_distinct: Counts approximately the number of unique pages the query accessed. The
approximation is based on a small hash array representing the entire buffer pool, because it could take a lot of
memory to map all the pages. The inaccuracy grows with the number of pages accessed by a query, because
there is a higher probability of hash collisions.

If the query did not use InnoDB tables, that information is written into the log instead of the above statistics.

Related Reading

• Impact of logging on MySQL’s performance

• log_slow_filter Usage

• Blueprint in Launchpad

57.4. Related Reading 167

http://www.mysqlperformanceblog.com/2009/02/10/impact-of-logging-on-mysql%E2%80%99s-performance/
http://www.mysqlperformanceblog.com/2008/09/22/finding-what-created_tmp_disk_tables-with-log_slow_filter/
https://blueprints.launchpad.net/percona-server/+spec/microseconds-in-query-log

CHAPTER

FIFTYEIGHT

EXTENDED SHOW ENGINE INNODB STATUS

This feature reorganizes the output of SHOW ENGINE INNODB STATUS to improve readability and to provide
additional information. The variable innodb_show_locks_held controls the umber of locks held to print for
each InnoDB transaction.

This feature modified the SHOW ENGINE INNODB STATUS command as follows:

• Added extended information about InnoDB internal hash table sizes (in bytes) in the BUFFER POOL AND
MEMORY section; also added buffer pool size in bytes.

• Added additional LOG section information.

Other Information

• Author / Origin: Baron Schwartz, http://lists.mysql.com/internals/35174

System Variables

variable innodb_show_locks_held

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type ULONG

Default Value 10

Range 0 - 1000

Specifies the number of locks held to print for each InnoDB transaction in SHOW ENGINE INNODB STATUS.

variable innodb_print_lock_wait_timeout_info

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Boolean

168

http://lists.mysql.com/internals/35174

Percona Server Documentation, Release 8.0.18-9

Default Value OFF

Makes InnoDB to write information about all lock wait timeout errors into the log file.

This allows to find out details about the failed transaction, and, most importantly, the blocking transaction. Query
string can be obtained from performance_schema.events_statements_current table, based on the
PROCESSLIST_ID field, which corresponds to thread_id from the log output.

Taking into account that blocking transaction is often a multiple statement one, folowing query can be used to obtain
blocking thread statements history:

SELECT s.SQL_TEXT FROM performance_schema.events_statements_history s
INNER JOIN performance_schema.threads t ON t.THREAD_ID = s.THREAD_ID
WHERE t.PROCESSLIST_ID = %d
UNION
SELECT s.SQL_TEXT FROM performance_schema.events_statements_current s
INNER JOIN performance_schema.threads t ON t.THREAD_ID = s.THREAD_ID
WHERE t.PROCESSLIST_ID = %d;

(PROCESSLIST_ID in this example is exactly the thread id from error log output).

Status Variables

The status variables here contain information available in the output of SHOW ENGINE INNODB STATUS, orga-
nized by the sections SHOW ENGINE INNODB STATUS displays. If you are familiar with the output of SHOW
ENGINE INNODB STATUS, you will probably already recognize the information these variables contain.

BACKGROUND THREAD

The following variables contain information in the BACKGROUND THREAD section of the output from SHOW
ENGINE INNODB STATUS. An example of that output is:

BACKGROUND THREAD

srv_master_thread loops: 1 srv_active, 0 srv_shutdown, 11844 srv_idle
srv_master_thread log flush and writes: 11844

InnoDB has a master thread which performs background tasks depending on the server state, once per second. If the
server is under workload, the master thread runs the following: performs background table drops; performs change
buffer merge, adaptively; flushes the redo log to disk; evicts tables from the dictionary cache if needed to satisfy its
size limit; makes a checkpoint. If the server is idle: performs background table drops, flushes and/or checkpoints the
redo log if needed due to the checkpoint age; performs change buffer merge at full I/O capacity; evicts tables from the
dictionary cache if needed; and makes a checkpoint.

variable Innodb_master_thread_active_loops

Variable Type Numeric

Scope Global

This variable shows the number of times the above one-second loop was executed for active server states.

variable Innodb_master_thread_idle_loops

Variable Type Numeric

Scope Global

58.3. Status Variables 169

Percona Server Documentation, Release 8.0.18-9

This variable shows the number of times the above one-second loop was executed for idle server states.

variable Innodb_background_log_sync

Variable Type Numeric

Scope Global

This variable shows the number of times the InnoDB master thread has written and flushed the redo log.

SEMAPHORES

The following variables contain information in the SEMAPHORES section of the output from SHOW ENGINE
INNODB STATUS. An example of that output is:

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 9664, signal count 11182
Mutex spin waits 20599, rounds 223821, OS waits 4479
RW-shared spins 5155, OS waits 1678; RW-excl spins 5632, OS waits 2592
Spin rounds per wait: 10.87 mutex, 15.01 RW-shared, 27.19 RW-excl

INSERT BUFFER AND ADAPTIVE HASH INDEX

The following variables contain information in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of
the output from SHOW ENGINE INNODB STATUS. An example of that output is:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 6089, seg size 6091,
44497 inserts, 44497 merged recs, 8734 merges
0.00 hash searches/s, 0.00 non-hash searches/s

variable Innodb_ibuf_free_list

Variable Type Numeric

Scope Global

variable Innodb_ibuf_segment_size

Variable Type Numeric

Scope Global

LOG

The following variables contain information in the LOG section of the output from SHOW ENGINE INNODB
STATUS. An example of that output is:

LOG

Log sequence number 10145937666
Log flushed up to 10145937666
Pages flushed up to 10145937666

58.3. Status Variables 170

Percona Server Documentation, Release 8.0.18-9

Last checkpoint at 10145937666
Max checkpoint age 80826164
Checkpoint age target 78300347
Modified age 0
Checkpoint age 0
0 pending log writes, 0 pending chkp writes
9 log i/o's done, 0.00 log i/o's/second
Log tracking enabled
Log tracked up to 10145937666
Max tracked LSN age 80826164

variable Innodb_lsn_current

Variable Type Numeric

Scope Global

This variable shows the current log sequence number.

variable Innodb_lsn_flushed

Variable Type Numeric

Scope Global

This variable shows the current maximum LSN that has been written and flushed to disk.

variable Innodb_lsn_last_checkpoint

Variable Type Numeric

Scope Global

This variable shows the LSN of the latest completed checkpoint.

variable Innodb_checkpoint_age

Variable Type Numeric

Scope Global

This variable shows the current InnoDB checkpoint age, i.e., the difference between the current LSN and the LSN of
the last completed checkpoint.

variable Innodb_checkpoint_max_age

Variable Type Numeric

Scope Global

This variable shows the maximum allowed checkppoint age above which the redo log is close to full and a checkpoint
must happen before any further redo log writes.

BUFFER POOL AND MEMORY

The following variables contain information in the BUFFER POOL AND MEMORY section of the output from SHOW
ENGINE INNODB STATUS. An example of that output is:

BUFFER POOL AND MEMORY

Total memory allocated 137363456; in additional pool allocated 0
Total memory allocated by read views 88

58.3. Status Variables 171

Percona Server Documentation, Release 8.0.18-9

Internal hash tables (constant factor + variable factor)
Adaptive hash index 2266736 (2213368 + 53368)
Page hash 139112 (buffer pool 0 only)
Dictionary cache 729463 (554768 + 174695)
File system 824800 (812272 + 12528)
Lock system 333248 (332872 + 376)
Recovery system 0 (0 + 0)

Dictionary memory allocated 174695
Buffer pool size 8191
Buffer pool size, bytes 134201344
Free buffers 7481
Database pages 707
Old database pages 280
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0 single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 707, created 0, written 1
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 707, unzip_LRU len: 0

variable Innodb_mem_adaptive_hash

Variable Type Numeric

Scope Global

This variable shows the current size, in bytes, of the adaptive hash index.

variable Innodb_mem_dictionary

Variable Type Numeric

Scope Global

This variable shows the current size, in bytes, of the InnoDB in-memory data dictionary info.

variable Innodb_mem_total

Variable Type Numeric

Scope Global

This variable shows the total amount of memory, in bytes, InnoDB has allocated in the process heap memory.

variable Innodb_buffer_pool_pages_LRU_flushed

Variable Type Numeric

Scope Global

This variable shows the total number of buffer pool pages which have been flushed from the LRU list, i.e., too old
pages which had to be flushed in order to make buffer pool room to read in new data pages.

variable Innodb_buffer_pool_pages_made_not_young

Variable Type Numeric

Scope Global

This variable shows the number of times a buffer pool page was not marked as accessed recently in the LRU list
because of innodb_old_blocks_time variable setting.

58.3. Status Variables 172

Percona Server Documentation, Release 8.0.18-9

variable Innodb_buffer_pool_pages_made_young

Variable Type Numeric

Scope Global

This variable shows the number of times a buffer pool page was moved to the young end of the LRU list due to its
access, to prevent its eviction from the buffer pool.

variable Innodb_buffer_pool_pages_old

Variable Type Numeric

Scope Global

This variable shows the total number of buffer pool pages which are considered to be old according to the Making the
Buffer Pool Scan Resistant manual page.

TRANSACTIONS

The following variables contain information in the TRANSACTIONS section of the output from SHOW INNODB
STATUS. An example of that output is:

TRANSACTIONS

Trx id counter F561FD
Purge done for trx's n:o < F561EB undo n:o < 0
History list length 19
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0, not started, process no 993, OS thread id 140213152634640
mysql thread id 15933, query id 32109 localhost root
show innodb status
---TRANSACTION F561FC, ACTIVE 29 sec, process no 993, OS thread id 140213152769808
→˓updating or deleting
mysql tables in use 1, locked 1

variable Innodb_max_trx_id

Variable Type Numeric

Scope Global

This variable shows the next free transaction id number.

variable Innodb_oldest_view_low_limit_trx_id

Variable Type Numeric

Scope Global

This variable shows the highest transaction id, above which the current oldest open read view does not see any trans-
action changes. Zero if there is no open view.

variable Innodb_purge_trx_id

Variable Type Numeric

Scope Global

This variable shows the oldest transaction id whose records have not been purged yet.

variable Innodb_purge_undo_no

58.3. Status Variables 173

https://dev.mysql.com/doc/refman/8.0/en/innodb-performance-midpoint_insertion.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-performance-midpoint_insertion.html

Percona Server Documentation, Release 8.0.18-9

Variable Type Numeric

Scope Global

INFORMATION_SCHEMA Tables

The following table contains information about the oldest active transaction in the system.

table INFORMATION_SCHEMA.XTRADB_READ_VIEW

Columns

• READ_VIEW_LOW_LIMIT_TRX_NUMBER – This is the highest transactions number at
the time the view was created.

• READ_VIEW_UPPER_LIMIT_TRX_ID – This is the highest transactions ID at the time
the view was created. This means that it should not see newer transactions with IDs bigger
than or equal to that value.

• READ_VIEW_LOW_LIMIT_TRX_ID – This is the latest committed transaction ID at the
time the oldest view was created. This means that it should see all transactions with IDs
smaller than or equal to that value.

The following table contains information about the memory usage for InnoDB/XtraDB hash tables.

table INFORMATION_SCHEMA.XTRADB_INTERNAL_HASH_TABLES

Columns

• INTERNAL_HASH_TABLE_NAME – Hash table name

• TOTAL_MEMORY – Total amount of memory

• CONSTANT_MEMORY – Constant memory

• VARIABLE_MEMORY – Variable memory

Other reading

• SHOW INNODB STATUS walk through

• Table locks in SHOW INNODB STATUS

58.4. INFORMATION_SCHEMA Tables 174

http://www.mysqlperformanceblog.com/2006/07/17/show-innodb-status-walk-through/
http://www.mysqlperformanceblog.com/2010/06/08/table-locks-in-show-innodb-status/

CHAPTER

FIFTYNINE

SHOW STORAGE ENGINES

This feature changes the comment field displayed when the SHOW STORAGE ENGINES command is executed and
XtraDB is the storage engine.

Before the Change:

mysql> show storage engines;
+------------+---------+--
→˓--+--------------+------+------------+
| Engine | Support | Comment
→˓ | Transactions | XA | Savepoints |
+------------+---------+--
→˓--+--------------+------+------------+
| InnoDB | YES | Supports transactions, row-level locking, and foreign keys
→˓ | YES | YES | YES |
...
+------------+---------+--
→˓--+--------------+------+------------+

After the Change:

mysql> show storage engines;
+------------+---------+--
→˓--------------+--------------+------+------------+
| Engine | Support | Comment
→˓ | Transactions | XA | Savepoints |
+------------+---------+--
→˓--------------+--------------+------+------------+
| InnoDB | YES | Percona-XtraDB, Supports transactions, row-level locking,
→˓and foreign keys | YES | YES | YES |
...
+------------+---------+--
→˓--------------+--------------+------+------------+

Version-Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7

175

CHAPTER

SIXTY

PROCESS LIST

This page describes Percona changes to both the standard MySQL SHOW PROCESSLIST command and the standard
MySQL INFORMATION_SCHEMA table PROCESSLIST.

Version Specific Information

• 8.0.12-1:

– Feature ported from Percona Server for MySQL 5.7

INFORMATION_SCHEMA Tables

table INFORMATION_SCHEMA.PROCESSLIST
This table implements modifications to the standard MySQL INFORMATION_SCHEMA table PROCESSLIST.

Columns

• ID – The connection identifier.

• USER – The MySQL user who issued the statement.

• HOST – The host name of the client issuing the statement.

• DB – The default database, if one is selected, otherwise NULL.

• COMMAND – The type of command the thread is executing.

• TIME – The time in seconds that the thread has been in its current state.

• STATE – An action, event, or state that indicates what the thread is doing.

• INFO – The statement that the thread is executing, or NULL if it is not executing any
statement.

• TIME_MS – The time in milliseconds that the thread has been in its current state.

• ROWS_EXAMINED – The number of rows examined by the statement being executed
(NOTE: This column is not updated for each examined row so it does not necessarily show
an up-to-date value while the statement is executing. It only shows a correct value after the
statement has completed.).

• ROWS_SENT – The number of rows sent by the statement being executed.

• TID – The Linux Thread ID. For Linux, this corresponds to light-weight process ID (LWP
ID) and can be seen in the ps -L output. In case when Thread Pool is enabled, “TID” is not
null for only currently executing statements and statements received via “extra” connection.

176

Percona Server Documentation, Release 8.0.18-9

Example Output

Table PROCESSLIST:

mysql> SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST;

+----+------+-----------+--------------------+---------+------+-----------+-----------
→˓----------------+---------+-----------+---------------+
| ID | USER | HOST | DB | COMMAND | TIME | STATE | INFO
→˓ | TIME_MS | ROWS_SENT | ROWS_EXAMINED |
+----+------+-----------+--------------------+---------+------+-----------+-----------
→˓----------------+---------+-----------+---------------+
| 12 | root | localhost | information_schema | Query | 0 | executing | select *
→˓from processlist | 0 | 0 | 0 |
+----+------+-----------+--------------------+---------+------+-----------+-----------
→˓----------------+---------+-----------+---------------+

60.3. Example Output 177

CHAPTER

SIXTYONE

MISC. INFORMATION_SCHEMA TABLES

This page lists the INFORMATION_SCHEMA tables added to standard MySQL by Percona Server for MySQL that
don’t exist elsewhere in the documentation.

Temporary tables

Note: This feature implementation is considered ALPHA quality.

Only the temporary tables that were explicitly created with CREATE TEMPORARY TABLE or ALTER TABLE are
shown, and not the ones created to process complex queries.

table INFORMATION_SCHEMA.GLOBAL_TEMPORARY_TABLES

Version Info

• 8.0.12-1 – Feature ported from Percona Server for MySQL 5.7

Columns

• SESSION_ID – MySQL connection id

• TABLE_SCHEMA – Schema in which the temporary table is created

• TABLE_NAME – Name of the temporary table

• ENGINE – Engine of the temporary table

• NAME – Internal name of the temporary table

• TABLE_ROWS – Number of rows of the temporary table

• AVG_ROW_LENGTH – Average row length of the temporary table

• DATA_LENGTH – Size of the data (Bytes)

• INDEX_LENGTH – Size of the indexes (Bytes)

• CREATE_TIME – Date and time of creation of the temporary table

• UPDATE_TIME – Date and time of the latest update of the temporary table

This table holds information on the temporary tables that exist for all connections. You don’t need the SUPER privilege
to query this table.

table INFORMATION_SCHEMA.TEMPORARY_TABLES

Version Info

178

Percona Server Documentation, Release 8.0.18-9

• 8.0.12-1 – Feature ported from Percona Server for MySQL 5.7

Columns

• SESSION_ID – MySQL connection id

• TABLE_SCHEMA – Schema in which the temporary table is created

• TABLE_NAME – Name of the temporary table

• ENGINE – Engine of the temporary table

• NAME – Internal name of the temporary table

• TABLE_ROWS – Number of rows of the temporary table

• AVG_ROW_LENGTH – Average row length of the temporary table

• DATA_LENGTH – Size of the data (Bytes)

• INDEX_LENGTH – Size of the indexes (Bytes)

• CREATE_TIME – Date and time of creation of the temporary table

• UPDATE_TIME – Date and time of the latest update of the temporary table

This table holds information on the temporary tables existing for the running connection.

61.1. Temporary tables 179

CHAPTER

SIXTYTWO

THREAD BASED PROFILING

Percona Server for MySQL now uses thread based profiling by default, instead of process based profiling. This was
implemented because with process based profiling, threads on the server, other than the one being profiled, can affect
the profiling information.

Thread based profiling is using the information provided by the kernel getrusage function. Since the 2.6.26 kernel
version, thread based resource usage is available with the RUSAGE_THREAD. This means that the thread based
profiling will be used if you’re running the 2.6.26 kernel or newer, or if the RUSAGE_THREAD has been ported
back.

This feature is enabled by default if your system supports it, in other cases it uses process based profiling.

Version Specific Information

• 8.0.12-1: Feature ported from Percona Server for MySQL 5.7

180

http://kernel.org/doc/man-pages/online/pages/man2/getrusage.2.html

CHAPTER

SIXTYTHREE

INNODB PAGE FRAGMENTATION COUNTERS

InnoDB page fragmentation is caused by random insertion or deletion from a secondary index. This means that the
physical ordering of the index pages on the disk is not same as the index ordering of the records on the pages. As a
consequence this means that some pages take a lot more space and that queries which require a full table scan can take
a long time to finish.

To provide more information about the InnoDB page fragmentation Per-
cona Server for MySQL now provides the following counters as status vari-
ables: Innodb_scan_pages_contiguous, Innodb_scan_pages_disjointed,
Innodb_scan_data_size, Innodb_scan_deleted_recs_size, and
Innodb_scan_pages_total_seek_distance.

Version Specific Information

• 8.0.12-1: The feature was ported from Percona Server for MySQL 5.7

Status Variables

variable Innodb_scan_pages_contiguous

Variable Type Numeric

Scope Session

This variable shows the number of contiguous page reads inside a query.

variable Innodb_scan_pages_disjointed

Variable Type Numeric

Scope Session

This variable shows the number of disjointed page reads inside a query.

variable Innodb_scan_data_size

Variable Type Numeric

Scope Session

This variable shows the size of data in all InnoDB pages read inside a query (in bytes) - calculated as the sum of
page_get_data_size(page) for every page scanned.

variable Innodb_scan_deleted_recs_size

Variable Type Numeric

181

Percona Server Documentation, Release 8.0.18-9

Scope Session

This variable shows the size of deleted records (marked as deleted in page_delete_rec_list_end()) in
all InnoDB pages read inside a query (in bytes) - calculated as the sum of page_header_get_field(page,
PAGE_GARBAGE) for every page scanned.

variable Innodb_scan_pages_total_seek_distance

Variable Type Numeric

Scope Session

This variable shows the total seek distance when moving between pages.

Related Reading

• InnoDB: look after fragmentation

• Defragmenting a Table

63.3. Related Reading 182

https://www.percona.com/blog/2009/11/05/innodb-look-after-fragmentation/
https://dev.mysql.com/doc/refman/8.0/en/innodb-file-defragmenting.html

Part X

TokuDB

183

CHAPTER

SIXTYFOUR

TOKUDB INTRODUCTION

Availability TokuDB is deprecated in the 8.0 series and will be supported through the 8.0 series until
further notice. This storage engine will not be included in the next major release of Percona Server
for MySQL. We recommend MyRocks as a long-term migration path.

TokuDB is a highly scalable, zero-maintenance downtime MySQL storage engine that delivers indexing-based query
acceleration, improved replication performance, unparalleled compression, and live schema modification. The TokuDB
storage engine is a scalable, ACID and MVCC compliant storage engine that provides indexing-based query improve-
ments, offers online schema modifications, and reduces slave lag for both hard disk drives and flash memory. This
storage engine is specifically designed for high performance on write-intensive workloads which is achieved with
Fractal Tree indexing.

Percona Server for MySQL is compatible with the separately available TokuDB storage engine package. The TokuDB
engine must be separately downloaded and then enabled as a plug-in component. This package can be installed
alongside with standard Percona Server for MySQL releases and does not require any specially adapted version of
Percona Server for MySQL.

Warning: Only the Percona supplied TokuDB engine should be used with Percona Server for MySQL. A TokuDB
engine downloaded from other sources is not compatible. TokuDB file formats are not the same across MySQL
variants. Migrating from one variant to any other variant requires a logical data dump and reload.

Additional features unique to TokuDB include:

• Up to 25x Data Compression

• Fast Inserts

• Eliminates Slave Lag with Read Free Replication

• Hot Schema Changes

• Hot Index Creation - TokuDB tables support insertions, deletions and queries with no down time while indexes
are being added to that table

• Hot column addition, deletion, expansion, and rename - TokuDB tables support insertions, deletions and queries
without down-time when an alter table adds, deletes, expands, or renames columns

• On-line Backup

For more information on installing and using TokuDB click on the following links:

184

http://www.percona.com/downloads/Percona-Server-8.0/LATEST/

Percona Server Documentation, Release 8.0.18-9

TokuDB Installation

Percona Server for MySQL is compatible with the separately available TokuDB storage engine package. The TokuDB
engine must be separately downloaded and then enabled as a plug-in component. This package can be installed
alongside with standard Percona Server for MySQL 8.0 releases and does not require any specially adapted version of
Percona Server for MySQL.

The TokuDB storage engine is a scalable, ACID and MVCC compliant storage engine that provides indexing-based
query improvements, offers online schema modifications, and reduces slave lag for both hard disk drives and flash
memory. This storage engine is specifically designed for high performance on write-intensive workloads which is
achieved with Fractal Tree indexing. To learn more about Fractal Tree indexing, you can visit the following Wikipedia
page.

Warning: Only the Percona supplied TokuDB engine should be used with Percona Server for MySQL 8.0. A
TokuDB engine downloaded from other sources is not compatible. TokuDB file formats are not the same across
MySQL variants. Migrating from one variant to any other variant requires a logical data dump and reload.

Prerequisites

libjemalloc library

TokuDB storage engine requires libjemalloc library 3.3.0 or greater. If the version in the distribution repository
is lower than that you can use one from Percona Software Repositories or download it from somewhere else.

If the libjemallocwasn’t installed and enabled before it will be automatically installed when installing the TokuDB
storage engine package by using the apt` or yum package manager, but Percona Server for MySQL instance should
be restarted for libjemalloc to be loaded. This way libjemalloc will be loaded with LD_PRELOAD. You can
also enable libjemalloc by specifying malloc-lib variable in the [mysqld_safe] section of the my.cnf
file:

[mysqld_safe]
malloc-lib= /path/to/jemalloc

Transparent huge pages

TokuDB won’t be able to start if the transparent huge pages are enabled. Transparent huge pages is feature available
in the newer kernel versions. You can check if the Transparent huge pages are enabled with: cat /sys/kernel/
mm/transparent_hugepage/enabled

Output

[always] madvise never

If transparent huge pages are enabled and you try to start the TokuDB engine you’ll get the following message in you
error.log:

Transparent huge pages are enabled, according to /sys/kernel/mm/redhat_transparent_
→˓hugepage/enabled
Transparent huge pages are enabled, according to /sys/kernel/mm/transparent_hugepage/
→˓enabled

64.1. TokuDB Installation 185

http://en.wikipedia.org/wiki/Fractal_tree_index
http://en.wikipedia.org/wiki/Fractal_tree_index
http://www.percona.com/downloads/Percona-Server-8.0/LATEST/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-memory-transhuge.html

Percona Server Documentation, Release 8.0.18-9

You can disable transparent huge pages permanently by passing transparent_hugepage=never to the kernel
in your bootloader (NOTE: For this change to take an effect you’ll need to reboot your server).

You can disable the transparent huge pages by running the following command as root (NOTE: Setting this will last
only until the server is rebooted):

echo never > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/defrag

Installation

The TokuDB storage engine for Percona Server for MySQL is currently available in our apt and yum repositories.

You can install the Percona Server for MySQL with the TokuDB engine by using the respective package manager:

yum yum install percona-server-tokudb.x86_64

apt apt install percona-server-tokudb

Enabling the TokuDB Storage Engine

Once the TokuDB server package is installed, the following output is shown:

Output

• This release of Percona Server is distributed with TokuDB storage engine. * Run the following script to enable
the TokuDB storage engine in Percona Server:

ps-admin --enable-tokudb -u <mysql_admin_user>
-p[mysql_admin_pass] [-S <socket>] [-h <host> -P <port>]

– See http://www.percona.com/doc/percona-server/8.0/tokudb/tokudb_installation.html for more installa-
tion details

– See http://www.percona.com/doc/percona-server/8.0/tokudb/tokudb_intro.html for an introduction to
TokuDB

Percona Server for MySQL has implemented ps-admin to make the enabling the TokuDB storage engine easier. This
script will automatically disable Transparent huge pages, if they’re enabled, and install and enable the TokuDB storage
engine with all the required plugins. You need to run this script as root or with sudo. After you run the script with
required parameters:

$ ps-admin --enable-tokudb -uroot -pPassw0rd

Following output will be displayed:

Checking if Percona server is running with jemalloc enabled...
>> Percona server is running with jemalloc enabled.

Checking transparent huge pages status on the system...
>> Transparent huge pages are currently disabled on the system.

Checking if thp-setting=never option is already set in config file...
>> Option thp-setting=never is not set in the config file.
>> (needed only if THP is not disabled permanently on the system)

64.1. TokuDB Installation 186

http://www.oracle-base.com/articles/linux/configuring-huge-pages-for-oracle-on-linux-64.php#disabling-transparent-hugepages
http://www.percona.com/doc/percona-server/8.0/tokudb/tokudb_installation.html
http://www.percona.com/doc/percona-server/8.0/tokudb/tokudb_intro.html

Percona Server Documentation, Release 8.0.18-9

Checking TokuDB plugin status...
>> TokuDB plugin is not installed.

Adding thp-setting=never option into /etc/mysql/my.cnf
>> Successfuly added thp-setting=never option into /etc/mysql/my.cnf

Installing TokuDB engine...
>> Successfuly installed TokuDB plugin.

If the script returns no errors, TokuDB storage engine should be successfully enabled on your server. You can check it
out by running SHOW ENGINES;

Output

...
| TokuDB | YES | Tokutek TokuDB Storage Engine with Fractal Tree(tm) Technology | YES
→˓| YES | YES |
...

Enabling the TokuDB Storage Engine Manually

If you don’t want to use ps-admin you’ll need to manually install the storage engine ad required plugins.

INSTALL PLUGIN tokudb SONAME 'ha_tokudb.so';
INSTALL PLUGIN tokudb_file_map SONAME 'ha_tokudb.so';
INSTALL PLUGIN tokudb_fractal_tree_info SONAME 'ha_tokudb.so';
INSTALL PLUGIN tokudb_fractal_tree_block_map SONAME 'ha_tokudb.so';
INSTALL PLUGIN tokudb_trx SONAME 'ha_tokudb.so';
INSTALL PLUGIN tokudb_locks SONAME 'ha_tokudb.so';
INSTALL PLUGIN tokudb_lock_waits SONAME 'ha_tokudb.so';
INSTALL PLUGIN tokudb_background_job_status SONAME 'ha_tokudb.so';

After the engine has been installed it should be present in the engines list. To check if the engine has been correctly
installed and active: SHOW ENGINES;

Output

...
| TokuDB | YES | Tokutek TokuDB Storage Engine with Fractal Tree(tm) Technology | YES
→˓| YES | YES |
...

To check if all the TokuDB plugins have been installed correctly you should run: SHOW PLUGINS;

Output

...
| TokuDB | ACTIVE | STORAGE ENGINE | ha_tokudb.so | GPL
→˓ |
| TokuDB_file_map | ACTIVE | INFORMATION SCHEMA | ha_tokudb.so | GPL
→˓ |
| TokuDB_fractal_tree_info | ACTIVE | INFORMATION SCHEMA | ha_tokudb.so | GPL
→˓ |

64.1. TokuDB Installation 187

Percona Server Documentation, Release 8.0.18-9

| TokuDB_fractal_tree_block_map | ACTIVE | INFORMATION SCHEMA | ha_tokudb.so | GPL
→˓ |
| TokuDB_trx | ACTIVE | INFORMATION SCHEMA | ha_tokudb.so | GPL
→˓ |
| TokuDB_locks | ACTIVE | INFORMATION SCHEMA | ha_tokudb.so | GPL
→˓ |
| TokuDB_lock_waits | ACTIVE | INFORMATION SCHEMA | ha_tokudb.so | GPL
→˓ |
| TokuDB_background_job_status | ACTIVE | INFORMATION SCHEMA | ha_tokudb.so | GPL
→˓ |
...

TokuDB Version

TokuDB storage engine version can be checked with: SELECT @@tokudb_version;

Output

+------------------+
| @@tokudb_version |
+------------------+
| 8.0.13-3 |
+------------------+
1 row in set (0.00 sec)

Upgrade

Before upgrading to Percona Server for MySQL 8.0, make sure that your system is ready by running mysqlcheck:
mysqlcheck -u root -p --all-databases --check-upgrade

Warning: With partitioned tables that use the TokuDB or MyRocks storage engine, the upgrade only works with
native partitioning.

See also:

MySQL Documentation: Preparing Your Installation for Upgrade https://dev.mysql.com/doc/refman/8.0/en/
upgrade-prerequisites.html

Using TokuDB

Warning: Do not move or modify any TokuDB files. You will break the database, and need to recover
the database from a backup.

64.2. Using TokuDB 188

https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Percona Server Documentation, Release 8.0.18-9

Fast Insertions and Richer Indexes

TokuDB’s fast indexing enables fast queries through the use of rich indexes, such as covering and clustering indexes.
It’s worth investing some time to optimize index definitions to get the best performance from MySQL and TokuDB.
Here are some resources to get you started:

• “Understanding Indexing” by Zardosht Kasheff (video)

• Rule of Thumb for Choosing Column Order in Indexes

• Covering Indexes: Orders-of-Magnitude Improvements

• Introducing Multiple Clustering Indexes

• Clustering Indexes vs. Covering Indexes

• How Clustering Indexes Sometimes Helps UPDATE and DELETE Performance

• High Performance MySQL, 3rd Edition by Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Copyright 2012,
O’Reilly Media. See Chapter 5, Indexing for High Performance.

Clustering Secondary Indexes

One of the keys to exploiting TokuDB’s strength in indexing is to make use of clustering secondary indexes.

TokuDB allows a secondary key to be defined as a clustering key. This means that all of the columns in the table are
clustered with the secondary key. Percona Server for MySQL parser and query optimizer support Multiple Clustering
Keys when TokuDB engine is used. This means that the query optimizer will avoid primary clustered index reads and
replace them by secondary clustered index reads in certain scenarios.

The parser has been extended to support following syntax:

CREATE TABLE ... (..., CLUSTERING KEY identifier (column list), ...
CREATE TABLE ... (..., UNIQUE CLUSTERING KEY identifier (column list), ...
CREATE TABLE ... (..., CLUSTERING UNIQUE KEY identifier (column list), ...
CREATE TABLE ... (..., CONSTRAINT identifier UNIQUE CLUSTERING KEY identifier
→˓(column list), ...
CREATE TABLE ... (..., CONSTRAINT identifier CLUSTERING UNIQUE KEY identifier
→˓(column list), ...

CREATE TABLE ... (... column type CLUSTERING [UNIQUE] [KEY], ...)
CREATE TABLE ... (... column type [UNIQUE] CLUSTERING [KEY], ...)

ALTER TABLE ..., ADD CLUSTERING INDEX identifier (column list), ...
ALTER TABLE ..., ADD UNIQUE CLUSTERING INDEX identifier (column list), ...
ALTER TABLE ..., ADD CLUSTERING UNIQUE INDEX identifier (column list), ...
ALTER TABLE ..., ADD CONSTRAINT identifier UNIQUE CLUSTERING INDEX identifier (column
→˓list), ...
ALTER TABLE ..., ADD CONSTRAINT identifier CLUSTERING UNIQUE INDEX identifier (column
→˓list), ...

CREATE CLUSTERING INDEX identifier ON ...

To define a secondary index as clustering, simply add the word CLUSTERING before the key definition. For example:

CREATE TABLE foo (
column_a INT,
column_b INT,
column_c INT,

64.2. Using TokuDB 189

http://vimeo.com/26454091
http://www.mysqlperformanceblog.com/2009/06/05/a-rule-of-thumb-for-choosing-column-order-in-indexes/
https://www.percona.com/blog/2009/05/14/covering_indexes_orders_of_magnitude_improvements/
https://www.percona.com/blog/2009/05/27/introducing_multiple_clustering_indexes/
https://www.percona.com/blog/2009/05/28/clustering_indexes_vs_covering_indexes/
https://www.percona.com/blog/2009/06/04/how_clustering_indexes_sometimes_help_update_and_delete_performance/

Percona Server Documentation, Release 8.0.18-9

PRIMARY KEY index_a (column_a),
CLUSTERING KEY index_b (column_b)) ENGINE = TokuDB;

In the previous example, the primary table is indexed on column_a. Additionally, there is a secondary clustering index
(named index_b) sorted on column_b. Unlike non-clustered indexes, clustering indexes include all the columns of a
table and can be used as covering indexes. For example, the following query will run very fast using the clustering
index_b:

SELECT column_c
FROM foo
WHERE column_b BETWEEN 10 AND 100;

This index is sorted on column_b, making the WHERE clause fast, and includes column_c, which avoids lookups in the
primary table to satisfy the query.

TokuDB makes clustering indexes feasible because of its excellent compression and very high indexing rates. For more
information about using clustering indexes, see Introducing Multiple Clustering Indexes.

Hot Index Creation

TokuDB enables you to add indexes to an existing table and still perform inserts and queries on that table while the
index is being created.

The ONLINE keyword is not used. Instead, the value of the tokudb_create_index_online client session
variable is examined.

Hot index creation is invoked using the CREATE INDEX command after setting
tokudb_create_index_online to on as follows:

mysql> SET tokudb_create_index_online=on;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE INDEX index ON foo (field_name);

Alternatively, using the ALTER TABLE command for creating an index will create the index offline (with the table
unavailable for inserts or queries), regardless of the value of tokudb_create_index_online. The only way to
hot create an index is to use the CREATE INDEX command.

Hot creating an index will be slower than creating the index offline, and progress depends how busy the mysqld server
is with other tasks. Progress of the index creation can be seen by using the SHOW PROCESSLIST command (in
another client). Once the index creation completes, the new index will be used in future query plans.

If more than one hot CREATE INDEX is issued for a particular table, the indexes will be created serially. An index
creation that is waiting for another to complete will be shown as Locked in SHOW PROCESSLIST. We recommend
that each CREATE INDEX be allowed to complete before the next one is started.

Hot Column Add, Delete, Expand, and Rename (HCADER)

TokuDB enables you to add or delete columns in an existing table, expand char, varchar, varbinary, and
integer type columns in an existing table, or rename an existing column in a table with little blocking of other
updates and queries. HCADER typically blocks other queries with a table lock for no more than a few seconds. After
that initial short-term table locking, the system modifies each row (when adding, deleting, or expanding columns)
later, when the row is next brought into main memory from disk. For column rename, all the work is done during the
seconds of downtime. On-disk rows need not be modified.

To get good performance from HCADER, observe the following guidelines:

64.2. Using TokuDB 190

https://www.percona.com/blog/2009/05/27/introducing_multiple_clustering_indexes/

Percona Server Documentation, Release 8.0.18-9

• The work of altering the table for column addition, deletion, or expansion is performed as subsequent operations
touch parts of the Fractal Tree, both in the primary index and secondary indexes.

You can force the column addition, deletion, or expansion work to be performed all at once using the standard
syntax of OPTIMIZE TABLE X, when a column has been added to, deleted from, or expanded in table X. It
is important to note that as of TokuDB version 7.1.0, OPTIMIZE TABLE is also hot, so that a table supports
updates and queries without blocking while an OPTIMIZE TABLE is being performed. Also, a hot OPTIMIZE
TABLE does not rebuild the indexes, since TokuDB indexes do not age. Rather, they flush all background work,
such as that induced by a hot column addition, deletion, or expansion.

• Each hot column addition, deletion, or expansion operation must be performed individually (with its own SQL
statement). If you want to add, delete, or expand multiple columns use multiple statements.

• Avoid adding, deleting, or expanding a column at the same time as adding or dropping an index.

• The time that the table lock is held can vary. The table-locking time for HCADER is dominated by the time
it takes to flush dirty pages, because MySQL closes the table after altering it. If a checkpoint has happened
recently, this operation is fast (on the order of seconds). However, if the table has many dirty pages, then the
flushing stage can take on the order of minutes.

• Avoid dropping a column that is part of an index. If a column to be dropped is part of an index, then dropping
that column is slow. To drop a column that is part of an index, first drop the indexes that reference the column
in one alter table statement, and then drop the column in another statement.

• Hot column expansion operations are only supported to char, varchar, varbinary, and integer data
types. Hot column expansion is not supported if the given column is part of the primary key or any secondary
keys.

• Rename only one column per statement. Renaming more than one column will revert to the standard MySQL
blocking behavior. The proper syntax is as follows:

ALTER TABLE table
CHANGE column_old column_new
DATA_TYPE REQUIRED_NESS DEFAULT

Here’s an example of how that might look:

ALTER TABLE table
CHANGE column_old column_new
INT(10) NOT NULL;

Notice that all of the column attributes must be specified. ALTER TABLE table CHANGE column_old
column_new; induces a slow, blocking column rename.

• Hot column rename does not support the following data types: TIME, ENUM, BLOB, TINYBLOB,
MEDIUMBLOB, LONGBLOB. Renaming columns of these types will revert to the standard MySQL blocking
behavior.

• Temporary tables cannot take advantage of HCADER. Temporary tables are typically small anyway, so altering
them using the standard method is usually fast.

Compression Details

TokuDB offers different levels of compression, which trade off between the amount of CPU used and the compression
achieved. Standard compression uses less CPU but generally compresses at a lower level, high compression uses more
CPU and generally compresses at a higher level. We have seen compression up to 25x on customer data.

Compression in TokuDB occurs on background threads, which means that high compression need not slow down your
database. Indeed, in some settings, we’ve seen higher overall database performance with high compression.

64.2. Using TokuDB 191

Percona Server Documentation, Release 8.0.18-9

Note: We recommend that users use standard compression on machines with six or fewer cores, and high compression
on machines with more than six cores.

The ultimate choice depends on the particulars of how a database is used, and we recommend that users use the default
settings unless they have profiled their system with high compression in place.

The table is compressed using whichever row format is specified in the session variable tokudb_row_format. If
no row format is set nor is tokudb_row_format, the QUICKLZ compression algorithm is used.

The row_format and tokudb_row_format variables accept the following values:

Value Description
TOKUDB_DEFAULTSets the compression to the default behavior. As of TokuDB 7.1.0, the default behavior is to

compress using the zlib library. In the future this behavior may change.
TOKUDB_FAST Sets the compression to use the quicklz library.
TOKUDB_SMALL Sets the compression to use the lzma library.
TOKUDB_ZLIB Compress using the zlib library, which provides mid-range compression and CPU utilization.
TOKUDB_QUICKLZCompress using the quicklz library, which provides light compression and low CPU

utilization.
TOKUDB_LZMA Compress using the lzma library, which provides the highest compression and high CPU

utilization.
TOKUDB_SNAPPYThis compression is using snappy library and aims for very high speeds and reasonable

compression.
TOKUDB_UNCOMPRESSEDThis setting turns off compression and is useful for tables with data that cannot be

compressed.

Read Free Replication

TokuDB slaves can be configured to perform significantly less read IO in order to apply changes from the master. By
utilizing the power of Fractal Tree indexes:

• insert/update/delete operations can be configured to eliminate read-modify-write behavior and simply inject
messages into the appropriate Fractal Tree indexes

• update/delete operations can be configured to eliminate the IO required for uniqueness checking

To enable Read Free Replication, the servers must be configured as follows:

• On the replication master:

– Enable row based replication: set BINLOG_FORMAT=ROW

• On the replication slave(s):

– The slave must be in read-only mode: set read_only=1

– Disable unique checks: set tokudb_rpl_unique_checks=0

– Disable lookups (read-modify-write): set tokudb_rpl_lookup_rows=0

Note: You can modify one or both behaviors on the slave(s).

Note: As long as the master is using row based replication, this optimization is available on a TokuDB slave. This
means that it’s available even if the master is using InnoDB or MyISAM tables, or running non-TokuDB binaries.

64.2. Using TokuDB 192

http://google.github.io/snappy/

Percona Server Documentation, Release 8.0.18-9

Warning: TokuDB Read Free Replication will not propagate UPDATE and DELETE events reliably if TokuDB
table is missing the primary key which will eventually lead to data inconsistency on the slave.

Transactions and ACID-compliant Recovery

By default, TokuDB checkpoints all open tables regularly and logs all changes between checkpoints, so that after
a power failure or system crash, TokuDB will restore all tables into their fully ACID-compliant state. That is, all
committed transactions will be reflected in the tables, and any transaction not committed at the time of failure will be
rolled back.

The default checkpoint period is every 60 seconds, and this specifies the time from the beginning of one checkpoint
to the beginning of the next. If a checkpoint requires more than the defined checkpoint period to complete, the next
checkpoint begins immediately. It is also related to the frequency with which log files are trimmed, as described below.
The user can induce a checkpoint at any time by issuing the FLUSH LOGS command. When a database is shut down
normally it is also checkpointed and all open transactions are aborted. The logs are trimmed at startup.

Managing Log Size

TokuDB keeps log files back to the most recent checkpoint. Whenever a log file reaches 100 MB, a new log file is
started. Whenever there is a checkpoint, all log files older than the checkpoint are discarded. If the checkpoint period
is set to be a very large number, logs will get trimmed less frequently. This value is set to 60 seconds by default.

TokuDB also keeps rollback logs for each open transaction. The size of each log is proportional to the amount of work
done by its transaction and is stored compressed on disk. Rollback logs are trimmed when the associated transaction
completes.

Recovery

Recovery is fully automatic with TokuDB. TokuDB uses both the log files and rollback logs to recover from a crash.
The time to recover from a crash is proportional to the combined size of the log files and uncompressed size of rollback
logs. Thus, if there were no long-standing transactions open at the time of the most recent checkpoint, recovery will
take less than a minute.

Disabling the Write Cache

When using any transaction-safe database, it is essential that you understand the write-caching characteristics of your
hardware. TokuDB provides transaction safe (ACID compliant) data storage for MySQL. However, if the underlying
operating system or hardware does not actually write data to disk when it says it did, the system can corrupt your
database when the machine crashes. For example, TokuDB can not guarantee proper recovery if it is mounted on an
NFS volume. It is always safe to disable the write cache, but you may be giving up some performance.

For most configurations you must disable the write cache on your disk drives. On ATA/SATA drives, the following
command should disable the write cache:

$ hdparm -W0 /dev/hda

There are some cases when you can keep the write cache, for example:

• Write caching can remain enabled when using XFS, but only if XFS reports that disk write barriers work. If you
see one of the following messages in /var/log/messages, then you must disable the write cache:

– Disabling barriers, not supported with external log device

64.2. Using TokuDB 193

Percona Server Documentation, Release 8.0.18-9

– Disabling barriers, not supported by the underlying device

– Disabling barriers, trial barrier write failed

XFS write barriers appear to succeed for single disks (with no LVM), or for very recent kernels (such as that
provided by Fedora 12). For more information, see the XFS FAQ.

In the following cases, you must disable the write cache:

• If you use the ext3 filesystem

• If you use LVM (although recent Linux kernels, such as Fedora 12, have fixed this problem)

• If you use Linux’s software RAID

• If you use a RAID controller with battery-backed-up memory. This may seem counter-intuitive. For more
information, see the XFS FAQ

In summary, you should disable the write cache, unless you have a very specific reason not to do so.

Progress Tracking

TokuDB has a system for tracking progress of long running statements, thereby removing the need to define triggers
to track statement execution, as follows:

• Bulk Load: When loading large tables using LOAD DATA INFILE commands, doing a SHOW
PROCESSLIST command in a separate client session shows progress. There are two progress stages. The
first will state something like Inserted about 1000000 rows. After all rows are processed like this,
the next stage tracks progress by showing what fraction of the work is done (e.g. Loading of data about
45% done)

• Adding Indexes: When adding indexes via ALTER TABLE or CREATE INDEX, the command SHOW
PROCESSLIST shows progress. When adding indexes via ALTER TABLE or CREATE INDEX, the com-
mand SHOW PROCESSLIST will include an estimation of the number of rows processed. Use this information
to verify progress is being made. Similar to bulk loading, the first stage shows how many rows have been
processed, and the second stage shows progress with a fraction.

• Commits and Aborts: When committing or aborting a transaction, the command SHOW PROCESSLIST will
include an estimate of the transactional operations processed.

Migrating to TokuDB

To convert an existing table to use the TokuDB engine, run ALTER TABLE... ENGINE=TokuDB. If you wish to
load from a file, use LOAD DATA INFILE and not mysqldump. Using mysqldump will be much slower. To
create a file that can be loaded with LOAD DATA INFILE, refer to the INTO OUTFILE option of the SELECT
Syntax.

Note: Creating this file does not save the schema of your table, so you may want to create a copy of that as well.

Getting Started with TokuDB

System and Hardware Requirements

Operating Systems: TokuDB is currently supported on 64-bit Linux only.

64.3. Getting Started with TokuDB 194

http://xfs.org/index.php/XFS_FAQ#Q:_How_can_I_tell_if_I_have_the_disk_write_cache_enabled.3F
http://xfs.org/index.php/XFS_FAQ#Q:_How_can_I_tell_if_I_have_the_disk_write_cache_enabled.3F
http://dev.mysql.com/doc/refman/8.0/en/select.html
http://dev.mysql.com/doc/refman/8.0/en/select.html

Percona Server Documentation, Release 8.0.18-9

Memory: TokuDB Requires at least 1GB of main memory but for best results, we recommend to run with at least 2GB
of main memory.

Disk space and configuration: Please make sure to allocate enough disk space for data, indexes and logs. In our users’
experience, TokuDB achieves up to 25x space savings on data and indexes over InnoDB due to high compression.

Creating Tables and Loading Data

Creating TokuDB Tables

TokuDB tables are created the same way as other tables in MySQL by specifying ENGINE=TokuDB in the table
definition. For example, the following command creates a table with a single column and uses the TokuDB storage
engine to store its data:

CREATE TABLE table (
id INT(11) NOT NULL) ENGINE=TokuDB;

Loading Data

Once TokuDB tables have been created, data can be inserted or loaded using standard MySQL insert or bulk load
operations. For example, the following command loads data from a file into the table:

LOAD DATA INFILE file
INTO TABLE table;

Note: For more information about loading data, see the MySQL 5.6 reference manual.

Migrating Data from an Existing Database

Use the following command to convert an existing table for the TokuDB storage engine:

ALTER TABLE table
ENGINE=TokuDB;

Bulk Loading Data

The TokuDB bulk loader imports data much faster than regular MySQL with InnoDB. To make use of the loader you
need flat files in either comma separated or tab separated format. The MySQL LOAD DATA INFILE ... statement
will invoke the bulk loader if the table is empty. Keep in mind that while this is the most convenient and, in most cases,
the fastest way to initialize a TokuDB table, it may not be replication safe if applied to the master

For more information, see the MySQL 5.6 Reference Manual: LOAD DATA INFILE.

To obtain the logical backup and then bulk load into TokuDB, follow these steps:

1. Create a logical backup of the original table. The easiest way to achieve this is using SELECT ... INTO
OUTFILE. Keep in mind that the file will be created on the server.

SELECT * FROM table
INTO OUTFILE 'file.csv';

64.3. Getting Started with TokuDB 195

http://dev.mysql.com/doc/refman/5.6/en/load-data.html

Percona Server Documentation, Release 8.0.18-9

2. The output file should either be copied to the destination server or the client machine from which you plan to
load it.

3. To load the data into the server use LOAD DATA INFILE. If loading from a machine other than the server use
the keyword LOCAL to point to the file on local machine. Keep in mind that you will need enough disk space
on the temporary directory on the server since the local file will be copied onto the server by the MySQL client
utility.

LOAD DATA [LOCAL] INFILE 'file.csv';

It is possible to create the CSV file using either mysqldump or the MySQL client utility as well, in which case the
resulting file will reside on a local directory. In these 2 cases you have to make sure to use the correct command line
options to create a file compatible with LOAD DATA INFILE.

The bulk loader will use more space than normal for logs and temporary files while running, make sure that your file
system has enough disk space to process your load. As a rule of thumb, it should be approximately 1.5 times the size
of the raw data.

Note: Please read the original MySQL documentation to understand the needed privileges and replication issues
needed around LOAD DATA INFILE.

Considerations to Run TokuDB in Production

In most cases, the default options should be left in-place to run TokuDB, however it is a good idea to review some of
the configuration parameters.

Memory allocation

TokuDB will allocate 50% of the installed RAM for its own cache (global variable tokudb_cache_size). While
this is optimal in most situations, there are cases where it may lead to memory over allocation. If the system tries to
allocate more memory than is available, the machine will begin swapping and run much slower than normal.

It is necessary to set the tokudb_cache_size to a value other than the default in the following cases:

• Running other memory heavy processes on the same server as TokuDB: In many cases, the database process
needs to share the system with other server processes like additional database instances, http server, application
server, e-mail server, monitoring systems and others. In order to properly configure TokuDB’s memory con-
sumption, it’s important to understand how much free memory will be left and assign a sensible value for
TokuDB. There is no fixed rule, but a conservative choice would be 50% of available RAM while all the other
processes are running. If the result is under 2 GB, you should consider moving some of the other processes to a
different system or using a dedicated database server.

tokudb_cache_size is a static variable, so it needs to be set before starting the server and cannot be
changed while the server is running. For example, to set up TokuDB’s cache to 4G, add the following line
to your my.cnf file:

tokudb_cache_size = 4G

• System using InnoDB and TokuDB: When using both the TokuDB and InnoDB storage engines, you need to
manage the cache size for each. For example, on a server with 16 GB of RAM you could use the following
values in your configuration file:

innodb_buffer_pool_size = 2G
tokudb_cache_size = 8G

64.3. Getting Started with TokuDB 196

Percona Server Documentation, Release 8.0.18-9

• Using TokuDB with Federated or FederatedX tables: The Federated engine in MySQL and FederatedX in
MariaDB allow you to connect to a table on a remote server and query it as if it were a local table (please see
the MySQL documentation: 14.11. The FEDERATED Storage Engine for details). When accessing the remote
table, these engines could import the complete table contents to the local server to execute a query. In this case,
you will have to make sure that there is enough free memory on the server to handle these remote tables. For
example, if your remote table is 8 GB in size, the server has to have more than 8 GB of free RAM to process
queries against that table without going into swapping or causing a kernel panic and crash the MySQL process.
There are no parameters to limit the amount of memory that the Federated or FederatedX engine will allocate
while importing the remote dataset.

Specifying the Location for Files

As with InnoDB, it is possible to specify different locations than the default for TokuDB’s data, log and temporary
files. This way you may distribute the load and control the disk space. The following variables control file location:

• tokudb_data_dir: This variable defines the directory where the TokuDB tables are stored. The default
location for TokuDB’s data files is the MySQL data directory.

• tokudb_log_dir: This variable defines the directory where the TokuDB log files are stored. The default
location for TokuDB’s log files is the MySQL data directory. Configuring a separate log directory is somewhat
involved and should be done only if absolutely necessary. We recommend to keep the data and log files under
the same directory.

• tokudb_tmp_dir: This variable defines the directory where the TokuDB bulk loader stores temporary files.
The bulk loader can create large temporary files while it is loading a table, so putting these temporary files on a
disk separate from the data directory can be useful. For example, it can make sense to use a high-performance
disk for the data directory and a very inexpensive disk for the temporary directory. The default location for
TokuDB’s temporary files is the MySQL data directory.

Table Maintenance

Overview

The fractal tree provides fast performance by inserting small messages in the buffers in the fractal trees instead of
requiring a potential IO for an update on every row in the table as required by a B-tree. Additional background
information on how fractal trees operate can be found here. For tables whose workload pattern is a high number of
sequential deletes, it may be beneficial to flush these delete messages down to the basement nodes in order to allow
for faster access. The way to perform this operation is via the OPTIMIZE command.

The following extensions to the OPTIMIZE command have been added in TokuDB version 7.5.5:

• Hot Optimize Throttling

By default, table optimization will run with all available resources. To limit the amount of resources, it is possi-
ble to limit the speed of table optimization. The tokudb_optimize_throttle session variable determines
an upper bound on how many fractal tree leaf nodes per second are optimized. The default is 0 (no upper bound)
with a valid range of [0,1000000]. For example, to limit the table optimization to 1 leaf node per second, use
the following setting:

SET tokudb_optimize_throttle=1;

• Optimize a Single Index of a Table

To optimize a single index in a table, the tokudb_optimize_index_name session variable can be set to
select the index by name. For example, to optimize the primary key of a table:

64.3. Getting Started with TokuDB 197

Percona Server Documentation, Release 8.0.18-9

SET tokudb_optimize_index_name='primary';
OPTIMIZE TABLE t;

• Optimize a Subset of a Fractal Tree Index

For patterns where the left side of the tree has many deletions (a common pattern with increasing id or date
values), it may be useful to delete a percentage of the tree. In this case, it is possible to optimize a subset of a
fractal tree starting at the left side. The tokudb_optimize_index_fraction session variable controls
the size of the sub tree. Valid values are in the range [0.0,1.0] with default 1.0 (optimize the whole tree). For
example, to optimize the leftmost 10% of the primary key:

SET tokudb_optimize_index_name='primary';
SET tokudb_optimize_index_fraction=0.1;
OPTIMIZE TABLE t;

TokuDB Variables

Like all storage engines, TokuDB has variables to tune performance and control behavior. Fractal Tree algorithms are
designed for near optimal performance and TokuDB’s default settings should work well in most situations, eliminating
the need for complex and time consuming tuning in most cases.

• TokuDB Server Variables

TokuDB Server Variables

Name Cmd-
Line

Option
File

Var Scope Dynamic

tokudb_alter_print_error Yes Yes Session,
Global

Yes

tokudb_analyze_delete_fraction Yes Yes Session,
Global

Yes

tokudb_analyze_in_background Yes Yes Session,
Global

Yes

tokudb_analyze_mode Yes Yes Session,
Global

Yes

tokudb_analyze_throttle Yes Yes Session,
Global

Yes

tokudb_analyze_time Yes Yes Session,
Global

Yes

tokudb_auto_analyze Yes Yes Session,
Global

Yes

tokudb_backup_allowed_prefix No Yes Global No
tokudb_backup_dir No Yes Session No
tokudb_backup_exclude Yes Yes Session,

Global
Yes

tokudb_backup_last_error Yes Yes Session,
Global

Yes

Continued on next page

64.4. TokuDB Variables 198

Percona Server Documentation, Release 8.0.18-9

Table 64.1 – continued from previous page
Name Cmd-

Line
Option
File

Var Scope Dynamic

tokudb_backup_last_error_string Yes Yes Session,
Global

Yes

tokudb_backup_plugin_version No No Global No
tokudb_backup_throttle Yes Yes Session,

Global
Yes

tokudb_backup_version No No Global No
tokudb_block_size Yes Yes Session,

Global
Yes

tokudb_bulk_fetch Yes Yes Session,
Global

Yes

tokudb_cachetable_pool_threads Yes Yes Global No
tokudb_cardinality_scale_percent Yes Yes Global Yes
tokudb_check_jemalloc Yes Yes Global No
tokudb_checkpoint_lock Yes Yes Global No
tokudb_checkpoint_on_flush_logs Yes Yes Global Yes
tokudb_checkpoint_pool_threads Yes Yes Global Yes
tokudb_checkpointing_period Yes Yes Global Yes
tokudb_cleaner_iterations Yes Yes Global Yes
tokudb_cleaner_period Yes Yes Global Yes
tokudb_client_pool_threads Yes Yes Global No
tokudb_commit_sync Yes Yes Session,

Global
Yes

tokudb_compress_buffers_before_eviction Yes Yes Global No
tokudb_create_index_online Yes Yes Session,

Global
Yes

tokudb_data_dir Yes Yes Global No
tokudb_debug Yes Yes Global Yes
tokudb_dir_per_db Yes Yes Global Yes
tokudb_directio Yes Yes Global No
tokudb_disable_hot_alter Yes Yes Session,

Global
Yes

tokudb_disable_prefetching Yes Yes Session,
Global

Yes

tokudb_disable_slow_alter Yes Yes Session,
Global

Yes

tokudb_empty_scan Yes Yes Session,
Global

Yes

tokudb_enable_fast_update Yes Yes Session,
Global

Yes

tokudb_enable_fast_upsert Yes Yes Session,
Global

Yes

tokudb_enable_partial_eviction Yes Yes Global No
tokudb_fanout Yes Yes Session,

Global
Yes

tokudb_fs_reserve_percent Yes Yes Global No
tokudb_fsync_log_period Yes Yes Global Yes
tokudb_hide_default_row_format Yes Yes Session,

Global
Yes

Continued on next page

64.4. TokuDB Variables 199

Percona Server Documentation, Release 8.0.18-9

Table 64.1 – continued from previous page
Name Cmd-

Line
Option
File

Var Scope Dynamic

tokudb_killed_time Yes Yes Session,
Global

Yes

tokudb_last_lock_timeout Yes Yes Session,
Global

Yes

tokudb_load_save_space Yes Yes Session,
Global

Yes

tokudb_loader_memory_size Yes Yes Session,
Global

Yes

tokudb_lock_timeout Yes Yes Session,
Global

Yes

tokudb_lock_timeout_debug Yes Yes Session,
Global

Yes

tokudb_log_dir Yes Yes Global No
tokudb_max_lock_memory Yes Yes Global No
tokudb_optimize_index_fraction Yes Yes Session,

Global
Yes

tokudb_optimize_index_name Yes Yes Session,
Global

Yes

tokudb_optimize_throttle Yes Yes Session,
Global

Yes

tokudb_pk_insert_mode Yes Yes Session,
Global

Yes

tokudb_prelock_empty Yes Yes Session,
Global

Yes

tokudb_read_block_size Yes Yes Session,
Global

Yes

tokudb_read_buf_size Yes Yes Session,
Global

Yes

tokudb_read_status_frequency Yes Yes Global Yes
tokudb_row_format Yes Yes Session,

Global
Yes

tokudb_rpl_check_readonly Yes Yes Session,
Global

Yes

tokudb_rpl_lookup_rows Yes Yes Session,
Global

Yes

tokudb_rpl_lookup_rows_delay Yes Yes Session,
Global

Yes

tokudb_rpl_unique_checks Yes Yes Session,
Global

Yes

tokudb_rpl_unique_checks_delay Yes Yes Session,
Global

Yes

tokudb_strip_frm_data Yes Yes Global No
tokudb_support_xa Yes Yes Session,

Global
Yes

tokudb_tmp_dir Yes Yes Global No
tokudb_version No No Global No
tokudb_write_status_frequency Yes Yes Global Yes

variable tokudb_alter_print_error

64.4. TokuDB Variables 200

Percona Server Documentation, Release 8.0.18-9

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type Boolean

Default Value OFF

When set to ON errors will be printed to the client during the ALTER TABLE operations on TokuDB tables.

variable tokudb_analyze_delete_fraction

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type Numeric

Default Value 1.000000

Range 0.0 - 1.000000

This variables controls whether or not deleted rows in the fractal tree are reported to the client and to the MySQL error
log during an ANALYZE TABLE operation on a TokuDB table. When set to 1, nothing is reported. When set to 0.1
and at least 10% of the rows scanned by ANALYZE were deleted rows that are not yet garbage collected, a report is
returned to the client and the MySQL error log.

variable tokudb_backup_allowed_prefix

Command Line No

Config File Yes

Scope Global

Dynamic No

Variable Type String

Default Value NULL

This system-level variable restricts the location of the destination directory where the backups can be located. Attempts
to backup to a location outside of the directory this variable points to or its children will result in an error.

The default is NULL, backups have no restricted locations. This read only variable can be set in the my.cnf config-
uration file and displayed with the SHOW VARIABLES command when Percona TokuBackup plugin is loaded.

mysql> SHOW VARIABLES LIKE 'tokudb_backup_allowed_prefix';
+------------------------------+-----------+
| Variable_name | Value |
+------------------------------+-----------+
| tokudb_backup_allowed_prefix | /dumpdir |
+------------------------------+-----------+

variable tokudb_backup_dir

Command Line No

Config File No

64.4. TokuDB Variables 201

Percona Server Documentation, Release 8.0.18-9

Scope Session

Dynamic Yes

Variable Type String

Default Value NULL

When enabled, this session level variable serves two purposes, to point to the destination directory where the backups
will be dumped and to kick off the backup as soon as it is set. For more information see Percona TokuBackup.

variable tokudb_backup_exclude

Command Line No

Config File No

Scope Session

Dynamic Yes

Variable Type String

Default Value (mysqld_safe\.pid)+

Use this variable to set a regular expression that defines source files excluded from backup. For example, to exclude
all lost+found directories, use the following command:

mysql> set tokudb_backup_exclude='/lost\\+found($|/)';

For more information see Percona TokuBackup.

variable tokudb_backup_last_error

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Default Value 0

This session variable will contain the error number from the last backup. 0 indicates success. For more information
see Percona TokuBackup.

variable tokudb_backup_last_error_string

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type String

Default Value NULL

This session variable will contain the error string from the last backup. For more information see Percona TokuBackup.

variable tokudb_backup_plugin_version

Command Line No

64.4. TokuDB Variables 202

Percona Server Documentation, Release 8.0.18-9

Config File No

Scope Global

Dynamic No

Variable Type String

This read-only server variable documents the version of the TokuBackup plugin. For more information see Percona
TokuBackup.

variable tokudb_backup_throttle

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Default Value 18446744073709551615

This variable specifies the maximum number of bytes per second the copier of a hot backup process will consume.
Lowering its value will cause the hot backup operation to take more time but consume less I/O on the server.
The default value is 18446744073709551615 which means no throttling. For more information see Percona
TokuBackup.

variable tokudb_backup_version

Command Line No

Config File No

Scope Global

Dynamic No

Variable Type String

This read-only server variable documents the version of the hot backup library. For more information see Percona
TokuBackup.

variable tokudb_block_size

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Default Value 512 MB

Range 4096 - 4294967295

This variable controls the maximum size of node in memory before messages must be flushed or node must be split.

Changing the value of tokudb_block_size only affects subsequently created tables and indexes. The value of
this variable cannot be changed for an existing table/index without a dump and reload.

variable tokudb_bulk_fetch

Command Line Yes

64.4. TokuDB Variables 203

Percona Server Documentation, Release 8.0.18-9

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

This variable determines if our bulk fetch algorithm is used for SELECT statements. SELECT state-
ments include pure SELECT ... statements, as well as INSERT INTO table-name ... SELECT .
.., CREATE TABLE table-name ... SELECT ..., REPLACE INTO table-name ... SELECT .
.., INSERT IGNORE INTO table-name ... SELECT ..., and INSERT INTO table-name ...
SELECT ... ON DUPLICATE KEY UPDATE.

variable tokudb_cache_size

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

This variable configures the size in bytes of the TokuDB cache table. The default cache table size is 1/2 of physical
memory. Percona highly recommends using the default setting if using buffered I/O, if using direct I/O then consider
setting this parameter to 80% of available memory.

Consider decreasing tokudb_cache_size if excessive swapping is causing performance problems. Swapping may
occur when running multiple MySQL server instances or if other running applications use large amounts of physical
memory.

variable tokudb_cachetable_pool_threads

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

Range 0 - 1024

Default Value 0

This variable defines the number of threads for the cachetable worker thread pool. This pool is used to perform node
prefetches, and to serialize, compress, and write nodes during cachetable eviction. The default value of 0 calculates
the pool size to be num_cpu_threads * 2.

variable tokudb_check_jemalloc

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Boolean

64.4. TokuDB Variables 204

Percona Server Documentation, Release 8.0.18-9

Default Value OFF

This variable enables/disables startup checking if jemalloc is linked and correct version and that transparent huge
pages are disabled. Used for testing only.

variable tokudb_checkpoint_lock

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value OFF

Disables checkpointing when true. Session variable but acts like a global, any session disabling checkpointing disables
it globally. If a session sets this lock and disconnects or terminates for any reason, the lock will not be released. Special
purpose only, do not use this in your application.

variable tokudb_checkpoint_on_flush_logs

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Boolean

Default Value OFF

When enabled forces a checkpoint if we get a flush logs command from the server.

variable tokudb_checkpoint_pool_threads

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

Range 0 - 1024

Default Value 0

This defines the number of threads for the checkpoint worker thread pool. This pool is used to serialize, compress and
write nodes cloned during checkpoint. Default of 0 uses old algorithm to set pool size to num_cpu_threads/4.

variable tokudb_checkpointing_period

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

64.4. TokuDB Variables 205

Percona Server Documentation, Release 8.0.18-9

Range 0 - 4294967295

Default Value 60

This variable specifies the time in seconds between the beginning of one checkpoint and the beginning of the next.
The default time between TokuDB checkpoints is 60 seconds. We recommend leaving this variable unchanged.

variable tokudb_cleaner_iterations

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Range 0 - 18446744073709551615

Default Value 5

This variable specifies how many internal nodes get processed in each tokudb_cleaner_period period. The
default value is 5. Setting this variable to 0 turns off cleaner threads.

variable tokudb_cleaner_period

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Range 0 - 18446744073709551615

Default Value 1

This variable specifies how often in seconds the cleaner thread runs. The default value is 1. Setting this variable to 0
turns off cleaner threads.

variable tokudb_client_pool_threads

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

Range 0 - 1024

Default Value 0

This variable defines the number of threads for the client operations thread pool. This pool is used to perform node
maintenance on over/undersized nodes such as message flushing down the tree, node splits, and node merges. Default
of 0 uses old algorithm to set pool size to 1 * num_cpu_threads.

variable tokudb_commit_sync

Command Line Yes

Config File Yes

64.4. TokuDB Variables 206

Percona Server Documentation, Release 8.0.18-9

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

Session variable tokudb_commit_sync controls whether or not the transaction log is flushed when a transaction
commits. The default behavior is that the transaction log is flushed by the commit. Flushing the transaction log
requires a disk write and may adversely affect the performance of your application.

To disable synchronous flushing of the transaction log, disable the tokudb_commit_sync session variable as
follows:

SET tokudb_commit_sync=OFF;

Disabling this variable may make the system run faster. However, transactions committed since the last checkpoint are
not guaranteed to survive a crash.

Warning: By disabling this variable and/or setting the tokudb_fsync_log_period to non-zero value you
have effectively downgraded the durability of the storage engine. If you were to have a crash in this same window,
you would lose data. The same issue would also appear if you were using some kind of volume snapshot for
backups.

variable tokudb_compress_buffers_before_eviction

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Boolean

Default Value ON

When this variable is enabled it allows the evictor to compress unused internal node partitions in order to reduce
memory requirements as a first step of partial eviction before fully evicting the partition and eventually the entire
node.

variable tokudb_create_index_online

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

This variable controls whether indexes created with the CREATE INDEX command are hot (if enabled), or offline (if
disabled). Hot index creation means that the table is available for inserts and queries while the index is being created.
Offline index creation means that the table is not available for inserts and queries while the index is being created.

64.4. TokuDB Variables 207

Percona Server Documentation, Release 8.0.18-9

Note: Hot index creation is slower than offline index creation.

variable tokudb_data_dir

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type String

Default Value NULL

This variable configures the directory name where the TokuDB tables are stored. The default value is NULL which
uses the location of the MySQL data directory. For more information check TokuDB files and file types and TokuDB
file management.

variable tokudb_debug

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Range 0 - 18446744073709551615

Default Value 0

This variable enables mysqld debug printing to STDERR for TokuDB. Produces tremendous amounts of output that is
nearly useless to anyone but a TokuDB developer, not recommended for any production use at all. It is a mask value
ULONG:

#define TOKUDB_DEBUG_INIT (1<<0)
#define TOKUDB_DEBUG_OPEN (1<<1)
#define TOKUDB_DEBUG_ENTER (1<<2)
#define TOKUDB_DEBUG_RETURN (1<<3)
#define TOKUDB_DEBUG_ERROR (1<<4)
#define TOKUDB_DEBUG_TXN (1<<5)
#define TOKUDB_DEBUG_AUTO_INCREMENT (1<<6)
#define TOKUDB_DEBUG_INDEX_KEY (1<<7)
#define TOKUDB_DEBUG_LOCK (1<<8)
#define TOKUDB_DEBUG_CHECK_KEY (1<<9)
#define TOKUDB_DEBUG_HIDE_DDL_LOCK_ERRORS (1<<10)
#define TOKUDB_DEBUG_ALTER_TABLE (1<<11)
#define TOKUDB_DEBUG_UPSERT (1<<12)
#define TOKUDB_DEBUG_CHECK (1<<13)
#define TOKUDB_DEBUG_ANALYZE (1<<14)
#define TOKUDB_DEBUG_XA (1<<15)
#define TOKUDB_DEBUG_SHARE (1<<16)

variable tokudb_dir_per_db

Command Line Yes

Config File Yes

64.4. TokuDB Variables 208

Percona Server Documentation, Release 8.0.18-9

Scope Global

Dynamic Yes

Variable Type Boolean

Default Value ON

When this variable is set to ON all new tables and indices will be placed within their corresponding database directory
within the tokudb_data_dir or system datadir. Existing table files will not be automatically relocated to their
corresponding database directory. If you rename a table, while this variable is enabled, the mapping in the Percona FT
directory file will be updated and the files will be renamed on disk to reflect the new table name. For more information
check TokuDB files and file types and TokuDB file management.

variable tokudb_directio

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Boolean

Default Value OFF

When enabled, TokuDB employs Direct I/O rather than Buffered I/O for writes. When using Direct I/O, consider
increasing tokudb_cache_size from its default of 1/2 physical memory.

variable tokudb_disable_hot_alter

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value OFF

This variable is used specifically for testing or to disable hot alter in case there are bugs. Not for use in production.

variable tokudb_disable_prefetching

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value OFF

TokuDB attempts to aggressively prefetch additional blocks of rows, which is helpful for most range queries but may
create unnecessary I/O for range queries with LIMIT clauses. Prefetching is ON by default, with a value of 0, it can
be disabled by setting this variable to 1.

variable tokudb_disable_slow_alter

Command Line Yes

64.4. TokuDB Variables 209

https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir

Percona Server Documentation, Release 8.0.18-9

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value OFF

This variable is used specifically for testing or to disable hot alter in case there are bugs. Not for use in production. It
controls whether slow alter tables are allowed. For example, the following command is slow because HCADER does
not allow a mixture of column additions, deletions, or expansions:

ALTER TABLE table
ADD COLUMN column_a INT,
DROP COLUMN column_b;

By default, tokudb_disable_slow_alter is disabled, and the engine reports back to MySQL that this is un-
supported resulting in the following output:

ERROR 1112 (42000): Table 'test_slow' uses an extension that doesn't exist in this
→˓MySQL version

variable tokudb_empty_scan

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type ENUM

Default Value rl

Range disabled, rl - right to left, lr - left to right

Defines direction to be used to perform table scan to check for empty tables for bulk loader.

variable tokudb_enable_fast_update

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type Boolean

Default Value OFF

Toggles the fast updates feature ON/OFF for the UPDATE statement. Fast update involves queries optimization to
avoid random reads during their execution.

variable tokudb_enable_fast_upsert

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

64.4. TokuDB Variables 210

Percona Server Documentation, Release 8.0.18-9

Variable Type Boolean

Default Value OFF

Toggles the fast updates feature ON/OFF for the INSERT statement. Fast update involves queries optimization to
avoid random reads during their execution.

variable tokudb_enable_partial_eviction

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Boolean

Default Value OFF

This variable is used to control if partial eviction of nodes is enabled or disabled.

variable tokudb_fanout

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 2-16384

Default Value 16

This variable controls the Fractal Tree fanout. The fanout defines the number of pivot keys or child nodes for each
internal tree node. Changing the value of tokudb_fanout only affects subsequently created tables and indexes.
The value of this variable cannot be changed for an existing table/index without a dump and reload.

variable tokudb_fs_reserve_percent

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

Range 0-100

Default Value 5

This variable controls the percentage of the file system that must be available for inserts to be allowed. By default, this
is set to 5. We recommend that this reserve be at least half the size of your physical memory. See Full Disks for more
information.

variable tokudb_fsync_log_period

Command Line Yes

Config File Yes

Scope Global

64.4. TokuDB Variables 211

Percona Server Documentation, Release 8.0.18-9

Dynamic Yes

Variable Type Numeric

Range 0-4294967295

Default Value 0

This variable controls the frequency, in milliseconds, for fsync() operations. If set to 0 then the fsync() behavior
is only controlled by the tokudb_commit_sync, which can be ON or OFF.

variable tokudb_hide_default_row_format

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

This variable is used to hide the ROW_FORMAT in SHOW CREATE TABLE. If zlib compression is used, row format
will show as DEFAULT.

variable tokudb_killed_time

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0-18446744073709551615

Default Value 4000

This variable is used to specify frequency in milliseconds for lock wait to check to see if the lock was killed.

variable tokudb_last_lock_timeout

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type String

Default Value NULL

This variable contains a JSON document that describes the last lock conflict seen by the current MySQL client. It gets
set when a blocked lock request times out or a lock deadlock is detected.

The tokudb_lock_timeout_debug session variable must have bit 0 set for this behavior, otherwise this session
variable will be empty.

variable tokudb_load_save_space

Command Line Yes

64.4. TokuDB Variables 212

Percona Server Documentation, Release 8.0.18-9

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

This session variable changes the behavior of the bulk loader. When it is disabled the bulk loader stores intermediate
data using uncompressed files (which consumes additional CPU), whereas ON compresses the intermediate files.

Note: The location of the temporary disk space used by the bulk loader may be specified with the tokudb_tmp_dir
server variable.

If a LOAD DATA INFILE statement fails with the error message ERROR 1030 (HY000): Got error
1 from storage engine, then there may not be enough disk space for the optimized loader, so disable
tokudb_prelock_empty and try again. More information is available in Known Issues.

variable tokudb_loader_memory_size

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0-18446744073709551615

Default Value 100000000

This variable limits the amount of memory (in bytes) that the TokuDB bulk loader will use for each loader instance.
Increasing this value may provide a performance benefit when loading extremely large tables with several secondary
indexes.

Note: Memory allocated to a loader is taken from the TokuDB cache, defined in tokudb_cache_size, and may
impact the running workload’s performance as existing cached data must be ejected for the loader to begin.

variable tokudb_lock_timeout

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0-18446744073709551615

Default Value 4000

This variable controls the amount of time that a transaction will wait for a lock held by another transaction to be
released. If the conflicting transaction does not release the lock within the lock timeout, the transaction that was
waiting for the lock will get a lock timeout error. The units are milliseconds. A value of 0 disables lock waits. The
default value is 4000 (four seconds).

64.4. TokuDB Variables 213

Percona Server Documentation, Release 8.0.18-9

If your application gets a lock wait timeout error (-30994), then you may find that increasing the
tokudb_lock_timeout may help. If your application gets a deadlock found error (-30995), then you need
to abort the current transaction and retry it.

variable tokudb_lock_timeout_debug

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0-3

Default Value 1

The following values are available:

• 0: No lock timeouts or lock deadlocks are reported.

• 1: A JSON document that describes the lock conflict is stored in the tokudb_last_lock_timeout session
variable

• 2: A JSON document that describes the lock conflict is printed to the MySQL error log.

In addition to the JSON document describing the lock conflict, the following lines are printed to the
MySQL error log:

– A line containing the blocked thread id and blocked SQL

– A line containing the blocking thread id and the blocking SQL.

• 3: A JSON document that describes the lock conflict is stored in the tokudb_last_lock_timeout session
variable and is printed to the MySQL error log.

In addition to the JSON document describing the lock conflict, the following lines are printed to the
MySQL error log:

– A line containing the blocked thread id and blocked SQL

– A line containing the blocking thread id and the blocking SQL.

variable tokudb_log_dir

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type String

Default Value NULL

This variable specifies the directory where the TokuDB log files are stored. The default value is NULL which uses the
location of the MySQL data directory. Configuring a separate log directory is somewhat involved. Please contact Per-
cona support for more details. For more information check TokuDB files and file types and TokuDB file management.

64.4. TokuDB Variables 214

Percona Server Documentation, Release 8.0.18-9

Warning: After changing TokuDB log directory path, the old TokuDB recovery log file should be moved to new
directory prior to start of MySQL server and log file’s owner must be the mysql user. Otherwise server will fail to
initialize the TokuDB store engine restart.

variable tokudb_max_lock_memory

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Numeric

Range 0-18446744073709551615

Default Value 65560320

This variable specifies the maximum amount of memory for the PerconaFT lock table.

variable tokudb_optimize_index_fraction

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0.000000 - 1.000000

Default Value 1.000000

For patterns where the left side of the tree has many deletions (a common pattern with increasing id or date values), it
may be useful to delete a percentage of the tree. In this case, it’s possible to optimize a subset of a fractal tree starting
at the left side. The tokudb_optimize_index_fraction session variable controls the size of the sub tree.
Valid values are in the range [0.0,1.0] with default 1.0 (optimize the whole tree).

variable tokudb_optimize_index_name

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type String

Default Value NULL

This variable can be used to optimize a single index in a table, it can be set to select the index by name.

variable tokudb_optimize_throttle

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

64.4. TokuDB Variables 215

Percona Server Documentation, Release 8.0.18-9

Variable Type Numeric

Range 0-18446744073709551615

Default Value 0

By default, table optimization will run with all available resources. To limit the amount of resources, it is possible to
limit the speed of table optimization. This determines an upper bound on how many fractal tree leaf nodes per second
are optimized. The default 0 imposes no limit.

variable tokudb_pk_insert_mode

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0-3

Default Value 1

Note: The tokudb_pk_insert_mode session variable was removed and the behavior is now that of the former
tokudb_pk_insert_mode set to 1. The optimization will be used where safe and not used where not safe.

variable tokudb_prelock_empty

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

By default TokuDB preemptively grabs an entire table lock on empty tables. If one transaction is doing the loading,
such as when the user is doing a table load into an empty table, this default provides a considerable speedup.

However, if multiple transactions try to do concurrent operations on an empty table, all but one transaction will be
locked out. Disabling tokudb_prelock_empty optimizes for this multi-transaction case by turning off preemp-
tive pre-locking.

Note: If this variable is set to OFF, fast bulk loading is turned off as well.

variable tokudb_read_block_size

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

64.4. TokuDB Variables 216

Percona Server Documentation, Release 8.0.18-9

Range 4096 - 4294967295

Default Value 16384 (16KB)

Fractal tree leaves are subdivided into read blocks, in order to speed up point queries. This variable controls the target
uncompressed size of the read blocks. The units are bytes and the default is 64 KB. A smaller value favors read
performance for point and small range scans over large range scans and higher compression. The minimum value of
this variable is 4096 (4KB).

Changing the value of tokudb_read_block_size only affects subsequently created tables. The value of this
variable cannot be changed for an existing table without a dump and reload.

variable tokudb_read_buf_size

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0 - 1048576

Default Value 131072 (128KB)

This variable controls the size of the buffer used to store values that are bulk fetched as part of a large range query. Its
unit is bytes and its default value is 131,072 (128 KB).

A value of 0 turns off bulk fetching. Each client keeps a thread of this size, so it should be lowered if situations where
there are a large number of clients simultaneously querying a table.

variable tokudb_read_status_frequency

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Range 0 - 4294967295

Default Value 10000

This variable controls in how many reads the progress is measured to display SHOW PROCESSLIST. Reads are
defined as SELECT queries.

For slow queries, it can be helpful to set this variable and tokudb_write_status_frequency to 1, and then
run SHOW PROCESSLIST several times to understand what progress is being made.

variable tokudb_row_format

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type ENUM

64.4. TokuDB Variables 217

Percona Server Documentation, Release 8.0.18-9

Range TOKUDB_DEFAULT, TOKUDB_FAST, TOKUDB_SMALL, TOKUDB_ZLIB,
TOKUDB_QUICKLZ, TOKUDB_LZMA, TOKUDB_SNAPPY, TOKUDB_UNCOMPRESSED

Default Value TOKUDB_QUICKLZ

This controls the default compression algorithm used to compress data. For more information on compression algo-
rithms see Compression Details.

variable tokudb_rpl_check_readonly

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

The TokuDB replication code will run row events from the binary log with Read Free Replication when the slave is in
read-only mode. This variable is used to disable the slave read only check in the TokuDB replication code.

This allows Read-Free-Replication to run when the slave is NOT read-only. By default,
tokudb_rpl_check_readonly is enabled (check that slave is read-only). Do NOT change this value
unless you completely understand the implications!

variable tokudb_rpl_lookup_rows

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

When disabled, TokuDB replication slaves skip row lookups for delete row log events and update row log
events, which eliminates all associated read I/O for these operations.

Warning: TokuDB Read Free Replication will not propagate UPDATE and DELETE events reliably if TokuDB
table is missing the primary key which will eventually lead to data inconsistency on the slave.

Note: Optimization is only enabled when read_only is set to 1 and binlog_format is ROW.

variable tokudb_rpl_lookup_rows_delay

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0 - 18446744073709551615

64.4. TokuDB Variables 218

Percona Server Documentation, Release 8.0.18-9

Default Value 0

This variable allows for simulation of long disk reads by sleeping for the given number of microseconds prior to the
row lookup query, it should only be set to a non-zero value for testing.

variable tokudb_rpl_unique_checks

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

When disabled, TokuDB replication slaves skip uniqueness checks on inserts and updates, which eliminates all associ-
ated read I/O for these operations.

Note: Optimization is only enabled when read_only is set to 1 and binlog_format is ROW.

variable tokudb_rpl_unique_checks_delay

Command Line Yes

Config File Yes

Scope Session, Global

Dynamic Yes

Variable Type Numeric

Range 0 - 18446744073709551615

Default Value 0

This variable allows for simulation of long disk reads by sleeping for the given number of microseconds prior to the
row lookup query, it should only be set to a non-zero value for testing.

variable tokudb_strip_frm_data

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type Boolean

Default Value OFF

When this variable is set to ON during the startup server will check all the status files and remove the embedded .frm
metadata. This variable can be used to assist in TokuDB data recovery. WARNING: Use this variable only if you
know what you’re doing otherwise it could lead to data loss.

variable tokudb_support_xa

Command Line Yes

Config File Yes

64.4. TokuDB Variables 219

Percona Server Documentation, Release 8.0.18-9

Scope Session, Global

Dynamic Yes

Variable Type Boolean

Default Value ON

This variable defines whether or not the prepare phase of an XA transaction performs an fsync().

variable tokudb_tmp_dir

Command Line Yes

Config File Yes

Scope Global

Dynamic No

Variable Type String

This variable specifies the directory where the TokuDB bulk loader stores temporary files. The bulk loader can create
large temporary files while it is loading a table, so putting these temporary files on a disk separate from the data
directory can be useful.

tokudb_load_save_space determines whether the data is compressed or not. The error message ERROR 1030
(HY000): Got error 1 from storage engine could indicate that the disk has run out of space.

For example, it can make sense to use a high-performance disk for the data directory and a very inexpensive disk for
the temporary directory. The default location for temporary files is the MySQL data directory.

For more information check TokuDB files and file types and TokuDB file management.

variable tokudb_version

Command Line No

Config File No

Scope Global

Dynamic No

Variable Type String

This read-only variable documents the version of the TokuDB storage engine.

variable tokudb_write_status_frequency

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Range 0 - 4294967295

Default Value 1000

This variable controls in how many writes the progress is measured to display SHOW PROCESSLIST. Writes are
defined as INSERT, UPDATE and DELETE queries.

For slow queries, it can be helpful to set this variable and tokudb_read_status_frequency to 1, and then run
SHOW PROCESSLIST several times to understand what progress is being made.

64.4. TokuDB Variables 220

Percona Server Documentation, Release 8.0.18-9

Percona TokuBackup

Percona TokuBackup is an open-source hot backup utility for MySQL servers running the TokuDB storage engine
(including Percona Server for MySQL and MariaDB). It does not lock your database during backup. The TokuBackup
library intercepts system calls that write files and duplicates the writes to the backup directory.

Note: This feature is currently considered Experimental

• Installing From Binaries

• Making a Backup

• Restoring From Backup

• Advanced Configuration

– Monitoring Progress

– Excluding Source Files

– Throttling Backup Rate

– Restricting Backup Target

– Reporting Errors

• Limitations and known issues

Installing From Binaries

The installation of TokuBackup can be performed with the ps-admin script.

To install Percona TokuBackup complete the following steps. Run the following commands as root or by using the
sudo command.

1. Run ps-admin --enable-tokubackup to add the preload-hotbackup option into [mysqld_safe]
section of my.cnf.

Output

Checking SELinux status...
INFO: SELinux is disabled.

Checking if preload-hotbackup option is already set in config file...
INFO: Option preload-hotbackup is not set in the config file.

Checking TokuBackup plugin status...
INFO: TokuBackup plugin is not installed.

Adding preload-hotbackup option into /etc/my.cnf
INFO: Successfully added preload-hotbackup option into /etc/my.cnf
PLEASE RESTART MYSQL SERVICE AND RUN THIS SCRIPT AGAIN TO FINISH INSTALLATION!

2. Restart mysql service: service mysql restart

64.5. Percona TokuBackup 221

Percona Server Documentation, Release 8.0.18-9

3. Run ps-admin --enable-tokubackup again to finish the installation of the TokuBackup plugin.

Output

Checking SELinux status...
INFO: SELinux is disabled.

Checking if preload-hotbackup option is already set in config file...
INFO: Option preload-hotbackup is set in the config file.

Checking TokuBackup plugin status...
INFO: TokuBackup plugin is not installed.

Checking if Percona Server is running with libHotBackup.so preloaded...
INFO: Percona Server is running with libHotBackup.so preloaded.

Installing TokuBackup plugin...
INFO: Successfully installed TokuBackup plugin.

Making a Backup

To run Percona TokuBackup, the backup destination directory must exist, be writable and owned by the same user
under which MySQL server is running (usually mysql) and empty.

Once this directory is created, the backup can be run using the following command:

mysql> set tokudb_backup_dir='/path_to_empty_directory';

Note: Setting the tokudb_backup_dir variable automatically starts the backup process to the specified directory.
Percona TokuBackup will take full backup each time, currently there is no incremental backup option

If you get any error on this step (e.g. caused by some misconfiguration), the Reporting Errors section explains how to
find out the reason.

Restoring From Backup

Percona TokuBackup does not have any functionality for restoring a backup. You can use rsync or cp to restore the
files. You should check that the restored files have the correct ownership and permissions.

Note: Make sure that the datadir is empty and that MySQL server is shut down before restoring from backup. You
can’t restore to a datadir of a running mysqld instance (except when importing a partial backup).

The following example shows how you might use the rsync command to restore the backup:

$ rsync -avrP /data/backup/ /var/lib/mysql/

Since attributes of files are preserved, in most cases you will need to change their ownership to mysql before starting
the database server. Otherwise, the files will be owned by the user who created the backup.

64.5. Percona TokuBackup 222

Percona Server Documentation, Release 8.0.18-9

$ chown -R mysql:mysql /var/lib/mysql

If you have changed default TokuDB data directory (tokudb_data_dir) or TokuDB log directory
(tokudb_log_dir) or both of them, you will see separate folders for each setting in backup directory after taking
backup. You’ll need to restore each folder separately:

$ rsync -avrP /data/backup/mysql_data_dir/ /var/lib/mysql/
$ rsync -avrP /data/backup/tokudb_data_dir/ /path/to/original/tokudb_data_dir/
$ rsync -avrP /data/backup/tokudb_log_dir/ /path/to/original/tokudb_log_dir/
$ chown -R mysql:mysql /var/lib/mysql
$ chown -R mysql:mysql /path/to/original/tokudb_data_dir
$ chown -R mysql:mysql /path/to/original/tokudb_log_dir

Advanced Configuration

• Monitoring Progress

• Excluding Source Files

• Throttling Backup Rate

• Restricting Backup Target

• Reporting Errors

Monitoring Progress

TokuBackup updates the PROCESSLIST state while the backup is in progress. You can see the output by running
SHOW PROCESSLIST or SHOW FULL PROCESSLIST.

Excluding Source Files

You can exclude certain files and directories based on a regular expression set in the tokudb_backup_exclude
session variable. If the source file name matches the excluded regular expression, then the source file is excluded from
backup.

For example, to exclude all lost+found directories from backup, use the following command:

mysql> SET tokudb_backup_exclude='/lost\\+found($|/)';

Note: The server pid file is excluded by default. If you’re providing your own additions to the exclusions and have
the pid file in the default location, you will need to add the mysqld_safe.pid entry.

Throttling Backup Rate

You can throttle the backup rate using the tokudb_backup_throttle session-level variable. This variable throt-
tles the write rate in bytes per second of the backup to prevent TokuBackup from crowding out other jobs in the system.
The default and max value is 18446744073709551615.

64.5. Percona TokuBackup 223

Percona Server Documentation, Release 8.0.18-9

mysql> SET tokudb_backup_throttle=1000000;

Restricting Backup Target

You can restrict the location of the destination directory where the backups can be located using the
tokudb_backup_allowed_prefix system-level variable. Attempts to backup to a location outside of the spec-
ified directory or its children will result in an error.

The default is null, backups have no restricted locations. This read-only variable can be set in the my.cnf configu-
ration file and displayed with the SHOW VARIABLES command:

mysql> SHOW VARIABLES LIKE 'tokudb_backup_allowed_prefix';
+------------------------------+-----------+
| Variable_name | Value |
+------------------------------+-----------+
| tokudb_backup_allowed_prefix | /dumpdir |
+------------------------------+-----------+

Reporting Errors

Percona TokuBackup uses two variables to capture errors. They are tokudb_backup_last_error and
tokudb_backup_last_error_string. When TokuBackup encounters an error, these will report on the er-
ror number and the error string respectively. For example, the following output shows these parameters following an
attempted backup to a directory that was not empty:

mysql> SET tokudb_backup_dir='/tmp/backupdir';
ERROR 1231 (42000): Variable 'tokudb_backup_dir' can't be set to the value of '/tmp/
→˓backupdir'

mysql> SELECT @@tokudb_backup_last_error;
+----------------------------+
| @@tokudb_backup_last_error |
+----------------------------+
| 17 |
+----------------------------+

mysql> SELECT @@tokudb_backup_last_error_string;
+---+
| @@tokudb_backup_last_error_string |
+---+
| tokudb backup couldn't create needed directories. |
+---+

Limitations and known issues

• You must disable InnoDB asynchronous IO if backing up InnoDB tables with TokuBackup. Otherwise you will
have inconsistent, unrecoverable backups. The appropriate setting is innodb_use_native_aio=0.

• To be able to run Point-In-Time-Recovery you’ll need to manually get the binary log position.

• Transactional storage engines (TokuDB and InnoDB) will perform recovery on the backup copy of the database
when it is first started.

64.5. Percona TokuBackup 224

Percona Server Documentation, Release 8.0.18-9

• Tables using non-transactional storage engines (MyISAM) are not locked during the copy and may report issues
when starting up the backup. It is best to avoid operations that modify these tables at the end of a hot backup
operation (adding/changing users, stored procedures, etc.).

• The database is copied locally to the path specified in /path/to/backup. This folder must exist, be writable,
be empty, and contain enough space for a full copy of the database.

• TokuBackup always makes a backup of the MySQL datadir and optionally the tokudb_data_dir,
tokudb_log_dir, and the binary log folder. The latter three are only backed up separately if they are not
the same as or contained in the MySQL datadir. None of these three folders can be a parent of the MySQL
datadir.

• No other directory structures are supported. All InnoDB, MyISAM, and other storage engine files must be within
the MySQL datadir.

• TokuBackup does not follow symbolic links.

• TokuBackup does not backup MySQL configuration file(s).

• TokuBackup does not backup tablespaces if they are out of datadir.

• Due to upstream bug #80183, TokuBackup can’t recover backed-up table data if backup was taken while running
OPTIMIZE TABLE or ALTER TABLE ... TABLESPACE.

• TokuBackup doesn’t support incremental backups.

TokuDB Troubleshooting

• Known Issues

• Lock Visualization in TokuDB

Known Issues

Replication and binary logging: TokuDB supports binary logging and replication, with one restriction. TokuDB
does not implement a lock on the auto-increment function, so concurrent insert statements with one or more of the
statements inserting multiple rows may result in a non-deterministic interleaving of the auto-increment values. When
running replication with these concurrent inserts, the auto-increment values on the slave table may not match the auto-
increment values on the master table. Note that this is only an issue with Statement Based Replication (SBR), and not
Row Based Replication (RBR).

For more information about auto-increment and replication, see the MySQL Reference Manual: AUTO_INCREMENT
handling in InnoDB.

In addition, when using the REPLACE INTO or INSERT IGNORE on tables with no secondary indexes or tables
where secondary indexes are subsets of the primary, the session variable tokudb_pk_insert_mode controls
whether row based replication will work.

Uninformative error message: The LOAD DATA INFILE command can sometimes produce ERROR 1030
(HY000): Got error 1 from storage engine. The message should say that the error is caused
by insufficient disk space for the temporary files created by the loader.

Transparent Huge Pages: TokuDB will refuse to start if transparent huge pages are enabled. Transparent huge
page support can be disabled by issuing the following as root:

64.6. TokuDB Troubleshooting 225

http://bugs.mysql.com/bug.php?id=80183
http://dev.mysql.com/doc/refman/8.0/en/innodb-auto-increment-handling.html
http://dev.mysql.com/doc/refman/8.0/en/innodb-auto-increment-handling.html

Percona Server Documentation, Release 8.0.18-9

echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled

Note: The previous command needs to be executed after every reboot, because it defaults to always.

XA behavior vs. InnoDB: InnoDB forces a deadlocked XA transaction to abort, TokuDB does not.

Disabling the unique checks: For tables with unique keys, every insertion into the table causes a lookup by key
followed by an insertion, if the key is not in the table. This greatly limits insertion performance. If one knows by
design that the rows being inserted into the table have unique keys, then one can disable the key lookup prior to
insertion.

If your primary key is an auto-increment key, and none of your secondary keys are declared to be unique, then setting
unique_checks=OFF will provide limited performance gains. On the other hand, if your primary key has a lot of
entropy (it looks random), or your secondary keys are declared unique and have a lot of entropy, then disabling unique
checks can provide a significant performance boost.

If unique_checks is disabled when the primary key is not unique, secondary indexes may become corrupted. In
this case, the indexes should be dropped and rebuilt. This behavior differs from that of InnoDB, in which uniqueness is
always checked on the primary key, and setting unique_checks to off turns off uniqueness checking on secondary
indexes only. Turning off uniqueness checking on the primary key can provide large performance boosts, but it should
only be done when the primary key is known to be unique.

Group Replication: TokuDB storage engine doesn’t support Group Replication.

As of 8.0.17, InnoDB supports multi-valued indexes. TokuDB does not support this feature.

As of 8.0.17, InnoDB supports the Clone Plugin and the Clone Plugin API. TokuDB tables do not support either of
these features.

Lock Visualization in TokuDB

TokuDB uses key range locks to implement serializable transactions, which are acquired as the transaction progresses.
The locks are released when the transaction commits or aborts (this implements two phase locking).

TokuDB stores these locks in a data structure called the lock tree. The lock tree stores the set of range locks granted
to each transaction. In addition, the lock tree stores the set of locks that are not granted due to a conflict with locks
granted to some other transaction. When these other transactions are retired, these pending lock requests are retried.
If a pending lock request is not granted before the lock timer expires, then the lock request is aborted.

Lock visualization in TokuDB exposes the state of the lock tree with tables in the information schema. We also provide
a mechanism that may be used by a database client to retrieve details about lock conflicts that it encountered while
executing a transaction.

The TOKUDB_TRX table

The TOKUDB_TRX table in the INFORMATION_SCHEMA maps TokuDB transaction identifiers to MySQL client iden-
tifiers. This mapping allows one to associate a TokuDB transaction with a MySQL client operation.

The following query returns the MySQL clients that have a live TokuDB transaction:

SELECT * FROM INFORMATION_SCHEMA.TOKUDB_TRX,
INFORMATION_SCHEMA.PROCESSLIST
WHERE trx_mysql_thread_id = id;

64.6. TokuDB Troubleshooting 226

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html#create-index-multi-valued
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin.html

Percona Server Documentation, Release 8.0.18-9

The TOKUDB_LOCKS table

The tokudb_locks table in the information schema contains the set of locks granted to TokuDB transactions.

The following query returns all of the locks granted to some TokuDB transaction:

SELECT * FROM INFORMATION_SCHEMA.TOKUDB_LOCKS;

The following query returns the locks granted to some MySQL client:

SELECT id FROM INFORMATION_SCHEMA.TOKUDB_LOCKS,
INFORMATION_SCHEMA.PROCESSLIST
WHERE locks_mysql_thread_id = id;

The TOKUDB_LOCK_WAITS table

The tokudb_lock_waits table in the information schema contains the set of lock requests that are not granted
due to a lock conflict with some other transaction.

The following query returns the locks that are waiting to be granted due to a lock conflict with some other transaction:

SELECT * FROM INFORMATION_SCHEMA.TOKUDB_LOCK_WAITS;

Supporting explicit DEFAULT value expressions as of 8.0.13-3

TokuDB does not support explicit DEFAULT value expressions as of verion 8.0.13-3.

The tokudb_lock_timeout_debug session variable

The tokudb_lock_timeout_debug session variable controls how lock timeouts and lock deadlocks seen by the
database client are reported.

The following values are available:

0 No lock timeouts or lock deadlocks are reported.

1 A JSON document that describes the lock conflict is stored in the tokudb_last_lock_timeout
session variable

2 A JSON document that describes the lock conflict is printed to the MySQL error log.

Supported since 7.5.5: In addition to the JSON document describing the lock conflict, the following
lines are printed to the MySQL error log:

• A line containing the blocked thread id and blocked SQL

• A line containing the blocking thread id and the blocking SQL.

3 A JSON document that describes the lock conflict is stored in the tokudb_last_lock_timeout
session variable and is printed to the MySQL error log.

Supported since 7.5.5: In addition to the JSON document describing the lock conflict, the following
lines are printed to the MySQL error log:

• A line containing the blocked thread id and blocked SQL

• A line containing the blocking thread id and the blocking SQL.

64.6. TokuDB Troubleshooting 227

https://dev.mysql.com/doc/refman/8.0/en/data-type-defaults.html

Percona Server Documentation, Release 8.0.18-9

The tokudb_last_lock_timeout session variable

The tokudb_last_lock_timeout session variable contains a JSON document that describes the last lock con-
flict seen by the current MySQL client. It gets set when a blocked lock request times out or a lock deadlock is detected.
The tokudb_lock_timeout_debug session variable should have bit 0 set (decimal 1).

Example

Suppose that we create a table with a single column that is the primary key.

mysql> SHOW CREATE TABLE table;

Create Table: CREATE TABLE ‘table‘ (
‘id‘ int(11) NOT NULL,
PRIMARY KEY (‘id‘)) ENGINE=TokuDB DEFAULT CHARSET=latin1

Suppose that we have 2 MySQL clients with ID’s 1 and 2 respectively. Suppose that MySQL client 1 inserts some values
into table. TokuDB transaction 51 is created for the insert statement. Since autocommit is disabled, transaction 51
is still live after the insert statement completes, and we can query the tokudb_locks table in information schema
to see the locks that are held by the transaction.

mysql> SET AUTOCOMMIT=OFF;
mysql> INSERT INTO table VALUES (1),(10),(100);

Output

Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM INFORMATION_SCHEMA.TOKUDB_LOCKS;

Output

+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+
| locks_trx_id | locks_mysql_thread_id | locks_dname | locks_key_left | locks_key_
→˓right | locks_table_schema | locks_table_name | locks_table_dictionary_name |
+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+
| 51 | 1 | ./test/t-main | 0001000000 | 0001000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 000a000000 | 000a000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 0064000000 | 0064000000
→˓ | test | t | main |
+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+

mysql> SELECT * FROM INFORMATION_SCHEMA.TOKUDB_LOCK_WAITS;

Output

64.6. TokuDB Troubleshooting 228

Percona Server Documentation, Release 8.0.18-9

Empty set (0.00 sec)

The keys are currently hex dumped.

Now we switch to the other MySQL client with ID 2.

mysql> INSERT INTO table VALUES (2),(20),(100);

The insert gets blocked since there is a conflict on the primary key with value 100.

The granted TokuDB locks are:

SELECT * FROM INFORMATION_SCHEMA.TOKUDB_LOCKS;

Output

+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+
| locks_trx_id | locks_mysql_thread_id | locks_dname | locks_key_left | locks_key_
→˓right | locks_table_schema | locks_table_name | locks_table_dictionary_name |
+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+
| 51 | 1 | ./test/t-main | 0001000000 | 0001000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 000a000000 | 000a000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 0064000000 | 0064000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 0002000000 | 0002000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 0014000000 | 0014000000
→˓ | test | t | main |
+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+

The locks that are pending due to a conflict are:

SELECT * FROM INFORMATION_SCHEMA.TOKUDB_LOCK_WAITS;

+-------------------+-----------------+------------------+---------------------+------
→˓----------------+-----------------------+--------------------+------------------+---
→˓--------------------------+
| requesting_trx_id | blocking_trx_id | lock_waits_dname | lock_waits_key_left | lock_
→˓waits_key_right | lock_waits_start_time | locks_table_schema | locks_table_name |
→˓locks_table_dictionary_name |
+-------------------+-----------------+------------------+---------------------+------
→˓----------------+-----------------------+--------------------+------------------+---
→˓--------------------------+
| 62 | 51 | ./test/t-main | 0064000000 |
→˓0064000000 | 1380656990910 | test | t
→˓ | main |
+-------------------+-----------------+------------------+---------------------+------
→˓----------------+-----------------------+--------------------+------------------+---
→˓--------------------------+

64.6. TokuDB Troubleshooting 229

Percona Server Documentation, Release 8.0.18-9

Eventually, the lock for client 2 times out, and we can retrieve a JSON document that describes the conflict.

Error

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

SELECT @@TOKUDB_LAST_LOCK_TIMEOUT;

Output

+---
→˓--------------------------+
| @@tokudb_last_lock_timeout
→˓ |
+---
→˓--------------------------+
| "mysql_thread_id":2, "dbname":"./test/t-main", "requesting_txnid":62, "blocking_
→˓txnid":51, "key":"0064000000" |
+---
→˓--------------------------+

ROLLBACK;

Since transaction 62 was rolled back, all of the locks taken by it are released.

SELECT * FROM INFORMATION_SCHEMA.TOKUDB_LOCKS;

Output

+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+
| locks_trx_id | locks_mysql_thread_id | locks_dname | locks_key_left | locks_key_
→˓right | locks_table_schema | locks_table_name | locks_table_dictionary_name |
+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+
| 51 | 1 | ./test/t-main | 0001000000 | 0001000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 000a000000 | 000a000000
→˓ | test | t | main |
| 51 | 1 | ./test/t-main | 0064000000 | 0064000000
→˓ | test | t | main |
| 51 | 2 | ./test/t-main | 0002000000 | 0002000000
→˓ | test | t | main |
| 51 | 2 | ./test/t-main | 0014000000 | 0014000000
→˓ | test | t | main |
+--------------+-----------------------+---------------+----------------+-------------
→˓----+--------------------+------------------+-----------------------------+

64.6. TokuDB Troubleshooting 230

Percona Server Documentation, Release 8.0.18-9

Engine Status

Engine status provides details about the inner workings of TokuDB and can be useful in tuning your particular en-
vironment. The engine status can be determined by running the following command: SHOW ENGINE tokudb
STATUS;

The following is a reference of the table status statements:

Table Status Description
disk free space This is a gross estimate of how much of your file system

is available. Possible displays in this field are:
• More than twice the reserve (“more than 10 per-

cent of total file system space”)
• Less than twice the reserve
• Less than the reserve
• File system is completely full

time of environment creation This is the time when the TokuDB storage engine was
first started up. Normally, this is when mysqld was
initially installed with TokuDB. If the environment was
upgraded from TokuDB 4.x (4.2.0 or later), then this will
be displayed as “Dec 31, 1969” on Linux hosts.

time of engine startup This is the time when the TokuDB storage engine started
up. Normally, this is when mysqld started.

time now Current date/time on server.
db opens This is the number of times an individual PerconaFT

dictionary file was opened. This is a not a useful value
for a regular user to use for any purpose due to layers of
open/close caching on top.

db closes This is the number of times an individual PerconaFT
dictionary file was closed. This is a not a useful value
for a regular user to use for any purpose due to layers of
open/close caching on top.

num open dbs now This is the number of currently open databases.
max open dbs This is the maximum number of concurrently opened

databases.
period, in ms, that recovery log is automatically fsynced fsync() frequency in milliseconds.
dictionary inserts This is the total number of rows that have been inserted

into all primary and secondary indexes combined, when
those inserts have been done with a separate recovery
log entry per index. For example, inserting a row into a
table with one primary and two secondary indexes will
increase this count by three, if the inserts were done with
separate recovery log entries.

dictionary inserts fail This is the number of single-index insert operations that
failed.

dictionary deletes This is the total number of rows that have been deleted
from all primary and secondary indexes combined, if
those deletes have been done with a separate recovery
log entry per index.

dictionary deletes fail This is the number of single-index delete operations that
failed.

Continued on next page

64.6. TokuDB Troubleshooting 231

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
dictionary updates This is the total number of rows that have been updated

in all primary and secondary indexes combined, if those
updates have been done with a separate recovery log en-
try per index.

dictionary updates fail This is the number of single-index update operations
that failed.

dictionary broadcast updates‘‘: This is the number of broadcast updates that have been
successfully performed. A broadcast update is an up-
date that affects all rows in a dictionary.

dictionary broadcast updates fail This is the number of broadcast updates that have failed.
dictionary multi inserts This is the total number of rows that have been inserted

into all primary and secondary indexes combined, when
those inserts have been done with a single recovery log
entry for the entire row. (For example, inserting a row
into a table with one primary and two secondary indexes
will normally increase this count by three).

dictionary multi inserts fail This is the number of multi-index insert operations that
failed.

dictionary multi deletes This is the total number of rows that have been deleted
from all primary and secondary indexes combined,
when those deletes have been done with a single recov-
ery log entry for the entire row.

dictionary multi deletes fail This is the number of multi-index delete operations that
failed.

dictionary updates multi This is the total number of rows that have been updated
in all primary and secondary indexes combined, if those
updates have been done with a single recovery log entry
for the entire row.

dictionary updates fail multi This is the number of multi-index update operations that
failed.

le: max committed xr This is the maximum number of committed transaction
records that were stored on disk in a new or modified
row.

le: max provisional xr This is the maximum number of provisional transaction
records that were stored on disk in a new or modified
row.

le: expanded This is the number of times that an expanded memory
mechanism was used to store a new or modified row on
disk.

le: max memsize This is the maximum number of bytes that were stored
on disk as a new or modified row. This is the maximum
uncompressed size of any row stored in TokuDB that
was created or modified since the server started.

le: size of leafentries before garbage collection (during
message application)

Total number of bytes of leaf nodes data before perform-
ing garbage collection for non-flush events.

le: size of leafentries after garbage collection (during
message application)

Total number of bytes of leaf nodes data after perform-
ing garbage collection for non-flush events.

le: size of leafentries before garbage collection (outside
message application)

Total number of bytes of leaf nodes data before perform-
ing garbage collection for flush events.

Continued on next page

64.6. TokuDB Troubleshooting 232

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
le: size of leafentries after garbage collection (outside
message application)

Total number of bytes of leaf nodes data after perform-
ing garbage collection for flush events.

checkpoint: period This is the interval in seconds between the end of an
automatic checkpoint and the beginning of the next au-
tomatic checkpoint.

checkpoint: footprint Where the database is in the checkpoint process.
checkpoint: last checkpoint began This is the time the last checkpoint began. If a check-

point is currently in progress, then this time may be later
than the time the last checkpoint completed.

Note: If no checkpoint has ever taken place, then this
value will be Dec 31, 1969 on Linux hosts.

checkpoint: last complete checkpoint began This is the time the last complete checkpoint started.
Any data that changed after this time will not be cap-
tured in the checkpoint.

checkpoint: last complete checkpoint ended This is the time the last complete checkpoint ended.
checkpoint: time spent during checkpoint (begin and
end phases)

Time (in seconds) required to complete all checkpoints.

checkpoint: time spent during last checkpoint (begin
and end phases)

Time (in seconds) required to complete the last check-
point.

checkpoint: last complete checkpoint LSN This is the Log Sequence Number of the last complete
checkpoint.

checkpoint: checkpoints taken This is the number of complete checkpoints that have
been taken.

checkpoint: checkpoints failed This is the number of checkpoints that have failed for
any reason.

checkpoint: waiters now This is the current number of threads simultaneously
waiting for the checkpoint-safe lock to perform a check-
point.

checkpoint: waiters max This is the maximum number of threads ever simultane-
ously waiting for the checkpoint-safe lock to perform a
checkpoint.

checkpoint: non-checkpoint client wait on mo lock The number of times a non-checkpoint client thread
waited for the multi-operation lock.

checkpoint: non-checkpoint client wait on cs lock The number of times a non-checkpoint client thread
waited for the checkpoint-safe lock.

checkpoint: checkpoint begin time Cumulative time (in microseconds) required to mark all
dirty nodes as pending a checkpoint.

checkpoint: long checkpoint begin time The total time, in microseconds, of long checkpoint be-
gins. A long checkpoint begin is one taking more than
1 second.

checkpoint: long checkpoint begin count The total number of times a checkpoint begin took more
than 1 second.

checkpoint: checkpoint end time The time spent in checkpoint end operation in seconds.
checkpoint: long checkpoint end time The time spent in checkpoint end operation in seconds.
checkpoint: long checkpoint end count This is the count of end_checkpoint operations that ex-

ceeded 1 minute.
Continued on next page

64.6. TokuDB Troubleshooting 233

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
cachetable: miss This is a count of how many times the application was

unable to access your data in the internal cache.
cachetable: miss time This is the total time, in microseconds, of how long the

database has had to wait for a disk read to complete.
cachetable: prefetches This is the total number of times that a block of mem-

ory has been prefetched into the database’s cache. Data
is prefetched when the database’s algorithms determine
that a block of memory is likely to be accessed by the
application.

cachetable: size current This shows how much of the uncompressed data, in
bytes, is currently in the database’s internal cache.

cachetable: size limit This shows how much of the uncompressed data, in
bytes, will fit in the database’s internal cache.

cachetable: size writing This is the number of bytes that are currently queued up
to be written to disk.

cachetable: size nonleaf This shows the amount of memory, in bytes, the current
set of non-leaf nodes occupy in the cache.

cachetable: size leaf This shows the amount of memory, in bytes, the current
set of (decompressed) leaf nodes occupy in the cache.

cachetable: size rollback This shows the rollback nodes size, in bytes, in the
cache.

cachetable: size cachepressure This shows the number of bytes causing cache pressure
(the sum of buffers and work done counters), helps to
understand if cleaner threads are keeping up with work-
load. It should really be looked at as more of a value
to use in a ratio of cache pressure / cache table size.
The closer that ratio evaluates to 1, the higher the cache
pressure.

cachetable: size currently cloned data for checkpoint Amount of memory, in bytes, currently used for cloned
nodes. During the checkpoint operation, dirty nodes are
cloned prior to serialization/compression, then written
to disk. After which, the memory for the cloned block
is returned for re-use.

cachetable: evictions Number of blocks evicted from cache.
cachetable: cleaner executions Total number of times the cleaner thread loop has exe-

cuted.
cachetable: cleaner period TokuDB includes a cleaner thread that optimizes indexes

in the background. This variable is the time, in sec-
onds, between the completion of a group of cleaner op-
erations and the beginning of the next group of cleaner
operations. The cleaner operations run on a background
thread performing work that does not need to be done
on the client thread.

cachetable: cleaner iterations This is the number of cleaner operations that are per-
formed every cleaner period.

cachetable: number of waits on cache pressure The number of times a thread was stalled due to cache
pressure.

cachetable: time waiting on cache pressure Total time, in microseconds, waiting on cache pressure
to subside.

Continued on next page

64.6. TokuDB Troubleshooting 234

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
cachetable: number of long waits on cache pressure The number of times a thread was stalled for more than

1 second due to cache pressure.
cachetable: long time waiting on cache pressure Total time, in microseconds, waiting on cache pressure

to subside for more than 1 second.
cachetable: client pool: number of threads in pool The number of threads in the client thread pool.
cachetable: client pool: number of currently active
threads in pool

The number of currently active threads in the client
thread pool.

cachetable: client pool: number of currently queued
work items

The number of currently queued work items in the client
thread pool.

cachetable: client pool: largest number of queued work
items

The largest number of queued work items in the client
thread pool.

cachetable: client pool: total number of work items pro-
cessed

The total number of work items processed in the client
thread pool.

cachetable: client pool: total execution time of process-
ing work items

The total execution time of processing work items in the
client thread pool.

cachetable: cachetable pool: number of threads in pool The number of threads in the cachetable thread pool.
cachetable: cachetable pool: number of currently active
threads in pool

The number of currently active threads in the cachetable
thread pool.

cachetable: cachetable pool: number of currently
queued work items‘‘:

The number of currently queued work items in the ca-
chetable thread pool.

cachetable: cachetable pool: largest number of queued
work items‘‘:

The largest number of queued work items in the ca-
chetable thread pool.

cachetable: cachetable pool: total number of work items
processed‘‘:

The total number of work items processed in the ca-
chetable thread pool.

cachetable: cachetable pool: total execution time of pro-
cessing work items‘‘:

The total execution time of processing work items in the
cachetable thread pool.

cachetable: checkpoint pool: number of threads in
pool‘‘:

The number of threads in the checkpoint thread pool.

cachetable: checkpoint pool: number of currently active
threads in pool

The number of currently active threads in the checkpoint
thread pool.

cachetable: checkpoint pool: number of currently
queued work items‘‘:

The number of currently queued work items in the
checkpoint thread pool.

cachetable: checkpoint pool: largest number of queued
work items‘‘:

The largest number of queued work items in the check-
point thread pool.

cachetable: checkpoint pool: total number of work
items processed‘‘:

The total number of work items processed in the check-
point thread pool.

cachetable: checkpoint pool: total execution time of
processing work items‘‘:

The total execution time of processing work items in the
checkpoint thread pool.

locktree: memory size The amount of memory, in bytes, that the locktree is
currently using.

locktree: memory size limit The maximum amount of memory, in bytes, that the
locktree is allowed to use.

locktree: number of times lock escalation ran Number of times the locktree needed to run lock escala-
tion to reduce its memory footprint.

locktree: time spent running escalation (seconds) Total number of seconds spent performing locktree es-
calation.

locktree: latest post-escalation memory size Size of the locktree, in bytes, after most current locktree
escalation.

locktree: number of locktrees open now Number of locktrees currently open.
locktree: number of pending lock requests Number of requests waiting for a lock grant.

Continued on next page

64.6. TokuDB Troubleshooting 235

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
locktree: number of locktrees eligible for the STO Number of locktrees eligible for “Single Transaction

Optimizations”. STO optimization are behaviors that
can happen within the locktree when there is exactly
one transaction active within the locktree. This is a not
a useful value for a regular user to use for any purpose.

locktree: number of times a locktree ended the STO
early

Total number of times a “single transaction optimiza-
tion” was ended early due to another trans- action start-
ing.

locktree: time spent ending the STO early (seconds) Total number of seconds ending “Single Transaction
Optimizations”. STO optimization are behaviors that
can happen within the locktree when there is exactly
one transaction active within the locktree. This is a not
a useful value for a regular user to use for any purpose.

locktree: number of wait locks Number of times that a lock request could not be ac-
quired because of a conflict with some other transaction.

locktree: time waiting for locks Total time, in microseconds, spend by some client wait-
ing for a lock conflict to be resolved.

locktree: number of long wait locks Number of lock waits greater than 1 second in duration.
locktree: long time waiting for locks Total time, in microseconds, of the long waits.
locktree: number of lock timeouts Count of the number of times that a lock request timed

out.
locktree: number of waits on lock escalation When the sum of the sizes of locks taken reaches the

lock tree limit, we run lock escalation on a background
thread. The clients threads need to wait for escalation
to consolidate locks and free up memory. This counter
counts the number of times a client thread has to wait
on lock escalation.

locktree: time waiting on lock escalation Total time, in microseconds, that a client thread spent
waiting for lock escalation to free up memory.

locktree: number of long waits on lock escalation Number of times that a client thread had to wait on lock
escalation and the wait time was greater than 1 second.

locktree: long time waiting on lock escalation Total time, in microseconds, of the long waits for lock
escalation to free up memory.

ft: dictionary updates This is the total number of rows that have been updated
in all primary and secondary indexes combined, if those
updates have been done with a separate recovery log en-
try per index.

ft: dictionary broadcast updates This is the number of broadcast updates that have been
successfully performed. A broadcast update is an up-
date that affects all rows in a dictionary.

ft: descriptor set This is the number of time a descriptor was updated
when the entire dictionary was updated (for example,
when the schema has been changed).

ft: messages ignored by leaf due to msn The number of messages that were ignored by a leaf
because it had already been applied.

ft: total search retries due to TRY AGAIN‘‘ Total number of search retries due to TRY AGAIN. In-
ternal value that is no use to anyone other than a devel-
oper debugging a specific query/search issue.

ft: searches requiring more tries than the height of the
tree

Number of searches that required more tries than the
height of the tree.

Continued on next page

64.6. TokuDB Troubleshooting 236

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
ft: searches requiring more tries than the height of the
tree plus three‘‘

Number of searches that required more tries than the
height of the tree plus three.

ft: leaf nodes flushed to disk (not for checkpoint) Number of leaf nodes flushed to disk, not for check-
point.

ft: leaf nodes flushed to disk (not for checkpoint) (bytes) Number of bytes of leaf nodes flushed to disk, not for
checkpoint.

ft: leaf nodes flushed to disk (not for checkpoint) (un-
compressed bytes)

Number of bytes of leaf nodes flushed to disk, not for
checkpoint.

ft: leaf nodes flushed to disk (not for checkpoint) (sec-
onds)

Number of seconds waiting for IO when writing leaf
nodes flushed to disk, not for checkpoint.

ft: nonleaf nodes flushed to disk (not for checkpoint) Number of non-leaf nodes flushed to disk, not for check-
point.

ft: nonleaf nodes flushed to disk (not for checkpoint)
(bytes)

Number of bytes of non-leaf nodes flushed to disk, not
for checkpoint.

ft: nonleaf nodes flushed to disk (not for checkpoint)
(uncompressed bytes)

Number of uncompressed bytes of non-leaf nodes
flushed to disk, not for checkpoint.

ft: nonleaf nodes flushed to disk (not for checkpoint)
(seconds)

Number of seconds waiting for I/O when writing non-
leaf nodes flushed to disk, not for checkpoint.

ft: leaf nodes flushed to disk (for checkpoint) Number of leaf nodes flushed to disk for checkpoint.
ft: leaf nodes flushed to disk (for checkpoint) (bytes) Number of bytes of leaf nodes flushed to disk for check-

point.
ft: leaf nodes flushed to disk (for checkpoint) (uncom-
pressed bytes)

Number of uncompressed bytes of leaf nodes flushed to
disk for checkpoint.

ft: leaf nodes flushed to disk (for checkpoint) (sec-
onds)‘‘

Number of seconds waiting for IO when writing leaf
nodes flushed to disk for checkpoint.

ft: nonleaf nodes flushed to disk (for checkpoint) Number of non-leaf nodes flushed to disk for check-
point.

ft: nonleaf nodes flushed to disk (for checkpoint) (bytes) Number of bytes of non-leaf nodes flushed to disk for
checkpoint.

ft: nonleaf nodes flushed to disk (for checkpoint) (un-
compressed bytes)

Number of uncompressed bytes of non-leaf nodes
flushed to disk for checkpoint.

ft: nonleaf nodes flushed to disk (for checkpoint) (sec-
onds)

Number of seconds waiting for IO when writing non-
leaf nodes flushed to disk for checkpoint.

ft: uncompressed / compressed bytes written (leaf) Ratio of uncompressed bytes (in-memory) to com-
pressed bytes (on-disk) for leaf nodes.

ft: uncompressed / compressed bytes written (nonleaf) Ratio of uncompressed bytes (in-memory) to com-
pressed bytes (on-disk) for non-leaf nodes.

ft: uncompressed / compressed bytes written (overall) Ratio of uncompressed bytes (in-memory) to com-
pressed bytes (on-disk) for all nodes.

ft: nonleaf node partial evictions The number of times a partition of a non-leaf node was
evicted from the cache.

ft: nonleaf node partial evictions (bytes) The number of bytes freed by evicting partitions of non-
leaf nodes from the cache.

ft: leaf node partial evictions The number of times a partition of a leaf node was
evicted from the cache.

ft: leaf node partial evictions (bytes) The number of bytes freed by evicting partitions of leaf
nodes from the cache.

ft: leaf node full evictions‘‘ The number of times a full leaf node was evicted from
the cache.

Continued on next page

64.6. TokuDB Troubleshooting 237

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
ft: leaf node full evictions (bytes) The number of bytes freed by evicting full leaf nodes

from the cache.
ft: nonleaf node full evictions (bytes) The number of bytes freed by evicting full non-leaf

nodes from the cache.
ft: nonleaf node full evictions The number of times a full non-leaf node was evicted

from the cache.
ft: leaf nodes created Number of created leaf nodes .
ft: nonleaf nodes created Number of created non-leaf nodes.
ft: leaf nodes destroyed Number of destroyed leaf nodes.
ft: nonleaf nodes destroyed Number of destroyed non-leaf nodes.
ft: bytes of messages injected at root (all trees) Amount of messages, in bytes, injected at root (for all

trees).
ft: bytes of messages flushed from h1 nodes to leaves‘‘ Amount of messages, in bytes, flushed from h1 nodes

to leaves.
ft: bytes of messages currently in trees (estimate) Amount of messages, in bytes, currently in trees (esti-

mate).
ft: messages injected at root Number of messages injected at root node of a tree.
ft: broadcast messages injected at root Number of broadcast messages injected at root node of

a tree.
ft: basements decompressed as a target of a query Number of basement nodes decompressed for queries.
ft: basements decompressed for prelocked range Number of basement nodes decompressed by queries

aggressively.
ft: basements decompressed for prefetch Number of basement nodes decompressed by a prefetch

thread.
ft: basements decompressed for write Number of basement nodes decompressed for writes.
ft: buffers decompressed as a target of a query Number of buffers decompressed for queries.
ft: buffers decompressed for prelocked range Number of buffers decompressed by queries aggres-

sively.
ft: buffers decompressed for prefetch Number of buffers decompressed by a prefetch thread.
ft: buffers decompressed for write Number of buffers decompressed for writes.
ft: pivots fetched for query Number of pivot nodes fetched for queries.
ft: pivots fetched for query (bytes) Number of bytes of pivot nodes fetched for queries.
ft: pivots fetched for query (seconds) Number of seconds waiting for I/O when fetching pivot

nodes for queries.
ft: pivots fetched for prefetch Number of pivot nodes fetched by a prefetch thread.
ft: pivots fetched for prefetch (bytes) Number of bytes of pivot nodes fetched by a prefetch

thread.
ft: pivots fetched for prefetch (seconds) Number seconds waiting for I/O when fetching pivot

nodes by a prefetch thread.
ft: pivots fetched for write Number of pivot nodes fetched for writes.
ft: pivots fetched for write (bytes) Number of bytes of pivot nodes fetched for writes.
ft: pivots fetched for write (seconds) Number of seconds waiting for I/O when fetching pivot

nodes for writes.
ft: basements fetched as a target of a query Number of basement nodes fetched from disk for

queries.
ft: basements fetched as a target of a query (bytes) Number of basement node bytes fetched from disk for

queries.
ft: basements fetched as a target of a query (seconds) Number of seconds waiting for IO when fetching base-

ment nodes from disk for queries.
Continued on next page

64.6. TokuDB Troubleshooting 238

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
ft: basements fetched for prelocked range Number of basement nodes fetched from disk aggres-

sively.
ft: basements fetched for prelocked range (bytes) Number of basement node bytes fetched from disk ag-

gressively.
ft: basements fetched for prelocked range (seconds) Number of seconds waiting for I/O when fetching base-

ment nodes from disk aggressively.
ft: basements fetched for prefetch Number of basement nodes fetched from disk by a

prefetch thread.
ft: basements fetched for prefetch (bytes) Number of basement node bytes fetched from disk by a

prefetch thread.
ft: basements fetched for prefetch (seconds) Number of seconds waiting for I/O when fetching base-

ment nodes from disk by a prefetch thread.
ft: basements fetched for write Number of basement nodes fetched from disk for writes.
ft: basements fetched for write (bytes) Number of basement node bytes fetched from disk for

writes.
ft: basements fetched for write (seconds) Number of seconds waiting for I/O when fetching base-

ment nodes from disk for writes.
ft: buffers fetched as a target of a query Number of buffers fetched from disk for queries.
ft: buffers fetched as a target of a query (bytes) Number of buffer bytes fetched from disk for queries.
ft: buffers fetched as a target of a query (seconds) Number of seconds waiting for I/O when fetching

buffers from disk for queries.
ft: buffers fetched for prelocked range Number of buffers fetched from disk aggressively.
ft: buffers fetched for prelocked range (bytes) Number of buffer bytes fetched from disk aggressively.
ft: buffers fetched for prelocked range (seconds) Number of seconds waiting for I/O when fetching

buffers from disk aggressively.
ft: buffers fetched for prefetch Number of buffers fetched from disk by a prefetch

thread.
ft: buffers fetched for prefetch (bytes) Number of buffer bytes fetched from disk by a prefetch

thread.
ft: buffers fetched for prefetch (seconds) Number of seconds waiting for I/O when fetching

buffers from disk by a prefetch thread.
ft: buffers fetched for write Number of buffers fetched from disk for writes.
ft: buffers fetched for write (bytes) Number of buffer bytes fetched from disk for writes.
ft: buffers fetched for write (seconds) Number of seconds waiting for I/O when fetching

buffers from disk for writes.
ft: leaf compression to memory (seconds) Total time, in seconds, spent compressing leaf nodes.
ft: leaf serialization to memory (seconds) Total time, in seconds, spent serializing leaf nodes.
ft: leaf decompression to memory (seconds) Total time, in seconds, spent decompressing leaf nodes.
ft: leaf deserialization to memory (seconds) Total time, in seconds, spent deserializing leaf nodes.
ft: nonleaf compression to memory (seconds) Total time, in seconds, spent compressing non leaf

nodes.
ft: nonleaf serialization to memory (seconds) Total time, in seconds, spent serializing non leaf nodes.
ft: nonleaf decompression to memory (seconds) Total time, in seconds, spent decompressing non leaf

nodes.
ft: nonleaf deserialization to memory (seconds) Total time, in seconds, spent deserializing non leaf

nodes.
ft: promotion: roots split Number of times the root split during promotion.
ft: promotion: leaf roots injected into Number of times a message stopped at a root with height

0.
Continued on next page

64.6. TokuDB Troubleshooting 239

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
ft: promotion: h1 roots injected into Number of times a message stopped at a root with height

1.
ft: promotion: injections at depth 0 Number of times a message stopped at depth 0.
ft: promotion: injections at depth 1 Number of times a message stopped at depth 1.
ft: promotion: injections at depth 2 Number of times a message stopped at depth 2.
ft: promotion: injections at depth 3 Number of times a message stopped at depth 3.
ft: promotion: injections lower than depth 3 Number of times a message was promoted past depth 3.
ft: promotion: stopped because of a nonempty buffer Number of times a message stopped because it reached

a nonempty buffer.
ft: promotion: stopped at height 1‘‘ Number of times a message stopped because it had

reached height 1.
ft: promotion: stopped because the child was locked or
not at all in memory

Number of times promotion was stopped because the
child node was locked or not at all in memory. This
is a not a useful value for a regular user to use for any
purpose.

ft: promotion: stopped because the child was not fully
in memory

Number of times promotion was stopped because the
child node was not at all in memory. This is a not a
useful value for a normal user to use for any purpose.

ft: promotion: stopped anyway, after locking the child Number of times a message stopped before a child
which had been locked.

ft: basement nodes deserialized with fixed-keysize The number of basement nodes deserialized where all
keys had the same size, leaving the basement in a format
that is optimal for in-memory workloads.

ft: basement nodes deserialized with variable-keysize The number of basement nodes deserialized where all
keys did not have the same size, and thus ineligible for
an in-memory optimization.

ft: promotion: succeeded in using the rightmost leaf
shortcut

Rightmost insertions used the rightmost-leaf pin path,
meaning that the Fractal Tree index detected and prop-
erly optimized rightmost inserts.

ft: promotion: tried the rightmost leaf shortcut but failed
(out-of-bounds)

Rightmost insertions did not use the rightmost-leaf pin
path, due to the insert not actually being into the right-
most leaf node.

ft: promotion: tried the rightmost leaf shortcut but failed
(child reactive)

Rightmost insertions did not use the rightmost-leaf pin
path, due to the leaf being too large (needed to split).

ft: cursor skipped deleted leaf entries Number of leaf entries skipped during search/scan be-
cause the result of message application and reconcilia-
tion of the leaf entry MVCC stack reveals that the leaf
entry is deleted in the current transactions view. It is a
good indicator that there might be excessive garbage in
a tree if a range scan seems to take too long.

ft flusher: total nodes potentially flushed by cleaner
thread

Total number of nodes whose buffers are potentially
flushed by cleaner thread.

ft flusher: height-one nodes flushed by cleaner thread Number of nodes of height one whose message buffers
are flushed by cleaner thread.

ft flusher: height-greater-than-one nodes flushed by
cleaner thread

Number of nodes of height > 1 whose message buffers
are flushed by cleaner thread.

ft flusher: nodes cleaned which had empty buffers Number of nodes that are selected by cleaner, but whose
buffers are empty.

ft flusher: nodes dirtied by cleaner thread Number of nodes that are made dirty by the cleaner
thread.

Continued on next page

64.6. TokuDB Troubleshooting 240

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
ft flusher: max bytes in a buffer flushed by cleaner
thread

Max number of bytes in message buffer flushed by
cleaner thread.

ft flusher: min bytes in a buffer flushed by cleaner thread Min number of bytes in message buffer flushed by
cleaner thread.

ft flusher: total bytes in buffers flushed by cleaner thread Total number of bytes in message buffers flushed by
cleaner thread.

ft flusher: max workdone in a buffer flushed by cleaner
thread

Max workdone value of any message buffer flushed by
cleaner thread.

ft flusher: min workdone in a buffer flushed by cleaner
thread

Min workdone value of any message buffer flushed by
cleaner thread.

ft flusher: total workdone in buffers flushed by cleaner
thread

Total workdone value of message buffers flushed by
cleaner thread.

ft flusher: times cleaner thread tries to merge a leaf The number of times the cleaner thread tries to merge a
leaf.

ft flusher: cleaner thread leaf merges in progress The number of cleaner thread leaf merges in progress.
ft flusher: cleaner thread leaf merges successful The number of times the cleaner thread successfully

merges a leaf.
ft flusher: nodes dirtied by cleaner thread leaf merges The number of nodes dirtied by the “flush from root”

process to merge a leaf node.
ft flusher: total number of flushes done by flusher
threads or cleaner threads

Total number of flushes done by flusher threads or
cleaner threads.

ft flusher: number of in memory flushes Number of in-memory flushes.
ft flusher: number of flushes that read something off
disk

Number of flushes that had to read a child (or part) off
disk.

ft flusher: number of flushes that triggered another flush
in child

Number of flushes that triggered another flush in the
child.

ft flusher: number of flushes that triggered 1 cascading
flush

Number of flushes that triggered 1 cascading flush.

ft flusher: number of flushes that triggered 2 cascading
flushes

Number of flushes that triggered 2 cascading flushes.

ft flusher: number of flushes that triggered 3 cascading
flushes:‘‘

Number of flushes that triggered 3 cascading flushes.

ft flusher: number of flushes that triggered 4 cascading
flushes

Number of flushes that triggered 4 cascading flushes.

ft flusher: number of flushes that triggered 5 cascading
flushes

Number of flushes that triggered 5 cascading flushes.

ft flusher: number of flushes that triggered over 5 cas-
cading flushes

Number of flushes that triggered more than 5 cascading
flushes.

ft flusher: leaf node splits Number of leaf nodes split.
ft flusher: nonleaf node splits Number of non-leaf nodes split.
ft flusher: leaf node merges Number of times leaf nodes are merged.
ft flusher: nonleaf node merges Number of times non-leaf nodes are merged.
ft flusher: leaf node balances Number of times a leaf node is balanced.
hot: operations ever started This variable shows the number of hot operations started

(OPTIMIZE TABLE). This is a not a useful value for a
regular user to use for any purpose.

hot: operations successfully completed The number of hot operations that have successfully
completed (OPTIMIZE TABLE). This is a not a use-
ful value for a regular user to use for any purpose.

Continued on next page

64.6. TokuDB Troubleshooting 241

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
hot: operations aborted The number of hot operations that have been aborted

(OPTIMIZE TABLE). This is a not a useful value for a
regular user to use for any purpose.

hot: max number of flushes from root ever required to
optimize a tree

The maximum number of flushes from the root ever re-
quired to optimize a tree.

txn: begin This is the number of transactions that have been started.
txn: begin read only Number of read only transactions started.
txn: successful commits This is the total number of transactions that have been

committed.
txn: aborts This is the total number of transactions that have been

aborted.
logger: next LSN This is the next unassigned Log Sequence Number. It

will be assigned to the next entry in the recovery log.
logger: writes Number of times the logger has written to disk.
logger: writes (bytes) Number of bytes the logger has written to disk.
logger: writes (uncompressed bytes) Number of uncompressed the logger has written to disk.
logger: writes (seconds) Number of seconds waiting for I/O when writing logs to

disk.
logger: number of long logger write operations Number of times a logger write operation required

100ms or more.
indexer: number of indexers successfully created This is the number of times one of our internal objects,

a indexer, has been created.
indexer: number of calls to
toku_indexer_create_indexer() that failed

This is the number of times a indexer was requested but
could not be created.

indexer: number of calls to indexer->build() succeeded This is the total number of times that indexes were cre-
ated using a indexer.

indexer: number of calls to indexer->build() failed This is the total number of times that indexes were un-
able to be created using a indexer

indexer: number of calls to indexer->close() that suc-
ceeded

This is the number of indexers that successfully created
the requested index(es).

indexer: number of calls to indexer->close() that failed This is the number of indexers that were unable to create
the requested index(es).

indexer: number of calls to indexer->abort() This is the number of indexers that were aborted.
indexer: number of indexers currently in existence This is the number of indexers that currently exist.
indexer: max number of indexers that ever existed si-
multaneously

This is the maximum number of indexers that ever ex-
isted simultaneously.

loader: number of loaders successfully created This is the number of times one of our internal objects,
a loader, has been created.

loader: number of calls to toku_loader_create_loader()
that failed

This is the number of times a loader was requested but
could not be created.

loader: number of calls to loader->put() succeeded This is the total number of rows that were inserted using
a loader.

loader: number of calls to loader->put() failed This is the total number of rows that were unable to be
inserted using a loader.

loader: number of calls to loader->close() that suc-
ceeded

This is the number of loaders that successfully created
the requested table.

loader: number of calls to loader->close() that failed This is the number of loaders that were unable to create
the requested table.

loader: number of calls to loader->abort() This is the number of loaders that were aborted.
loader: number of loaders currently in existence This is the number of loaders that currently exist.

Continued on next page

64.6. TokuDB Troubleshooting 242

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
loader: max number of loaders that ever existed simul-
taneously

This is the maximum number of loaders that ever existed
simultaneously.

memory: number of malloc operations Number of calls to malloc().
memory: number of free operations Number of calls to free().
memory: number of realloc operations Number of calls to realloc().
memory: number of malloc operations that failed Number of failed calls to malloc().
memory: number of realloc operations that failed Number of failed calls to realloc().
memory: number of bytes requested Total number of bytes requested from memory allocator

library.
memory: number of bytes freed Total number of bytes allocated from memory allocation

library that have been freed (used - freed = bytes in use).
memory: largest attempted allocation size Largest number of bytes in a single successful

malloc() operation.
memory: size of the last failed allocation attempt Largest number of bytes in a single failed malloc()

operation.
memory: number of bytes used (requested + overhead) Total number of bytes allocated by memory allocator

library.
memory: estimated maximum memory footprint Maximum memory footprint of the storage engine, the

max value of (used - freed).
memory: mallocator version Version string from in-use memory allocator.
memory: mmap threshold The threshold for malloc to use mmap.
filesystem: ENOSPC redzone state The state of how much disk space exists with respect

to the red zone value. Redzone is space greater than
tokudb_fs_reserve_percent and less than full
disk.
Valid values are:

0 Space is available
1 Warning, with 2x of redzone value. Op-

erations are allowed, but engine status
prints a warning.

2 In red zone, insert operations are blocked
3 All operations are blocked

filesystem: threads currently blocked by full disk This is the number of threads that are currently blocked
because they are attempting to write to a full disk. This
is normally zero. If this value is non-zero, then a warn-
ing will appear in the “disk free space” field.

filesystem: number of operations rejected by enospc
prevention (red zone)

This is the number of database inserts that have been
rejected because the amount of disk free space was less
than the reserve.

filesystem: most recent disk full This is the most recent time when the disk file system
was entirely full. If the disk has never been full, then
this value will be Dec 31, 1969 on Linux hosts.

filesystem: number of write operations that returned
ENOSPC

This is the number of times that an attempt to write to
disk failed because the disk was full. If the disk is full,
this number will continue increasing until space is avail-
able.

filesystem: fsync time This the total time, in microseconds, used to fsync to
disk.

Continued on next page

64.6. TokuDB Troubleshooting 243

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
filesystem: fsync count This is the total number of times the database has

flushed the operating system’s file buffers to disk.
filesystem: long fsync time This the total time, in microseconds, used to fsync to

disk when the operation required more than 1 second.
filesystem: long fsync count This is the total number of times the database has

flushed the operating system’s file buffers to disk and
this operation required more than 1 second.

context: tree traversals blocked by a full fetch Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of a full fetch.

context: tree traversals blocked by a partial fetch Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of a partial fetch.

context: tree traversals blocked by a full eviction‘‘ Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of a full eviction.

context: tree traversals blocked by a partial eviction‘‘ Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of a partial eviction.

context: tree traversals blocked by a message injection Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of message injection.

context: tree traversals blocked by a message applica-
tion‘‘

Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because of
message application (applying fresh ancestors messages
to a basement node).

context: tree traversals blocked by a flush Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of a buffer flush from parent to child.

context: tree traversals blocked by a the cleaner thread Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of a cleaner thread.

context: tree traversals blocked by something uninstru-
mented

Number of times node rwlock contention was ob-
served while pinning nodes from root to leaf because
of something uninstrumented.

context: promotion blocked by a full fetch (should never
happen)

Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to the
buffer to receive the message) because of a full fetch.

context: promotion blocked by a partial fetch (should
never happen)

Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to the
buffer to receive the message) because of a partial fetch.

context: promotion blocked by a full eviction (should
never happen)

Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to the
buffer to receive the message) because of a full eviction.

context: promotion blocked by a partial eviction (should
never happen)

Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to
the buffer to receive the message) because of a partial
eviction.

Continued on next page

64.6. TokuDB Troubleshooting 244

Percona Server Documentation, Release 8.0.18-9

Table 64.2 – continued from previous page
Table Status Description
context: promotion blocked by a message injection Number of times node rwlock contention was ob-

served within promotion (pinning nodes from root to
the buffer to receive the message) because of message
injection.

context: promotion blocked by a message application Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to the
buffer to receive the message) because of message appli-
cation (applying fresh ancestors messages to a basement
node).

context: promotion blocked by a flush Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to the
buffer to receive the message) because of a buffer flush
from parent to child.

context: promotion blocked by the cleaner thread Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to
the buffer to receive the message) because of a cleaner
thread.

context: promotion blocked by something uninstru-
mented

Number of times node rwlock contention was ob-
served within promotion (pinning nodes from root to
the buffer to receive the message) because of something
uninstrumented.

context: something uninstrumented blocked by some-
thing uninstrumented

Number of times node rwlock contention was ob-
served for an uninstrumented process because of some-
thing uninstrumented.

handlerton: primary key bytes inserted Total number of bytes inserted into all primary key in-
dexes.

Frequently Asked Questions

This section contains frequently asked questions regarding TokuDB and related software.

• Transactional Operations

• TokuDB and the File System

• Full Disks

• Backup

• Missing Log Files

• Isolation Levels

• Lock Wait Timeout Exceeded

• Row Size

• NFS & CIFS

• Using Other Storage Engines

• Using MySQL Patches with TokuDB

64.7. Frequently Asked Questions 245

Percona Server Documentation, Release 8.0.18-9

• Truncate Table vs Delete from Table

• Foreign Keys

• Dropping Indexes

Transactional Operations

What transactional operations does TokuDB support?

TokuDB supports BEGIN TRANSACTION, END TRANSACTION, COMMIT, ROLLBACK, SAVEPOINT, and
RELEASE SAVEPOINT.

TokuDB and the File System

How can I determine which files belong to the various tables and indexes in my schemas?

The tokudb_file_map plugin lists all Fractal Tree Indexes and their corresponding data files. The
internal_file_name is the actual file name (in the data folder).

mysql> SELECT * FROM information_schema.tokudb_file_map;

+--------------------------+---------------------------------------+---------------+--
→˓-----------+------------------------+
| dictionary_name | internal_file_name | table_schema |
→˓table_name | table_dictionary_name |
+--------------------------+---------------------------------------+---------------+--
→˓-----------+------------------------+
| ./test/tmc-key-idx_col2 | ./_test_tmc_key_idx_col2_a_14.tokudb | test |
→˓tmc | key_idx_col2 |
| ./test/tmc-main | ./_test_tmc_main_9_14.tokudb | test |
→˓tmc | main |
| ./test/tmc-status | ./_test_tmc_status_8_14.tokudb | test |
→˓tmc | status |
+--------------------------+---------------------------------------+---------------+--
→˓-----------+------------------------+

Full Disks

What happens when the disk system fills up?

The disk system may fill up during bulk load operations, such as LOAD DATA IN FILE or CREATE INDEX, or
during incremental operations like INSERT.

In the bulk case, running out of disk space will cause the statement to fail with ERROR 1030 (HY000): Got
error 1 from storage engine. The temporary space used by the bulk loader will be released. If this hap-
pens, you can use a separate physical disk for the temporary files (for more information, see tokudb_tmp_dir). If
server runs out of free space TokuDB will assert the server to prevent data corruption to existing data files.

Otherwise, disk space can run low during non-bulk operations. When available space is below a user-configurable
reserve (5% by default) inserts are prevented and transactions that perform inserts are aborted. If the disk becomes
completely full then TokuDB will freeze until some disk space is made available.

Details about the disk system:

64.7. Frequently Asked Questions 246

Percona Server Documentation, Release 8.0.18-9

• There is a free-space reserve requirement, which is a user-configurable parameter given as a percentage of the
total space in the file system. The default reserve is five percent. This value is available in the global variable
tokudb_fs_reserve_percent. We recommend that this reserve be at least half the size of your physical
memory.

TokuDB polls the file system every five seconds to determine how much free space is available. If the free space
dips below the reserve, then further table inserts are prohibited. Any transaction that attempts to insert rows
will be aborted. Inserts are re-enabled when twice the reserve is available in the file system (so freeing a small
amount of disk storage will not be sufficient to resume inserts). Warning messages are sent to the system error
log when free space dips below twice the reserve and again when free space dips below the reserve.

Even with inserts prohibited it is still possible for the file system to become completely full. For example this
can happen because another storage engine or another application consumes disk space.

• If the file system becomes completely full, then TokuDB will freeze. It will not crash, but it will not respond to
most SQL commands until some disk space is made available. When TokuDB is frozen in this state, it will still
respond to the following command:

SHOW ENGINE TokuDB STATUS;

Make disk space available will allow the storage engine to continue running, but inserts will still be
prohibited until twice the reserve is free.

Note: Engine status displays a field indicating if disk free space is above twice the reserve, below twice
the reserve, or below the reserve. It will also display a special warning if the disk is completely full.

• In order to make space available on this system you can:

– Add some disk space to the filesystem.

– Delete some non-TokuDB files manually.

– If the disk is not completely full, you may be able to reclaim space by aborting any transactions that are
very old. Old transactions can consume large volumes of disk space in the recovery log.

– If the disk is not completely full, you can drop indexes or drop tables from your TokuDB databases.

– Deleting large numbers of rows from an existing table and then closing the table may free some space, but
it may not. Deleting rows may simply leave unused space (available for new inserts) inside TokuDB data
files rather than shrink the files (internal fragmentation).

The fine print:

• The TokuDB storage engine can use up to three separate file systems simultaneously, one each for the data, the
recovery log, and the error log. All three are monitored, and if any one of the three falls below the relevant
threshold then a warning message will be issued and inserts may be prohibited.

• Warning messages to the error log are not repeated unless available disk space has been above the relevant
threshold for at least one minute. This prevents excess messages in the error log if the disk free space is
fluctuating around the limit.

• Even if there are no other storage engines or other applications running, it is still possible for TokuDB to consume
more disk space when operations such as row delete and query are performed, or when checkpoints are taken.
This can happen because TokuDB can write cached information when it is time-efficient rather than when inserts
are issued by the application, because operations in addition to insert (such as delete) create log entries, and also
because of internal fragmentation of TokuDB data files.

• The tokudb_fs_reserve_percent variable can not be changed once the system has started. It can only
be set in my.cnf or on the mysqld command line.

64.7. Frequently Asked Questions 247

Percona Server Documentation, Release 8.0.18-9

Backup

How do I back up a system with TokuDB tables?

Taking backups with Percona TokuBackup

TokuDB is capable of performing online backups with Percona TokuBackup. To perform a backup, execute backup
to '/path/to/backup';. This will create backup of the server and return when complete. The backup can be
used by another server using a copy of the binaries on the source server. You can view the progress of the backup by
executing SHOW PROCESSLIST;. TokuBackup produces a copy of your running MySQL server that is consistent at
the end time of the backup process. The thread copying files from source to destination can be throttled by setting the
tokudb_backup_throttle server variable. For more information check Percona TokuBackup.

The following conditions apply:

• Currently, TokuBackup only supports tables using the TokuDB storage engine and the MyISAM tables
in the mysql database.

Warning: You must disable InnoDB asynchronous IO if backing up InnoDB tables via
TokuBackup utility. Otherwise you will have inconsistent, unrecoverable backups. The appro-
priate setting is innodb_use_native_aio to 0.

• Transactional storage engines (TokuDB and InnoDB) will perform recovery on the backup copy of
the database when it is first started.

• Tables using non-transactional storage engines (MyISAM) are not locked during the copy and may
report issues when starting up the backup. It is best to avoid operations that modify these tables at
the end of a hot backup operation (adding/changing users, stored procedures, etc.).

• The database is copied locally to the path specified in /path/to/backup. This folder must exist,
be writable, be empty, and contain enough space for a full copy of the database.

• TokuBackup always makes a backup of the MySQL datadir and optionally the
tokudb_data_dir, tokudb_log_dir, and the binary log folder. The latter three are
only backed up separately if they are not the same as or contained in the MySQL datadir. None
of these three folders can be a parent of the MySQL datadir.

• A folder is created in the given backup destination for each of the source folders.

• No other directory structures are supported. All InnoDB, MyISAM, and other storage engine files
must be within the MySQL datadir.

• TokuBackup does not follow symbolic links.

Other options for taking backups

TokuDB tables are represented in the file system with dictionary files, log files, and metadata files. A
consistent copy of all of these files must be made during a backup. Copying the files while they may be
modified by a running MySQL may result in an inconsistent copy of the database.

LVM snapshots may be used to get a consistent snapshot of all of the TokuDB files. The LVM snapshot
may then be backed up at leisure.

The SELECT INTO OUTFILE statement or mysqldump application may also be used to get a logical
backup of the database.

64.7. Frequently Asked Questions 248

Percona Server Documentation, Release 8.0.18-9

References

The MySQL 5.5 reference manual describes several backup methods and strategies. In addition, we recommend
reading the backup and recovery chapter in the following book:

High Performance MySQL, 3rd Edition, by Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko, Copyright 2012,
O’Reilly Media.

Cold Backup

When MySQL is shut down, a copy of the MySQL data directory, the TokuDB data directory, and the TokuDB log
directory can be made. In the simplest configuration, the TokuDB files are stored in the MySQL data directory with all
of other MySQL files. One merely has to back up this directory.

Hot Backup using mylvmbackup

The mylvmbackup utility, located on Launchpad, works with TokuDB. It does all of the magic required to get con-
sistent copies of all of the MySQL tables, including MyISAM tables, InnoDB tables, etc., creates the LVM snapshots,
and backs up the snapshots.

Logical Snapshots

A logical snapshot of the databases uses a SQL statements to retrieve table rows and restore them. When used within
a transaction, a consistent snapshot of the database can be taken. This method can be used to export tables from one
database server and import them into another server.

The SELECT INTO OUTFILE statement is used to take a logical snapshot of a database. The LOAD DATA
INFILE statement is used to load the table data. Please see the MySQL 5.6 reference manual for details.

Note: Please do not use the :program‘mysqlhotcopy‘ to back up TokuDB tables. This script is incompatible with
TokuDB.

Missing Log Files

What do I do if I delete my logs files or they are otherwise missing?

You’ll need to recover from a backup. It is essential that the log files be present in order to restart the database.

Isolation Levels

What is the default isolation level for TokuDB?

It is repeatable-read (MVCC).

How can I change the isolation level?

TokuDB supports repeatable-read, serializable, read-uncommitted and read-committed isolation levels (other levels are
not supported). TokuDB employs pessimistic locking, and aborts a transaction when a lock conflict is detected.

To guarantee that lock conflicts do not occur, use repeatable-read, read-uncommitted or read- committed isolation
level.

64.7. Frequently Asked Questions 249

https://launchpad.net/

Percona Server Documentation, Release 8.0.18-9

Lock Wait Timeout Exceeded

Why do my |MySQL| clients get lock timeout errors for my update queries? And what should my application
do when it gets these errors?

Updates can get lock timeouts if some other transaction is holding a lock on the rows being updated for longer than
the TokuDB lock timeout. You may want to increase the this timeout.

If an update deadlocks, then the transaction should abort and retry.

For more information on diagnosing locking issues, see Lock Visualization in TokuDB.

Row Size

What is the maximum row size?

The maximum row size is 32 MiB.

NFS & CIFS

Can the data directories reside on a disk that is NFS or CIFS mounted?

Yes, we do have customers in production with NFS & CIFS volumes today. However, both of these disk types can pose
a challenge to performance and data integrity due to their complexity. If you’re seeking performance, the switching
infrastructure and protocols of a traditional network were not conceptualized for low response times and can be very
difficult to troubleshoot. If you’re concerned with data integrity, the possible data caching at the NFS level can cause
inconsistencies between the logs and data files that may never be detected in the event of a crash. If you are thinking
of using a NFS or CIFS mount, we would recommend that you use synchronous mount options, which are available
from the NFS mount man page, but these settings may decrease performance. For further discussion please look here.

Using Other Storage Engines

Can the MyISAM and InnoDB Storage Engines be used?

MyISAM and InnoDB can be used directly in conjunction with TokuDB. Please note that you should not overcommit
memory between InnoDB and TokuDB. The total memory assigned to both caches must be less than physical memory.

Can the Federated Storage Engines be used?

The Federated Storage Engine can also be used, however it is disabled by default in MySQL. It can be enabled by either
running mysqld with --federated as a command line parameter, or by putting federated in the [mysqld]
section of the my.cnf file.

For more information see the MySQL 5.6 Reference Manual: FEDERATED Storage Engine.

Using MySQL Patches with TokuDB

Can I use MySQL source code patches with TokuDB?

Yes, but you need to apply Percona patches as well as your patches to MySQL to build a binary that works with the
Percona Fractal Tree library.

64.7. Frequently Asked Questions 250

http://www.mysqlperformanceblog.com/2010/07/30/storing-mysql-binary-logs-on-nfs-volume/
http://dev.mysql.com/doc/refman/5.6/en/federated-storage-engine.html

Percona Server Documentation, Release 8.0.18-9

Truncate Table vs Delete from Table

Which is faster, TRUNCATE TABLE or DELETE FROM TABLE?

Please use TRUNCATE TABLE whenever possible. A table truncation runs in constant time, whereas a DELETE
FROM TABLE requires a row-by-row deletion and thus runs in time linear to the table size.

Foreign Keys

Does TokuDB enforce foreign key constraints?

No, TokuDB ignores foreign key declarations.

Dropping Indexes

Is dropping an index in TokuDB hot?

No, the table is locked for the amount of time it takes the file system to delete the file associated with the index.

Removing TokuDB storage engine

In case you want remove the TokuDB storage engine from Percona Server for MySQL without causing any errors
following is the recommended procedure:

Change the tables from TokuDB to InnoDB

If you still need the data in the TokuDB tables you’ll need to alter the tables to other supported storage engine i.e.,
InnoDB: ALTER TABLE City ENGINE=InnoDB;

Note: In case you remove the TokuDB storage engine before you’ve changed your tables to other supported storage
engine you won’t be able to access that data without re-installing the TokuDB storage engine.

Removing the plugins

To remove the TokuDB storage engine with all installed plugins you can use the ps-admin script:

$ ps-admin --disable-tokudb -uroot -pPassw0rd

Script output should look like this:

Output

Checking if Percona server is running with jemalloc enabled...
>> Percona server is running with jemalloc enabled.

Checking transparent huge pages status on the system...
>> Transparent huge pages are currently disabled on the system.

Checking if thp-setting=never option is already set in config file...

64.8. Removing TokuDB storage engine 251

Percona Server Documentation, Release 8.0.18-9

>> Option thp-setting=never is set in the config file.

Checking TokuDB plugin status...
>> TokuDB plugin is installed.

Removing thp-setting=never option from /etc/mysql/my.cnf
>> Successfuly removed thp-setting=never option from /etc/mysql/my.cnf

Uninstalling TokuDB plugin...
>> Successfuly uninstalled TokuDB plugin.

Another option is to manually remove the TokuDB storage engine with all installed plugins:

UNINSTALL PLUGIN tokudb;
UNINSTALL PLUGIN tokudb_file_map;
UNINSTALL PLUGIN tokudb_fractal_tree_info;
UNINSTALL PLUGIN tokudb_fractal_tree_block_map;
UNINSTALL PLUGIN tokudb_trx;
UNINSTALL PLUGIN tokudb_locks;
UNINSTALL PLUGIN tokudb_lock_waits;
UNINSTALL PLUGIN tokudb_background_job_status;

After the engine and the plugins have been uninstalled you can remove the TokuDB package by using the apt/yum
commands:

[root@centos ~]# yum remove Percona-Server-tokudb-80.x86_64

or apt remove percona-server-tokudb-8.0

Note: Make sure you’ve removed all the TokuDB specific variables from your configuration file (my.cnf) before
you restart the server, otherwise server could show errors or warnings and won’t be able to start.

Getting the Most from TokuDB

Compression TokuDB compresses all data on disk, including indexes. Compression lowers cost by reducing the
amount of storage required and frees up disk space for additional indexes to achieve improved query perfor-
mance. Depending on the compressibility of the data, we have seen compression ratios up to 25x for high
compression. Compression can also lead to improved performance since less data needs to be read from and
written to disk.

Fast Insertions and Deletions TokuDB’s Fractal Tree technology enables fast indexed insertions and deletions. Frac-
tal Trees match B-trees in their indexing sweet spot (sequential data) and are up to two orders of magnitude faster
for random data with high cardinality.

Eliminates Slave Lag TokuDB replication slaves can be configured to process the replication stream with virtually
no read IO. Uniqueness checking is performed on the TokuDB master and can be skipped on all TokuDB slaves.
Also, row based replication ensures that all before and after row images are captured in the binary logs, so the
TokuDB slaves can harness the power of Fractal Tree indexes and bypass traditional read-modify-write behavior.
This “Read Free Replication” ensures that replication slaves do not fall behind the master and can be used for
read scaling, backups, and disaster recovery, without sharding, expensive hardware, or limits on what can be
replicated.

64.9. Getting the Most from TokuDB 252

Percona Server Documentation, Release 8.0.18-9

Hot Index Creation TokuDB allows the addition of indexes to an existing table while inserts and queries are being
performed on that table. This means that MySQL can be run continuously with no blocking of queries or
insertions while indexes are added and eliminates the down-time that index changes would otherwise require.

Hot Column Addition, Deletion, Expansion and Rename TokuDB allows the addition of new columns to an ex-
isting table, the deletion of existing columns from an existing table, the expansion of char, varchar,
varbinary, and integer type columns in an existing table, and the renaming of an existing column while
inserts and queries are being performed on that table.

Online (Hot) Backup The TokuDB can create backups of online database servers without downtime.

Fast Indexing In practice, slow indexing often leads users to choose a smaller number of sub-optimal indexes in order
to keep up with incoming data rates. These sub-optimal indexes result in disproportionately slower queries, since
the difference in speed between a query with an index and the same query when no index is available can be
many orders of magnitude. Thus, fast indexing means fast queries.

Clustering Keys and Other Indexing Improvements TokuDB tables are clustered on the primary key. TokuDB also
supports clustering secondary keys, providing better performance on a broader range of queries. A clustering
key includes (or clusters) all of the columns in a table along with the key. As a result, one can efficiently retrieve
any column when doing a range query on a clustering key. Also, with TokuDB, an auto-increment column can
be used in any index and in any position within an index. Lastly, TokuDB indexes can include up to 32 columns.

Less Aging/Fragmentation TokuDB can run much longer, likely indefinitely, without the need to perform the cus-
tomary practice of dump/reload or OPTIMIZE TABLE to restore database performance. The key is the fun-
damental difference with which the Fractal Tree stores data on disk. Since, by default, the Fractal Tree will
store data in 4MB chunks (pre-compression), as compared to InnoDB’s 16KB, TokuDB has the ability to avoid
“database disorder” up to 250x better than InnoDB.

Bulk Loader TokuDB uses a parallel loader to create tables and offline indexes. This parallel loader will use multiple
cores for fast offline table and index creation.

Full-Featured Database TokuDB supports fully ACID-compliant transactions, MVCC (Multi-Version Concurrency
Control), serialized isolation levels, row-level locking, and XA. TokuDB scales with high number of client
connections, even for large tables.

Lock Diagnostics TokuDB provides users with the tools to diagnose locking and deadlock issues. For more informa-
tion, see Lock Visualization in TokuDB.

Progress Tracking Running SHOW PROCESSLIST when adding indexes provides status on how many rows have
been processed. Running SHOW PROCESSLIST also shows progress on queries, as well as insertions, deletions
and updates. This information is helpful for estimating how long operations will take to complete.

Fast Recovery TokuDB supports very fast recovery, typically less than a minute.

64.9. Getting the Most from TokuDB 253

CHAPTER

SIXTYFIVE

FAST UPDATES WITH TOKUDB

Introduction

Update intensive applications can have their throughput limited by the random read capacity of the storage system.
The cause of the throughput limit is the read-modify-write algorithm that MySQL uses to process update statements
(read a row from the storage engine, apply the updates to it, write the new row back to the storage engine).

To address this throughput limit, TokuDB provides an experimental fast update feature, which uses a different update
algorithm. Update expressions of the SQL statement are encoded into tiny programs that are stored in an update
Fractal Tree message. This update message is injected into the root of the Fractal Tree index. Eventually, these update
messages reach a leaf node, where the update programs are applied to the row. Since messages are moved between
Fractal Tree levels in batches, the cost of reading in the leaf node is amortized over many update messages.

This feature is available for UPDATE and INSERT statements, and can be turned ON/OFF separately for them with
use of two variables. Variable tokudb_enable_fast_update variable toggles fast updates for the UPDATE, and
tokudb_enable_fast_upsert does the same for INSERT.

Limitations

Fast updates are activated instead of normal MySQL read-modify-write updates if the executed expression meets the
number of conditions.

• fast updates can be activated for a statement or a mixed replication,

• a primary key must be defined for the involved table,

• both simple and compound primary keys are supported, and int, char or varchar are the allowed data types
for them,

• updated fields should have Integer or char data type,

• fields that are part of any key should be not updated,

• clustering keys are not allowed,

• triggers should be not involved,

• supported update expressions should belong to one of the following types:

– x = constant

– x = x + constant

– x = x - constant

– x = if (x=0,0,x-1)

254

Percona Server Documentation, Release 8.0.18-9

– x = x + values

Usage Specifics and Examples

Following example creates a table that associates event identifiers with their count:

CREATE TABLE t (
event_id bigint unsigned NOT NULL PRIMARY KEY,
event_count bigint unsigned NOT NULL

);

Many graph applications that map onto relational tables can use duplicate key inserts and updates to maintain the
graph. For example, one can update the meta-data associated with a link in the graph using duplicate key insertions.
If the affected rows is not used by the application, then the insertion or update can be marked and executed as a fast
insertion or a fast update.

Insertion example

If it is not known if the event identifier (represented by event_id) already exists in the table, then INSERT ...
ON DUPLICATE KEY UPDATE ... statement can insert it if not existing, or increment its event_count otherwise.
Here is an example with duplicate key insertion statement, where %id is some specific event_id value:

INSERT INTO t VALUES (%id, 1)
ON DUPLICATE KEY UPDATE event_count=event_count+1;

Explanation

If the event id’s are random, then the throughput of this application would be limited by the random read capacity of
the storage system since each INSERT statement has to determine if this event_id exists in the table.

TokuDB replaces the primary key existence check with an insertion of an “upsert” message into the Fractal Tree index.
This “upsert” message contains a copy of the row and a program that increments event_count. As the Fractal Tree
buffer’s get filled, this “upsert” message is flushed down the tree. Eventually, the message reaches a leaf node and
gets executed there. If the key exists in the leaf node, then the event_count is incremented. Otherwise, the new row is
inserted into the leaf node.

Update example

If event_id is known to exist in the table, then UPDATE statement can be used to increment its event_count (once
again, specific event_id value is written here as %id):

UPDATE t SET event_count=event_count+1
WHERE event_id=%id;

Explanation

TokuDB generates an “update” message from the UPDATE statement and its update expression trees, and inserts this
message into the Fractal Tree index. When the message eventually reaches the leaf node, the increment program is
extracted from the message and executed.

65.3. Usage Specifics and Examples 255

CHAPTER

SIXTYSIX

TOKUDB FILES AND FILE TYPES

The TokuDB file set consists of many different files that all serve various purposes.

If you have any TokuDB data your data directory should look similar to this:

root@server:/var/lib/mysql# ls -lah
...
-rw-rw---- 1 mysql mysql 76M Oct 13 18:45 ibdata1
...
-rw-rw---- 1 mysql mysql 16K Oct 13 15:52 tokudb.directory
-rw-rw---- 1 mysql mysql 16K Oct 13 15:52 tokudb.environment
-rw------- 1 mysql mysql 0 Oct 13 15:52 __tokudb_lock_dont_delete_me_data
-rw------- 1 mysql mysql 0 Oct 13 15:52 __tokudb_lock_dont_delete_me_environment
-rw------- 1 mysql mysql 0 Oct 13 15:52 __tokudb_lock_dont_delete_me_logs
-rw------- 1 mysql mysql 0 Oct 13 15:52 __tokudb_lock_dont_delete_me_recovery
-rw------- 1 mysql mysql 0 Oct 13 15:52 __tokudb_lock_dont_delete_me_temp
-rw-rw---- 1 mysql mysql 16K Oct 13 15:52 tokudb.rollback
...

This document lists the different types of TokuDB and Percona Fractal Tree files, explains their purpose, shows their
location and how to move them around.

tokudb.environment

This file is the root of the Percona FT file set and contains various bits of metadata about the system, such as creation
times, current file format versions, etc.

Percona FT will create/expect this file in the directory specified by the MySQL datadir.

tokudb.rollback

Every transaction within Percona FT maintains its own transaction rollback log. These logs are stored together within
a single Percona FT dictionary file and take up space within the Percona FT cachetable (just like any other Percona
FT dictionary).

The transaction rollback logs will undo any changes made by a transaction if the transaction is explicitly rolled back,
or rolled back via recovery as a result of an uncommitted transaction when a crash occurs.

Percona FT will create/expect this file in the directory specified by the MySQL datadir.

256

https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir
https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir

Percona Server Documentation, Release 8.0.18-9

tokudb.directory

Percona FT maintains a mapping of a dictionary name (example: sbtest.sbtest1.main) to an internal file name
(example: _sbtest_sbtest1_main_xx_x_xx.tokudb). This mapping is stored within this single Percona FT
dictionary file and takes up space within the Percona FT cachetable just like any other Percona FT dictionary.

Percona FT will create/expect this file in the directory specified by the MySQL datadir.

Dictionary files

TokuDB dictionary (data) files store actual user data. For each MySQL table there will be:

• One status dictionary that contains metadata about the table.

• One main dictionary that stores the full primary key (an imaginary key is used if one was not explicitly speci-
fied) and full row data.

• One key dictionary for each additional key/index on the table.

These are typically named: _<database>_<table>_<key>_<internal_txn_id>.tokudb

Percona FT creates/expects these files in the directory specified by tokudb_data_dir if set, otherwise the MySQL
datadir is used.

Recovery log files

The Percona FT recovery log records every operation that modifies a Percona FT dictionary. Periodically, the system
will take a snapshot of the system called a checkpoint. This checkpoint ensures that the modifications recorded within
the Percona FT recovery logs have been applied to the appropriate dictionary files up to a known point in time and
synced to disk.

These files have a rolling naming convention, but use: log<log_file_number>.
tokulog<log_file_format_version>.

Percona FT creates/expects these files in the directory specified by tokudb_log_dir if set, otherwise the MySQL
datadir is used.

Percona FT does not track what log files should or shouldn’t be present. Upon startup, it discovers the logs in the
log directory, and replays them in order. If the wrong logs are present, the recovery aborts and possibly damages the
dictionaries.

Temporary files

Percona FT might need to create some temporary files in order to perform some operations. When the bulk loader is
active, these temporary files might grow to be quite large.

As different operations start and finish, the files will come and go.

There are no temporary files left behind upon a clean shutdown,

Percona FT creates/expects these files in the directory specified by tokudb_tmp_dir if set. If not, the
tokudb_data_dir is used if set, otherwise the MySQL datadir is used.

66.3. tokudb.directory 257

https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir
https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir
https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir

Percona Server Documentation, Release 8.0.18-9

Lock files

Percona FT uses lock files to prevent multiple processes from accessing and writing to the files in the assorted Percona
FT functionality areas. Each lock file will be in the same directory as the file(s) that it is protecting.

These empty files are only used as semaphores across processes. They are safe to delete/ignore as long as no server
instances are currently running and using the data set.

__tokudb_lock_dont_delete_me_environment

__tokudb_lock_dont_delete_me_recovery

__tokudb_lock_dont_delete_me_logs

__tokudb_lock_dont_delete_me_data

__tokudb_lock_dont_delete_me_temp

Percona FT is extremely pedantic about validating its data set. If a file goes missing or unfound, or seems to contain
some nonsensical data, it will assert, abort or fail to start. It does this not to annoy you, but to try to protect you from
doing any further damage to your data.

66.7. Lock files 258

CHAPTER

SIXTYSEVEN

TOKUDB FILE MANAGEMENT

As mentioned in the TokuDB files and file types Percona FT is extremely pedantic about validating its data set. If a
file goes missing or can’t be accessed, or seems to contain some nonsensical data, it will assert, abort or fail to start. It
does this not to annoy you, but to try to protect you from doing any further damage to your data.

This document contains examples of common file maintenance operations and instructions on how to safely execute
these operations.

The tokudb_dir_per_db option addressed two shortcomings the renaming of data files on table/index rename,
and the ability to group data files together within a directory that represents a single database. This feature is enabled
by default.

The tokudb_dir_cmd variable can be used to edit the contents of the TokuDB/PerconaFT directory map.

Moving TokuDB data files to a location outside of the default MySQL
datadir

TokuDB uses the location specified by the tokudb_data_dir variable for all of its data files. If the
tokudb_data_dir variable is not explicitly set, TokuDB will use the location specified by the servers datadir
for these files.

The TokuDB data files are protected from concurrent process access by the
__tokudb_lock_dont_delete_me_data file that is located in the same directory as the TokuDB data
files.

TokuDB data files may be moved to other locations with symlinks left behind in their place. If those symlinks refer to
files on other physical data volumes, the tokudb_fs_reserve_percent monitor will not traverse the symlink
and monitor the real location for adequate space in the file system.

To safely move your TokuDB data files:

1. Shut the server down cleanly.

2. Change the tokudb_data_dir in your my.cnf configuration file to the location where you wish to store
your TokuDB data files.

3. Create your new target directory.

4. Move your *.tokudb files and your __tokudb_lock_dont_delete_me_data from the current loca-
tion to the new location.

5. Restart your server.

259

https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir

Percona Server Documentation, Release 8.0.18-9

Moving TokuDB temporary files to a location outside of the default
MySQL datadir

TokuDB will use the location specified by the tokudb_tmp_dir variable for all of its temporary files. If
tokudb_tmp_dir variable is not explicitly set, TokuDB will use the location specified by the tokudb_data_dir
variable. If the tokudb_data_dir variable is also not explicitly set, TokuDB will use the location specified by the
servers datadir for these files.

TokuDB temporary files are protected from concurrent process access by the
__tokudb_lock_dont_delete_me_temp file that is located in the same directory as the TokuDB tem-
porary files.

If you locate your TokuDB temporary files on a physical volume that is different from where your TokuDB data files
or recovery log files are located, the tokudb_fs_reserve_percent monitor will not monitor their location for
adequate space in the file system.

To safely move your TokuDB temporary files:

1. Shut the server down cleanly. A clean shutdown will ensure that there are no temporary files that need to be
relocated.

2. Change the tokudb_tmp_dir variable in your my.cnf configuration file to the location where you wish to
store your new TokuDB temporary files.

3. Create your new target directory.

4. Move your __tokudb_lock_dont_delete_me_temp file from the current location to the new location.

5. Restart your server.

Moving TokuDB recovery log files to a location outside of the default
MySQL datadir

TokuDB will use the location specified by the tokudb_log_dir variable for all of its recovery log files. If the
tokudb_log_dir variable is not explicitly set, TokuDB will use the location specified by the servers datadir for
these files.

The TokuDB recovery log files are protected from concurrent process access by the
__tokudb_lock_dont_delete_me_logs file that is located in the same directory as the TokuDB recovery log
files.

TokuDB recovery log files may be moved to another location with symlinks left behind in place of
the tokudb_log_dir. If that symlink refers to a directory on another physical data volume, the
tokudb_fs_reserve_percent monitor will not traverse the symlink and monitor the real location for adequate
space in the file system.

To safely move your TokuDB recovery log files:

1. Shut the server down cleanly.

2. Change the tokudb_log_dir in your my.cnf configuration file to the location where you wish to store
your TokuDB recovery log files.

3. Create your new target directory.

4. Move your log*.tokulog* files and your __tokudb_lock_dont_delete_me_logs file from the
current location to the new location.

5. Restart your server.

67.2. Moving TokuDB temporary files to a location outside of the default MySQL datadir 260

https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir
https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir

Percona Server Documentation, Release 8.0.18-9

Improved table renaming functionality

When you rename a TokuDB table via SQL, the data files on disk keep their original names and only the mapping
in the Percona FT directory file is changed to map the new dictionary name to the original internal file names. This
makes it difficult to quickly match database/table/index names to their actual files on disk, requiring you to use the
INFORMATION_SCHEMA.TOKUDB_FILE_MAP table to cross reference.

The tokudb_dir_per_db variable is implemented to address this issue.

When tokudb_dir_per_db is enabled (ON by default), this is no longer the case. When you rename a table, the
mapping in the Percona FT directory file will be updated and the files will be renamed on disk to reflect the new table
name.

Improved directory layout functionality

Many users have had issues with managing the huge volume of individual files that TokuDB and Percona FT use. The
tokudb_dir_per_db variable addresses this issue.

When tokudb_dir_per_db variable is enabled (ON by default), all new tables and indices will be placed within
their corresponding database directory within the tokudb_data_dir or server datadir.

If you have tokudb_data_dir variable set to something other than the server datadir, TokuDB will create a direc-
tory matching the name of the database, but upon dropping of the database, this directory will remain behind.

Existing table files will not be automatically relocated to their corresponding database directory.

You can easily move a tables data files into the new scheme and proper database directory with a few steps:

mysql> SET GLOBAL tokudb_dir_per_db=true;
mysql> RENAME TABLE <table> TO <tmp_table>;
mysql> RENAME TABLE <tmp_table> TO <table>;

Note: Two renames are needed because MySQL doesn’t allow you to rename a table to itself. The first rename,
renames the table to the temporary name and moves the table files into the owning database directory. The second
rename sets the table name back to the original name. Tables can also be renamed/moved across databases and will be
placed correctly into the corresponding database directory.

Warning: You must be careful with renaming tables in case you have used any tricks to create symlinks of the
database directories on different storage volumes, the move is not a simple directory move on the same volume but
a physical copy across volumes. This can take quite some time and prevent access to the table being moved during
the copy.

Editing TokuDB directory map with tokudb_dir_cmd

Note: This feature is currently considered Experimental.

The tokudb_dir_cmd variable can be used to edit the TokuDB directory map. WARNING: Use this variable only
if you know what you’re doing otherwise it WILL lead to data loss.

67.4. Improved table renaming functionality 261

https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir
https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir

Percona Server Documentation, Release 8.0.18-9

This method can be used if any kind of system issue causes the loss of specific .tokudb files for a given
table, because the TokuDB tablespace file mapping will then contain invalid (nonexistent) entries, visible in
INFORMATION_SCHEMA.TokuDB_file_map table.

This variable is used to send commands to edit directory file. The format of the command line is the following:

command arg1 arg2 .. argn

I.e, if we want to execute some command the following statement can be used:

SET tokudb_dir_cmd = "command arg1 ... argn"

Currently the following commands are available:

• attach dictionary_name internal_file_name - attach internal_file_name to a dictionary_name,
if the dictionary_name exists override the previous value, add new record otherwise

• detach dictionary_name - remove record with corresponding dictionary_name, the corresponding in-
ternal_file_name file stays untouched

• move old_dictionary_name new_dictionary_name - rename (only) dictionary_name from
old_dictionary_name to new_dictionary_name

Information about the dictionary_name and internal_file_name can be found in the TokuDB_file_map table:

mysql> SELECT dictionary_name, internal_file_name FROM INFORMATION_SCHEMA.TokuDB_file_
→˓map;
+------------------------------+--
→˓---+
| dictionary_name | internal_file_name
→˓ |
+------------------------------+--
→˓---+
| ./world/City-key-CountryCode | ./_world_sql_340a_39_key_CountryCode_12_1_1d_B_1.
→˓tokudb |
| ./world/City-main | ./_world_sql_340a_39_main_12_1_1d_B_0.tokudb
→˓ |
| ./world/City-status | ./_world_sql_340a_39_status_f_1_1d.tokudb
→˓ |
+------------------------------+--
→˓---+

System Variables

variable tokudb_dir_cmd

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type String

This variable is used to send commands to edit TokuDB directory map.

67.6. Editing TokuDB directory map with tokudb_dir_cmd 262

Percona Server Documentation, Release 8.0.18-9

Warning: Use this variable only if you know what you’re doing otherwise it WILL lead to data loss.

Status Variables

variable tokudb_dir_cmd_last_error

Variable Type Numeric

Scope Global

This variable contains the error number of the last executed command by using the tokudb_dir_cmd variable.

variable tokudb_dir_cmd_last_error_string

Variable Type Numeric

Scope Global

This variable contains the error string of the last executed command by using the tokudb_dir_cmd variable.

67.6. Editing TokuDB directory map with tokudb_dir_cmd 263

CHAPTER

SIXTYEIGHT

TOKUDB BACKGROUND ANALYZE TABLE

Percona Server for MySQL has an option to automatically analyze tables in the background based on a measured
change in data. This has been done by implementing the background job manager that can perform operations on a
background thread.

Background Jobs

Background jobs and schedule are transient in nature and are not persisted anywhere. Any currently running job
will be terminated on shutdown and all scheduled jobs will be forgotten about on server restart. There can’t be
two jobs on the same table scheduled or running at any one point in time. If you manually invoke an ANALYZE
TABLE that conflicts with either a pending or running job, the running job will be canceled and the users task will
run immediately in the foreground. All the scheduled and running background jobs can be viewed by querying the
TOKUDB_BACKGROUND_JOB_STATUS table.

New tokudb_analyze_in_background variable has been implemented in order to control if the ANALYZE
TABLE will be dispatched to the background process or if it will be running in the foreground. To control the function
of ANALYZE TABLE a new tokudb_analyze_mode variable has been implemented. This variable offers options
to cancel any running or scheduled job on the specified table (TOKUDB_ANALYZE_CANCEL), use existing analysis
algorithm (TOKUDB_ANALYZE_STANDARD), or to recount the logical rows in table and update persistent count
(TOKUDB_ANALYZE_RECOUNT_ROWS).

TOKUDB_ANALYZE_RECOUNT_ROWS is a new mechanism that is used to perform a logical recount of all rows in
a table and persist that as the basis value for the table row estimate. This mode was added for tables that have been
upgraded from an older version of TokuDB that only reported physical row counts and never had a proper logical
row count. Newly created tables/partitions will begin counting logical rows correctly from their creation and should
not need to be recounted unless some odd edge condition causes the logical count to become inaccurate over time.
This analysis mode has no effect on the table cardinality counts. It will take the currently set session values for
tokudb_analyze_in_background, and tokudb_analyze_throttle. Changing the global or session
instances of these values after scheduling will have no effect on the job.

Any background job, both pending and running, can be canceled by setting the tokudb_analyze_mode to
TOKUDB_ANALYZE_CANCEL and issuing the ANALYZE TABLE on the table for which you want to cancel all
the jobs for.

Auto analysis

To implement the background analysis and gathering of cardinality statistics on a TokuDB tables new delta value
is now maintained in memory for each TokuDB table. This value is not persisted anywhere and it is reset to 0 on a
server start. It is incremented for each INSERT/UPDATE/DELETE command and ignores the impact of transactions
(rollback specifically). When this delta value exceeds the tokudb_auto_analyze percentage of rows in the table

264

Percona Server Documentation, Release 8.0.18-9

an analysis is performed according to the current session’s settings. Other analysis for this table will be disabled until
this analysis completes. When this analysis completes, the delta is reset to 0 to begin recalculating table changes for
the next potential analysis.

Status values are now reported to server immediately upon completion of any analysis (previously new status values
were not used until the table has been closed and re-opened). Half-time direction reversal of analysis has been im-
plemented, meaning that if a tokudb_analyze_time is in effect and the analysis has not reached the half way
point of the index by the time tokudb_analyze_time/2 has been reached: it will stop the forward progress and
restart the analysis from the last/rightmost row in the table, progressing leftwards and keeping/adding to the status
information accumulated from the first half of the scan.

For small ratios of table_rows / tokudb_auto_analyze, auto analysis will be run for almost every change.
The trigger formula is: if (table_delta >= ((table_rows * tokudb_auto_analyze) / 100))
then run ANALYZE TABLE. If a user manually invokes an ANALYZE TABLE and tokudb_auto_analyze is
enabled and there are no conflicting background jobs, the users ANALYZE TABLE will behave exactly as if the delta
level has been exceeded in that the analysis is executed and delta reset to 0 upon completion.

System Variables

variable tokudb_analyze_in_background

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type Boolean

Default Value ON

When this variable is set to ON it will dispatch any ANALYZE TABLE job to a background process and return imme-
diately, otherwise ANALYZE TABLE will run in foreground/client context.

variable tokudb_analyze_mode

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type ENUM

Default Value TOKUDB_ANALYZE_STANDARD

Range TOKUDB_ANALYZE_CANCEL, TOKUDB_ANALYZE_STANDARD,
TOKUDB_ANALYZE_RECOUNT_ROWS

This variable is used to control the function of ANALYZE TABLE. Possible values are:

• TOKUDB_ANALYZE_CANCEL - Cancel any running or scheduled job on the specified table.

• TOKUDB_ANALYZE_STANDARD - Use existing analysis algorithm. This is the standard table cardinal-
ity analysis mode used to obtain cardinality statistics for a tables and its indexes. It will take the
currently set session values for tokudb_analyze_time, tokudb_analyze_in_background, and
tokudb_analyze_throttle at the time of its scheduling, either via a user invoked ANALYZE TABLE

68.3. System Variables 265

Percona Server Documentation, Release 8.0.18-9

or an auto schedule as a result of tokudb_auto_analyze threshold being hit. Changing the global or
session instances of these values after scheduling will have no effect on the scheduled job.

• TOKUDB_ANALYZE_RECOUNT_ROWS - Recount logical rows in table and update persistent count. This is
a new mechanism that is used to perform a logical recount of all rows in a table and persist that as the basis
value for the table row estimate. This mode was added for tables that have been upgraded from an older
version of TokuDB/PerconaFT that only reported physical row counts and never had a proper logical row count.
Newly created tables/partitions will begin counting logical rows correctly from their creation and should not
need to be recounted unless some odd edge condition causes the logical count to become inaccurate over time.
This analysis mode has no effect on the table cardinality counts. It will take the currently set session values
for tokudb_analyze_in_background, and tokudb_analyze_throttle. Changing the global or
session instances of these values after scheduling will have no effect on the job.

variable tokudb_analyze_throttle

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type Numeric

Default Value 0

This variable is used to define maximum number of keys to visit per second when performing ANALYZE TABLE with
either a TOKUDB_ANALYZE_STANDARD or TOKUDB_ANALYZE_RECOUNT_ROWS.

variable tokudb_analyze_time

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type Numeric

Default Value 5

This session variable controls the number of seconds an analyze operation will spend on each index when calculating
cardinality. Cardinality is shown by executing the following command:

SHOW INDEXES FROM table_name;

If an analyze is never performed on a table then the cardinality is 1 for primary key indexes and unique secondary
indexes, and NULL (unknown) for all other indexes. Proper cardinality can lead to improved performance of complex
SQL statements.

variable tokudb_auto_analyze

Command Line Yes

Config File Yes

Scope Global/Session

Dynamic Yes

Variable Type Numeric

Default Value 30

68.3. System Variables 266

Percona Server Documentation, Release 8.0.18-9

Percentage of table change as INSERT/UPDATE/DELETE commands to trigger an ANALYZE
TABLE using the current session tokudb_analyze_in_background, tokudb_analyze_mode,
tokudb_analyze_throttle, and tokudb_analyze_time settings. If this variable is enabled and
tokudb_analyze_in_background variable is set to OFF, analysis will be performed directly within the client
thread context that triggered the analysis. NOTE: InnoDB enabled this functionality by default when they introduced
it. Due to the potential unexpected new load it might place on a server, it is disabled by default in TokuDB.

variable tokudb_cardinality_scale_percent

Command Line Yes

Config File Yes

Scope Global

Dynamic Yes

Variable Type Numeric

Default Value 100

Range 0-100

Percentage to scale table/index statistics when sending to the server to make an index appear to be either more or less
unique than it actually is. InnoDB has a hard coded scaling factor of 50%. So if a table of 200 rows had an index
with 40 unique values, InnoDB would return 200/40/2 or 2 for the index. The new TokuDB formula is the same but
factored differently to use percent, for the same table.index (200/40 * tokudb_cardinality_scale) / 100, for
a scale of 50% the result would also be 2 for the index.

INFORMATION_SCHEMA Tables

table INFORMATION_SCHEMA.TOKUDB_BACKGROUND_JOB_STATUS

Columns

• id – Simple monotonically incrementing job id, resets to 0 on server start.

• database_name – Database name

• table_name – Table name

• job_type – Type of job, either TOKUDB_ANALYZE_STANDARD or
TOKUDB_ANALYZE_RECOUNT_ROWS

• job_params – Param values used by this job in string format. For ex-
ample: TOKUDB_ANALYZE_DELETE_TIME=1.0; TOKUDB_ANALYZE_TIME=5;
TOKUDB_ANALYZE_THROTTLE=2048;

• scheduler – Either USER or AUTO to indicate if the job was explicitly scheduled by a
user or if it was scheduled as an automatic trigger

• scheduled_time – The time the job was scheduled

• started_time – The time the job was started

• status – Current job status if running. For example: ANALYZE TABLE standard
db.tbl.idx 3 of 5 50% rows 10% time scanning forward

This table holds the information on scheduled and running background ANALYZE TABLE jobs for TokuDB tables.

68.4. INFORMATION_SCHEMA Tables 267

CHAPTER

SIXTYNINE

TOKUDB STATUS VARIABLES

TokuDB status variables provide details about the inner workings of TokuDB storage engine and they can be useful in
tuning the storage engine to a particular environment.

You can view these variables and their values by running:

mysql> SHOW STATUS LIKE 'tokudb%';

TokuDB Status Variables Summary

The following global status variables are available:

Name Var Type
Tokudb_DB_OPENS integer
Tokudb_DB_CLOSES integer
Tokudb_DB_OPEN_CURRENT integer
Tokudb_DB_OPEN_MAX integer
Tokudb_LEAF_ENTRY_MAX_COMMITTED_XR integer
Tokudb_LEAF_ENTRY_MAX_PROVISIONAL_XR integer
Tokudb_LEAF_ENTRY_EXPANDED integer
Tokudb_LEAF_ENTRY_MAX_MEMSIZE integer
Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_IN integer
Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_OUT integer
Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_IN integer
Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_OUT integer
Tokudb_CHECKPOINT_PERIOD integer
Tokudb_CHECKPOINT_FOOTPRINT integer
Tokudb_CHECKPOINT_LAST_BEGAN datetime
Tokudb_CHECKPOINT_LAST_COMPLETE_BEGAN datetime
Tokudb_CHECKPOINT_LAST_COMPLETE_ENDED datetime
Tokudb_CHECKPOINT_DURATION integer
Tokudb_CHECKPOINT_DURATION_LAST integer
Tokudb_CHECKPOINT_LAST_LSN integer
Tokudb_CHECKPOINT_TAKEN integer
Tokudb_CHECKPOINT_FAILED integer
Tokudb_CHECKPOINT_WAITERS_NOW integer
Tokudb_CHECKPOINT_WAITERS_MAX integer
Tokudb_CHECKPOINT_CLIENT_WAIT_ON_MO integer
Tokudb_CHECKPOINT_CLIENT_WAIT_ON_CS integer

Continued on next page

268

Percona Server Documentation, Release 8.0.18-9

Table 69.1 – continued from previous page
Name Var Type
Tokudb_CHECKPOINT_BEGIN_TIME integer
Tokudb_CHECKPOINT_LONG_BEGIN_TIME integer
Tokudb_CHECKPOINT_LONG_BEGIN_COUNT integer
Tokudb_CHECKPOINT_END_TIME integer
Tokudb_CHECKPOINT_LONG_END_TIME integer
Tokudb_CHECKPOINT_LONG_END_COUNT integer
Tokudb_CACHETABLE_MISS integer
Tokudb_CACHETABLE_MISS_TIME integer
Tokudb_CACHETABLE_PREFETCHES integer
Tokudb_CACHETABLE_SIZE_CURRENT integer
Tokudb_CACHETABLE_SIZE_LIMIT integer
Tokudb_CACHETABLE_SIZE_WRITING integer
Tokudb_CACHETABLE_SIZE_NONLEAF integer
Tokudb_CACHETABLE_SIZE_LEAF integer
Tokudb_CACHETABLE_SIZE_ROLLBACK integer
Tokudb_CACHETABLE_SIZE_CACHEPRESSURE integer
Tokudb_CACHETABLE_SIZE_CLONED integer
Tokudb_CACHETABLE_EVICTIONS integer
Tokudb_CACHETABLE_CLEANER_EXECUTIONS integer
Tokudb_CACHETABLE_CLEANER_PERIOD integer
Tokudb_CACHETABLE_CLEANER_ITERATIONS integer
Tokudb_CACHETABLE_WAIT_PRESSURE_COUNT integer
Tokudb_CACHETABLE_WAIT_PRESSURE_TIME integer
Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_COUNT integer
Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_TIME integer
Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS integer
Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS_ACTIVEinteger
Tokudb_CACHETABLE_POOL_CLIENT_QUEUE_SIZE integer
Tokudb_CACHETABLE_POOL_CLIENT_MAX_QUEUE_SIZE integer
Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_ITEMS_PROCESSEDinteger
Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_EXECUTION_TIMEinteger
Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADSinteger
Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADS_ACTIVEinteger
Tokudb_CACHETABLE_POOL_CACHETABLE_QUEUE_SIZE integer
Tokudb_CACHETABLE_POOL_CACHETABLE_MAX_QUEUE_SIZEinteger
Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_ITEMS_PROCESSEDinteger
Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_EXECUTION_TIMEinteger
Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADSinteger
Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADS_ACTIVEinteger
Tokudb_CACHETABLE_POOL_CHECKPOINT_QUEUE_SIZE integer
Tokudb_CACHETABLE_POOL_CHECKPOINT_MAX_QUEUE_SIZEinteger
Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_ITEMS_PROCESSEDinteger
Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_EXECUTION_TIMEinteger
Tokudb_LOCKTREE_MEMORY_SIZE integer
Tokudb_LOCKTREE_MEMORY_SIZE_LIMIT integer
Tokudb_LOCKTREE_ESCALATION_NUM integer
Tokudb_LOCKTREE_ESCALATION_SECONDS numeric
Tokudb_LOCKTREE_LATEST_POST_ESCALATION_MEMORY_SIZEinteger
Tokudb_LOCKTREE_OPEN_CURRENT integer

Continued on next page

69.1. TokuDB Status Variables Summary 269

Percona Server Documentation, Release 8.0.18-9

Table 69.1 – continued from previous page
Name Var Type
Tokudb_LOCKTREE_PENDING_LOCK_REQUESTS integer
Tokudb_LOCKTREE_STO_ELIGIBLE_NUM integer
Tokudb_LOCKTREE_STO_ENDED_NUM integer
Tokudb_LOCKTREE_STO_ENDED_SECONDS numeric
Tokudb_LOCKTREE_WAIT_COUNT integer
Tokudb_LOCKTREE_WAIT_TIME integer
Tokudb_LOCKTREE_LONG_WAIT_COUNT integer
Tokudb_LOCKTREE_LONG_WAIT_TIME integer
Tokudb_LOCKTREE_TIMEOUT_COUNT integer
Tokudb_LOCKTREE_WAIT_ESCALATION_COUNT integer
Tokudb_LOCKTREE_WAIT_ESCALATION_TIME integer
Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_COUNT integer
Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_TIME integer
Tokudb_DICTIONARY_UPDATES integer
Tokudb_DICTIONARY_BROADCAST_UPDATES integer
Tokudb_DESCRIPTOR_SET integer
Tokudb_MESSAGES_IGNORED_BY_LEAF_DUE_TO_MSN integer
Tokudb_TOTAL_SEARCH_RETRIES integer
Tokudb_SEARCH_TRIES_GT_HEIGHT integer
Tokudb_SEARCH_TRIES_GT_HEIGHTPLUS3 integer
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT integer
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_BYTESinteger
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_UNCOMPRESSED_BYTESinteger
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_SECONDSnumeric
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINTinteger
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_BYTESinteger
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_UNCOMPRESSEinteger
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_SECONDSnumeric
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT integer
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_BYTES integer
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_UNCOMPRESSED_BYTESinteger
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_SECONDS numeric
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINTinteger
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_BYTESinteger
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_UNCOMPRESSED_BYinteger
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_SECONDSnumeric
Tokudb_LEAF_NODE_COMPRESSION_RATIO numeric
Tokudb_NONLEAF_NODE_COMPRESSION_RATIO numeric
Tokudb_OVERALL_NODE_COMPRESSION_RATIO numeric
Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS numeric
Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS_BYTES integer
Tokudb_LEAF_NODE_PARTIAL_EVICTIONS integer
Tokudb_LEAF_NODE_PARTIAL_EVICTIONS_BYTES integer
Tokudb_LEAF_NODE_FULL_EVICTIONS integer
Tokudb_LEAF_NODE_FULL_EVICTIONS_BYTES integer
Tokudb_NONLEAF_NODE_FULL_EVICTIONS integer
Tokudb_NONLEAF_NODE_FULL_EVICTIONS_BYTES integer
Tokudb_LEAF_NODES_CREATED integer
Tokudb_NONLEAF_NODES_CREATED integer

Continued on next page

69.1. TokuDB Status Variables Summary 270

Percona Server Documentation, Release 8.0.18-9

Table 69.1 – continued from previous page
Name Var Type
Tokudb_LEAF_NODES_DESTROYED integer
Tokudb_NONLEAF_NODES_DESTROYED integer
Tokudb_MESSAGES_INJECTED_AT_ROOT_BYTES integer
Tokudb_MESSAGES_FLUSHED_FROM_H1_TO_LEAVES_BYTESinteger
Tokudb_MESSAGES_IN_TREES_ESTIMATE_BYTES integer
Tokudb_MESSAGES_INJECTED_AT_ROOT integer
Tokudb_BROADCASE_MESSAGES_INJECTED_AT_ROOT integer
Tokudb_BASEMENTS_DECOMPRESSED_TARGET_QUERY integer
Tokudb_BASEMENTS_DECOMPRESSED_PRELOCKED_RANGEinteger
Tokudb_BASEMENTS_DECOMPRESSED_PREFETCH integer
Tokudb_BASEMENTS_DECOMPRESSED_FOR_WRITE integer
Tokudb_BUFFERS_DECOMPRESSED_TARGET_QUERY integer
Tokudb_BUFFERS_DECOMPRESSED_PRELOCKED_RANGE integer
Tokudb_BUFFERS_DECOMPRESSED_PREFETCH integer
Tokudb_BUFFERS_DECOMPRESSED_FOR_WRITE integer
Tokudb_PIVOTS_FETCHED_FOR_QUERY integer
Tokudb_PIVOTS_FETCHED_FOR_QUERY_BYTES integer
Tokudb_PIVOTS_FETCHED_FOR_QUERY_SECONDS numeric
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH integer
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_BYTES integer
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_SECONDS numeric
Tokudb_PIVOTS_FETCHED_FOR_WRITE integer
Tokudb_PIVOTS_FETCHED_FOR_WRITE_BYTES integer
Tokudb_PIVOTS_FETCHED_FOR_WRITE_SECONDS numeric
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY integer
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_BYTES integer
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_SECONDSnumeric
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE integer
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_BYTESinteger
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_SECONDSnumeric
Tokudb_BASEMENTS_FETCHED_PREFETCH integer
Tokudb_BASEMENTS_FETCHED_PREFETCH_BYTES integer
Tokudb_BASEMENTS_FETCHED_PREFETCH_SECONDS numeric
Tokudb_BASEMENTS_FETCHED_FOR_WRITE integer
Tokudb_BASEMENTS_FETCHED_FOR_WRITE_BYTES integer
Tokudb_BASEMENTS_FETCHED_FOR_WRITE_SECONDS numeric
Tokudb_BUFFERS_FETCHED_TARGET_QUERY integer
Tokudb_BUFFERS_FETCHED_TARGET_QUERY_BYTES integer
Tokudb_BUFFERS_FETCHED_TARGET_QUERY_SECONDS numeric
Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE integer
Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_BYTES integer
Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_SECONDSnumeric
Tokudb_BUFFERS_FETCHED_PREFETCH integer
Tokudb_BUFFERS_FETCHED_PREFETCH_BYTES integer
Tokudb_BUFFERS_FETCHED_PREFETCH_SECONDS numeric
Tokudb_BUFFERS_FETCHED_FOR_WRITE integer
Tokudb_BUFFERS_FETCHED_FOR_WRITE_BYTES integer
Tokudb_BUFFERS_FETCHED_FOR_WRITE_SECONDS integer
Tokudb_LEAF_COMPRESSION_TO_MEMORY_SECONDS numeric

Continued on next page

69.1. TokuDB Status Variables Summary 271

Percona Server Documentation, Release 8.0.18-9

Table 69.1 – continued from previous page
Name Var Type
Tokudb_LEAF_SERIALIZATION_TO_MEMORY_SECONDS numeric
Tokudb_LEAF_DECOMPRESSION_TO_MEMORY_SECONDS numeric
Tokudb_LEAF_DESERIALIZATION_TO_MEMORY_SECONDSnumeric
Tokudb_NONLEAF_COMPRESSION_TO_MEMORY_SECONDS numeric
Tokudb_NONLEAF_SERIALIZATION_TO_MEMORY_SECONDSnumeric
Tokudb_NONLEAF_DECOMPRESSION_TO_MEMORY_SECONDSnumeric
Tokudb_NONLEAF_DESERIALIZATION_TO_MEMORY_SECONDSnumeric
Tokudb_PROMOTION_ROOTS_SPLIT integer
Tokudb_PROMOTION_LEAF_ROOTS_INJECTED_INTO integer
Tokudb_PROMOTION_H1_ROOTS_INJECTED_INTO integer
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_0 integer
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_1 integer
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_2 integer
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_3 integer
Tokudb_PROMOTION_INJECTIONS_LOWER_THAN_DEPTH_3integer
Tokudb_PROMOTION_STOPPED_NONEMPTY_BUFFER integer
Tokudb_PROMOTION_STOPPED_AT_HEIGHT_1 integer
Tokudb_PROMOTION_STOPPED_CHILD_LOCKED_OR_NOT_IN_MEMORYinteger
Tokudb_PROMOTION_STOPPED_CHILD_NOT_FULLY_IN_MEMORYinteger
Tokudb_PROMOTION_STOPPED_AFTER_LOCKING_CHILD integer
Tokudb_BASEMENT_DESERIALIZATION_FIXED_KEY integer
Tokudb_BASEMENT_DESERIALIZATION_VARIABLE_KEY integer
Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_SUCCESS integer
Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_POS integer
Tokudb_RIGHTMOST_LEAF_SHORTCUT_FAIL_REACTIVE integer
Tokudb_CURSOR_SKIP_DELETED_LEAF_ENTRY integer
Tokudb_FLUSHER_CLEANER_TOTAL_NODES integer
Tokudb_FLUSHER_CLEANER_H1_NODES integer
Tokudb_FLUSHER_CLEANER_HGT1_NODES integer
Tokudb_FLUSHER_CLEANER_EMPTY_NODES integer
Tokudb_FLUSHER_CLEANER_NODES_DIRTIED integer
Tokudb_FLUSHER_CLEANER_MAX_BUFFER_SIZE integer
Tokudb_FLUSHER_CLEANER_MIN_BUFFER_SIZE integer
Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_SIZE integer
Tokudb_FLUSHER_CLEANER_MAX_BUFFER_WORKDONE integer
Tokudb_FLUSHER_CLEANER_MIN_BUFFER_WORKDONE integer
Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_WORKDONE integer
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_STARTEDinteger
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_RUNNINGinteger
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_COMPLETEDinteger
Tokudb_FLUSHER_CLEANER_NUM_DIRTIED_FOR_LEAF_MERGEinteger
Tokudb_FLUSHER_FLUSH_TOTAL integer
Tokudb_FLUSHER_FLUSH_IN_MEMORY integer
Tokudb_FLUSHER_FLUSH_NEEDED_IO integer
Tokudb_FLUSHER_FLUSH_CASCADES integer
Tokudb_FLUSHER_FLUSH_CASCADES_1 integer
Tokudb_FLUSHER_FLUSH_CASCADES_2 integer
Tokudb_FLUSHER_FLUSH_CASCADES_3 integer
Tokudb_FLUSHER_FLUSH_CASCADES_4 integer

Continued on next page

69.1. TokuDB Status Variables Summary 272

Percona Server Documentation, Release 8.0.18-9

Table 69.1 – continued from previous page
Name Var Type
Tokudb_FLUSHER_FLUSH_CASCADES_5 integer
Tokudb_FLUSHER_FLUSH_CASCADES_GT_5 integer
Tokudb_FLUSHER_SPLIT_LEAF integer
Tokudb_FLUSHER_SPLIT_NONLEAF integer
Tokudb_FLUSHER_MERGE_LEAF integer
Tokudb_FLUSHER_MERGE_NONLEAF integer
Tokudb_FLUSHER_BALANCE_LEAF integer
Tokudb_HOT_NUM_STARTED integer
Tokudb_HOT_NUM_COMPLETED integer
Tokudb_HOT_NUM_ABORTED integer
Tokudb_HOT_MAX_ROOT_FLUSH_COUNT integer
Tokudb_TXN_BEGIN integer
Tokudb_TXN_BEGIN_READ_ONLY integer
Tokudb_TXN_COMMITS integer
Tokudb_TXN_ABORTS integer
Tokudb_LOGGER_NEXT_LSN integer
Tokudb_LOGGER_WRITES integer
Tokudb_LOGGER_WRITES_BYTES integer
Tokudb_LOGGER_WRITES_UNCOMPRESSED_BYTES integer
Tokudb_LOGGER_WRITES_SECONDS numeric
Tokudb_LOGGER_WAIT_LONG integer
Tokudb_LOADER_NUM_CREATED integer
Tokudb_LOADER_NUM_CURRENT integer
Tokudb_LOADER_NUM_MAX integer
Tokudb_MEMORY_MALLOC_COUNT integer
Tokudb_MEMORY_FREE_COUNT integer
Tokudb_MEMORY_REALLOC_COUNT integer
Tokudb_MEMORY_MALLOC_FAIL integer
Tokudb_MEMORY_REALLOC_FAIL integer
Tokudb_MEMORY_REQUESTED integer
Tokudb_MEMORY_USED integer
Tokudb_MEMORY_FREED integer
Tokudb_MEMORY_MAX_REQUESTED_SIZE integer
Tokudb_MEMORY_LAST_FAILED_SIZE integer
Tokudb_MEM_ESTIMATED_MAXIMUM_MEMORY_FOOTPRINTinteger
Tokudb_MEMORY_MALLOCATOR_VERSION string
Tokudb_MEMORY_MMAP_THRESHOLD integer
Tokudb_FILESYSTEM_THREADS_BLOCKED_BY_FULL_DISKinteger
Tokudb_FILESYSTEM_FSYNC_TIME integer
Tokudb_FILESYSTEM_FSYNC_NUM integer
Tokudb_FILESYSTEM_LONG_FSYNC_TIME integer
Tokudb_FILESYSTEM_LONG_FSYNC_NUM integer

variable Tokudb_DB_OPENS

This variable shows the number of times an individual PerconaFT dictionary file was opened. This is a not a useful
value for a regular user to use for any purpose due to layers of open/close caching on top.

variable Tokudb_DB_CLOSES

This variable shows the number of times an individual PerconaFT dictionary file was closed. This is a not a useful
value for a regular user to use for any purpose due to layers of open/close caching on top.

69.1. TokuDB Status Variables Summary 273

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_DB_OPEN_CURRENT

This variable shows the number of currently opened databases.

variable Tokudb_DB_OPEN_MAX

This variable shows the maximum number of concurrently opened databases.

variable Tokudb_LEAF_ENTRY_MAX_COMMITTED_XR

This variable shows the maximum number of committed transaction records that were stored on disk in a new or
modified row.

variable Tokudb_LEAF_ENTRY_MAX_PROVISIONAL_XR

This variable shows the maximum number of provisional transaction records that were stored on disk in a new or
modified row.

variable Tokudb_LEAF_ENTRY_EXPANDED

This variable shows the number of times that an expanded memory mechanism was used to store a new or modified
row on disk.

variable Tokudb_LEAF_ENTRY_MAX_MEMSIZE

This variable shows the maximum number of bytes that were stored on disk as a new or modified row. This is the
maximum uncompressed size of any row stored in TokuDB that was created or modified since the server started.

variable Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_IN

This variable shows the total number of bytes of leaf nodes data before performing garbage collection for non-flush
events.

variable Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_OUT

This variable shows the total number of bytes of leaf nodes data after performing garbage collection for non-flush
events.

variable Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_IN

This variable shows the total number of bytes of leaf nodes data before performing garbage collection for flush events.

variable Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_OUT

This variable shows the total number of bytes of leaf nodes data after performing garbage collection for flush events.

variable Tokudb_CHECKPOINT_PERIOD

This variable shows the interval in seconds between the end of an automatic checkpoint and the beginning of the next
automatic checkpoint.

variable Tokudb_CHECKPOINT_FOOTPRINT

This variable shows at what stage the checkpointer is at. It’s used for debugging purposes only and not a useful value
for a normal user.

variable Tokudb_CHECKPOINT_LAST_BEGAN

This variable shows the time the last checkpoint began. If a checkpoint is currently in progress, then this time may be
later than the time the last checkpoint completed. If no checkpoint has ever taken place, then this value will be Dec
31, 1969 on Linux hosts.

variable Tokudb_CHECKPOINT_LAST_COMPLETE_BEGAN

This variable shows the time the last complete checkpoint started. Any data that changed after this time will not be
captured in the checkpoint.

69.1. TokuDB Status Variables Summary 274

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_CHECKPOINT_LAST_COMPLETE_ENDED

This variable shows the time the last complete checkpoint ended.

variable Tokudb_CHECKPOINT_DURATION

This variable shows time (in seconds) required to complete all checkpoints.

variable Tokudb_CHECKPOINT_DURATION_LAST

This variable shows time (in seconds) required to complete the last checkpoint.

variable Tokudb_CHECKPOINT_LAST_LSN

This variable shows the last successful checkpoint LSN. Each checkpoint from the time the PerconaFT environment
is created has a monotonically incrementing LSN. This is not a useful value for a normal user to use for any purpose
other than having some idea of how many checkpoints have occurred since the system was first created.

variable Tokudb_CHECKPOINT_TAKEN

This variable shows the number of complete checkpoints that have been taken.

variable Tokudb_CHECKPOINT_FAILED

This variable shows the number of checkpoints that have failed for any reason.

variable Tokudb_CHECKPOINT_WAITERS_NOW

This variable shows the current number of threads waiting for the checkpoint safe lock. This is a not a useful
value for a regular user to use for any purpose.

variable Tokudb_CHECKPOINT_WAITERS_MAX

This variable shows the maximum number of threads that concurrently waited for the checkpoint safe lock.
This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_CHECKPOINT_CLIENT_WAIT_ON_MO

This variable shows the number of times a non-checkpoint client thread waited for the multi-operation lock. It is an
internal rwlock that is similar in nature to the InnoDB kernel mutex, it effectively halts all access to the PerconaFT
API when write locked. The begin phase of the checkpoint takes this lock for a brief period.

variable Tokudb_CHECKPOINT_CLIENT_WAIT_ON_CS

This variable shows the number of times a non-checkpoint client thread waited for the checkpoint-safe lock. This is the
lock taken when you SET tokudb_checkpoint_lock=1. If a client trying to lock/postpone the checkpointer
has to wait for the currently running checkpoint to complete, that wait time will be reflected here and summed. This is
not a useful metric as regular users should never be manipulating the checkpoint lock.

variable Tokudb_CHECKPOINT_BEGIN_TIME

This variable shows the cumulative time (in microseconds) required to mark all dirty nodes as pending a checkpoint.

variable Tokudb_CHECKPOINT_LONG_BEGIN_TIME

This variable shows the cumulative actual time (in microseconds) of checkpoint begin stages that took longer than 1
second.

variable Tokudb_CHECKPOINT_LONG_BEGIN_COUNT

This variable shows the number of checkpoints whose begin stage took longer than 1 second.

variable Tokudb_CHECKPOINT_END_TIME

This variable shows the time spent in checkpoint end operation in seconds.

variable Tokudb_CHECKPOINT_LONG_END_TIME

69.1. TokuDB Status Variables Summary 275

Percona Server Documentation, Release 8.0.18-9

This variable shows the total time of long checkpoints in seconds.

variable Tokudb_CHECKPOINT_LONG_END_COUNT

This variable shows the number of checkpoints whose end_checkpoint operations exceeded 1 minute.

variable Tokudb_CACHETABLE_MISS

This variable shows the number of times the application was unable to access the data in the internal cache. A cache
miss means that date will need to be read from disk.

variable Tokudb_CACHETABLE_MISS_TIME

This variable shows the total time, in microseconds, of how long the database has had to wait for a disk read to
complete.

variable Tokudb_CACHETABLE_PREFETCHES

This variable shows the total number of times that a block of memory has been prefetched into the database’s cache.
Data is prefetched when the database’s algorithms determine that a block of memory is likely to be accessed by the
application.

variable Tokudb_CACHETABLE_SIZE_CURRENT

This variable shows how much of the uncompressed data, in bytes, is currently in the database’s internal cache.

variable Tokudb_CACHETABLE_SIZE_LIMIT

This variable shows how much of the uncompressed data, in bytes, will fit in the database’s internal cache.

variable Tokudb_CACHETABLE_SIZE_WRITING

This variable shows the number of bytes that are currently queued up to be written to disk.

variable Tokudb_CACHETABLE_SIZE_NONLEAF

This variable shows the amount of memory, in bytes, the current set of non-leaf nodes occupy in the cache.

variable Tokudb_CACHETABLE_SIZE_LEAF

This variable shows the amount of memory, in bytes, the current set of (decompressed) leaf nodes occupy in the cache.

variable Tokudb_CACHETABLE_SIZE_ROLLBACK

This variable shows the rollback nodes size, in bytes, in the cache.

variable Tokudb_CACHETABLE_SIZE_CACHEPRESSURE

This variable shows the number of bytes causing cache pressure (the sum of buffers and work done counters), helps to
understand if cleaner threads are keeping up with workload. It should really be looked at as more of a value to use in
a ratio of cache pressure / cache table size. The closer that ratio evaluates to 1, the higher the cache pressure.

variable Tokudb_CACHETABLE_SIZE_CLONED

This variable shows the amount of memory, in bytes, currently used for cloned nodes. During the checkpoint operation,
dirty nodes are cloned prior to serialization/compression, then written to disk. After which, the memory for the cloned
block is returned for re-use.

variable Tokudb_CACHETABLE_EVICTIONS

This variable shows the number of blocks evicted from cache. On its own this is not a useful number as its impact on
performance depends entirely on the hardware and workload in use. For example, two workloads, one random, one
linear for the same starting data set will have two wildly different eviction patterns.

variable Tokudb_CACHETABLE_CLEANER_EXECUTIONS

This variable shows the total number of times the cleaner thread loop has executed.

69.1. TokuDB Status Variables Summary 276

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_CACHETABLE_CLEANER_PERIOD

TokuDB includes a cleaner thread that optimizes indexes in the background. This variable is the time, in seconds,
between the completion of a group of cleaner operations and the beginning of the next group of cleaner operations.
The cleaner operations run on a background thread performing work that does not need to be done on the client thread.

variable Tokudb_CACHETABLE_CLEANER_ITERATIONS

This variable shows the number of cleaner operations that are performed every cleaner period.

variable Tokudb_CACHETABLE_WAIT_PRESSURE_COUNT

This variable shows the number of times a thread was stalled due to cache pressure.

variable Tokudb_CACHETABLE_WAIT_PRESSURE_TIME

This variable shows the total time, in microseconds, waiting on cache pressure to subside.

variable Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_COUNT

This variable shows the number of times a thread was stalled for more than one second due to cache pressure.

variable Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_TIME

This variable shows the total time, in microseconds, waiting on cache pressure to subside for more than one second.

variable Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS

This variable shows the number of threads in the client thread pool.

variable Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS_ACTIVE

This variable shows the number of currently active threads in the client thread pool.

variable Tokudb_CACHETABLE_POOL_CLIENT_QUEUE_SIZE

This variable shows the number of currently queued work items in the client thread pool.

variable Tokudb_CACHETABLE_POOL_CLIENT_MAX_QUEUE_SIZE

This variable shows the largest number of queued work items in the client thread pool.

variable Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_ITEMS_PROCESSED

This variable shows the total number of work items processed in the client thread pool.

variable Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_EXECUTION_TIME

This variable shows the total execution time of processing work items in the client thread pool.

variable Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADS

This variable shows the number of threads in the cachetable threadpool.

variable Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADS_ACTIVE

This variable shows the number of currently active threads in the cachetable thread pool.

variable Tokudb_CACHETABLE_POOL_CACHETABLE_QUEUE_SIZE

This variable shows the number of currently queued work items in the cachetable thread pool.

variable Tokudb_CACHETABLE_POOL_CACHETABLE_MAX_QUEUE_SIZE

This variable shows the largest number of queued work items in the cachetable thread pool.

variable Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_ITEMS_PROCESSED

This variable shows the total number of work items processed in the cachetable thread pool.

69.1. TokuDB Status Variables Summary 277

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_EXECUTION_TIME

This variable shows the total execution time of processing work items in the cachetable thread pool.

variable Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADS

This variable shows the number of threads in the checkpoint threadpool.

variable Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADS_ACTIVE

This variable shows the number of currently active threads in the checkpoint thread pool.

variable Tokudb_CACHETABLE_POOL_CHECKPOINT_QUEUE_SIZE

This variable shows the number of currently queued work items in the checkpoint thread pool.

variable Tokudb_CACHETABLE_POOL_CHECKPOINT_MAX_QUEUE_SIZE

This variable shows the largest number of queued work items in the checkpoint thread pool.

variable Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_ITEMS_PROCESSED

This variable shows the total number of work items processed in the checkpoint thread pool.

variable Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_EXECUTION_TIME

This variable shows the total execution time of processing work items in the checkpoint thread pool.

variable Tokudb_LOCKTREE_MEMORY_SIZE

This variable shows the amount of memory, in bytes, that the locktree is currently using.

variable Tokudb_LOCKTREE_MEMORY_SIZE_LIMIT

This variable shows the maximum amount of memory, in bytes, that the locktree is allowed to use.

variable Tokudb_LOCKTREE_ESCALATION_NUM

This variable shows the number of times the locktree needed to run lock escalation to reduce its memory footprint.

variable Tokudb_LOCKTREE_ESCALATION_SECONDS

This variable shows the total number of seconds spent performing locktree escalation.

variable Tokudb_LOCKTREE_LATEST_POST_ESCALATION_MEMORY_SIZE

This variable shows the locktree size, in bytes, after most current locktree escalation.

variable Tokudb_LOCKTREE_OPEN_CURRENT

This variable shows the number of locktrees that are currently opened.

variable Tokudb_LOCKTREE_PENDING_LOCK_REQUESTS

This variable shows the number of requests waiting for a lock grant.

variable Tokudb_LOCKTREE_STO_ELIGIBLE_NUM

This variable shows the number of locktrees eligible for Single Transaction optimizations. STO op-
timization are behaviors that can happen within the locktree when there is exactly one transaction active within the
locktree. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_LOCKTREE_STO_ENDED_NUM

This variable shows the total number of times a Single Transaction Optimization was ended early due to
another transaction starting. STO optimization are behaviors that can happen within the locktree when there is exactly
one transaction active within the locktree. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_LOCKTREE_STO_ENDED_SECONDS

69.1. TokuDB Status Variables Summary 278

Percona Server Documentation, Release 8.0.18-9

This variable shows the total number of seconds ending the Single Transaction Optimizations. STO
optimization are behaviors that can happen within the locktree when there is exactly one transaction active within the
locktree. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_LOCKTREE_WAIT_COUNT

This variable shows the number of times that a lock request could not be acquired because of a conflict with some
other transaction. PerconaFT lock request cycles to try to obtain a lock, if it can not get a lock, it sleeps/waits and
times out, checks to get the lock again, repeat. This value indicates the number of cycles it needed to execute before it
obtained the lock.

variable Tokudb_LOCKTREE_WAIT_TIME

This variable shows the total time, in microseconds, spent by client waiting for a lock conflict to be resolved.

variable Tokudb_LOCKTREE_LONG_WAIT_COUNT

This variable shows number of lock waits greater than one second in duration.

variable Tokudb_LOCKTREE_LONG_WAIT_TIME

This variable shows the total time, in microseconds, of the long waits.

variable Tokudb_LOCKTREE_TIMEOUT_COUNT

This variable shows the number of times that a lock request timed out.

variable Tokudb_LOCKTREE_WAIT_ESCALATION_COUNT

When the sum of the sizes of locks taken reaches the lock tree limit, we run lock escalation on a background thread.
The clients threads need to wait for escalation to consolidate locks and free up memory. This variables shows the
number of times a client thread had to wait on lock escalation.

variable Tokudb_LOCKTREE_WAIT_ESCALATION_TIME

This variable shows the total time, in microseconds, that a client thread spent waiting for lock escalation to free up
memory.

variable Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_COUNT

This variable shows number of times that a client thread had to wait on lock escalation and the wait time was greater
than one second.

variable Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_TIME

This variable shows the total time, in microseconds, of the long waits for lock escalation to free up memory.

variable Tokudb_DICTIONARY_UPDATES

This variable shows the total number of rows that have been updated in all primary and secondary indexes combined,
if those updates have been done with a separate recovery log entry per index.

variable Tokudb_DICTIONARY_BROADCAST_UPDATES

This variable shows the number of broadcast updates that have been successfully performed. A broadcast update is an
update that affects all rows in a dictionary.

variable Tokudb_DESCRIPTOR_SET

This variable shows the number of time a descriptor was updated when the entire dictionary was updated (for example,
when the schema has been changed).

variable Tokudb_MESSAGES_IGNORED_BY_LEAF_DUE_TO_MSN

This variable shows the number of messages that were ignored by a leaf because it had already been applied.

variable Tokudb_TOTAL_SEARCH_RETRIES

69.1. TokuDB Status Variables Summary 279

Percona Server Documentation, Release 8.0.18-9

Internal value that is no use to anyone other than a developer debugging a specific query/search issue.

variable Tokudb_SEARCH_TRIES_GT_HEIGHT

Internal value that is no use to anyone other than a developer debugging a specific query/search issue.

variable Tokudb_SEARCH_TRIES_GT_HEIGHTPLUS3

Internal value that is no use to anyone other than a developer debugging a specific query/search issue.

variable Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT

This variable shows the number of leaf nodes flushed to disk, not for checkpoint.

variable Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_BYTES

This variable shows the size, in bytes, of leaf nodes flushed to disk, not for checkpoint.

variable Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_UNCOMPRESSED_BYTES

This variable shows the size, in bytes, of uncompressed leaf nodes flushed to disk not for checkpoint.

variable Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_SECONDS

This variable shows the number of seconds waiting for I/O when writing leaf nodes flushed to disk, not for checkpoint

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT

This variable shows the number of non-leaf nodes flushed to disk, not for checkpoint.

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_BYTES

This variable shows the size, in bytes, of non-leaf nodes flushed to disk, not for checkpoint.

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_UNCOMPRESSE

This variable shows the size, in bytes, of uncompressed non-leaf nodes flushed to disk not for checkpoint.

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_SECONDS

This variable shows the number of seconds waiting for I/O when writing non-leaf nodes flushed to disk, not for
checkpoint

variable Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT

This variable shows the number of leaf nodes flushed to disk, for checkpoint.

variable Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_BYTES

This variable shows the size, in bytes, of leaf nodes flushed to disk, for checkpoint.

variable Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_UNCOMPRESSED_BYTES

This variable shows the size, in bytes, of uncompressed leaf nodes flushed to disk for checkpoint.

variable Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_SECONDS

This variable shows the number of seconds waiting for I/O when writing leaf nodes flushed to disk for checkpoint

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT

This variable shows the number of non-leaf nodes flushed to disk, for checkpoint.

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_BYTES

This variable shows the size, in bytes, of non-leaf nodes flushed to disk, for checkpoint.

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_UNCOMPRESSED_BY

This variable shows the size, in bytes, of uncompressed non-leaf nodes flushed to disk for checkpoint.

69.1. TokuDB Status Variables Summary 280

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_SECONDS

This variable shows the number of seconds waiting for I/O when writing non-leaf nodes flushed to disk for checkpoint

variable Tokudb_LEAF_NODE_COMPRESSION_RATIO

This variable shows the ratio of uncompressed bytes (in-memory) to compressed bytes (on-disk) for leaf nodes.

variable Tokudb_NONLEAF_NODE_COMPRESSION_RATIO

This variable shows the ratio of uncompressed bytes (in-memory) to compressed bytes (on-disk) for non-leaf nodes.

variable Tokudb_OVERALL_NODE_COMPRESSION_RATIO

This variable shows the ratio of uncompressed bytes (in-memory) to compressed bytes (on-disk) for all nodes.

variable Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS

This variable shows the number of times a partition of a non-leaf node was evicted from the cache.

variable Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS_BYTES

This variable shows the amount, in bytes, of memory freed by evicting partitions of non-leaf nodes from the cache.

variable Tokudb_LEAF_NODE_PARTIAL_EVICTIONS

This variable shows the number of times a partition of a leaf node was evicted from the cache.

variable Tokudb_LEAF_NODE_PARTIAL_EVICTIONS_BYTES

This variable shows the amount, in bytes, of memory freed by evicting partitions of leaf nodes from the cache.

variable Tokudb_LEAF_NODE_FULL_EVICTIONS

This variable shows the number of times a full leaf node was evicted from the cache.

variable Tokudb_LEAF_NODE_FULL_EVICTIONS_BYTES

This variable shows the amount, in bytes, of memory freed by evicting full leaf nodes from the cache.

variable Tokudb_NONLEAF_NODE_FULL_EVICTIONS

This variable shows the number of times a full non-leaf node was evicted from the cache.

variable Tokudb_NONLEAF_NODE_FULL_EVICTIONS_BYTES

This variable shows the amount, in bytes, of memory freed by evicting full non-leaf nodes from the cache.

variable Tokudb_LEAF_NODES_CREATED

This variable shows the number of created leaf nodes.

variable Tokudb_NONLEAF_NODES_CREATED

This variable shows the number of created non-leaf nodes.

variable Tokudb_LEAF_NODES_DESTROYED

This variable shows the number of destroyed leaf nodes.

variable Tokudb_NONLEAF_NODES_DESTROYED

This variable shows the number of destroyed non-leaf nodes.

variable Tokudb_MESSAGES_INJECTED_AT_ROOT_BYTES

This variable shows the size, in bytes, of messages injected at root (for all trees).

variable Tokudb_MESSAGES_FLUSHED_FROM_H1_TO_LEAVES_BYTES

69.1. TokuDB Status Variables Summary 281

Percona Server Documentation, Release 8.0.18-9

This variable shows the size, in bytes, of messages flushed from h1 nodes to leaves.

variable Tokudb_MESSAGES_IN_TREES_ESTIMATE_BYTES

This variable shows the estimated size, in bytes, of messages currently in trees.

variable Tokudb_MESSAGES_INJECTED_AT_ROOT

This variables shows the number of messages that were injected at root node of a tree.

variable Tokudb_BROADCASE_MESSAGES_INJECTED_AT_ROOT

This variable shows the number of broadcast messages dropped into the root node of a tree. These are things such as
the result of OPTIMIZE TABLE and a few other operations. This is not a useful metric for a regular user to use for
any purpose.

variable Tokudb_BASEMENTS_DECOMPRESSED_TARGET_QUERY

This variable shows the number of basement nodes decompressed for queries.

variable Tokudb_BASEMENTS_DECOMPRESSED_PRELOCKED_RANGE

This variable shows the number of basement nodes aggressively decompressed by queries.

variable Tokudb_BASEMENTS_DECOMPRESSED_PREFETCH

This variable shows the number of basement nodes decompressed by a prefetch thread.

variable Tokudb_BASEMENTS_DECOMPRESSED_FOR_WRITE

This variable shows the number of basement nodes decompressed for writes.

variable Tokudb_BUFFERS_DECOMPRESSED_TARGET_QUERY

This variable shows the number of buffers decompressed for queries.

variable Tokudb_BUFFERS_DECOMPRESSED_PRELOCKED_RANGE

This variable shows the number of buffers decompressed by queries aggressively.

variable Tokudb_BUFFERS_DECOMPRESSED_PREFETCH

This variable shows the number of buffers decompressed by a prefetch thread.

variable Tokudb_BUFFERS_DECOMPRESSED_FOR_WRITE

This variable shows the number of buffers decompressed for writes.

variable Tokudb_PIVOTS_FETCHED_FOR_QUERY

This variable shows the number of pivot nodes fetched for queries.

variable Tokudb_PIVOTS_FETCHED_FOR_QUERY_BYTES

This variable shows the number of bytes of pivot nodes fetched for queries.

variable Tokudb_PIVOTS_FETCHED_FOR_QUERY_SECONDS

This variable shows the number of seconds waiting for I/O when fetching pivot nodes for queries.

variable Tokudb_PIVOTS_FETCHED_FOR_PREFETCH

This variable shows the number of pivot nodes fetched by a prefetch thread.

variable Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_BYTES

This variable shows the number of bytes of pivot nodes fetched for queries.

variable Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_SECONDS

This variable shows the number seconds waiting for I/O when fetching pivot nodes by a prefetch thread.

69.1. TokuDB Status Variables Summary 282

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_PIVOTS_FETCHED_FOR_WRITE

This variable shows the number of pivot nodes fetched for writes.

variable Tokudb_PIVOTS_FETCHED_FOR_WRITE_BYTES

This variable shows the number of bytes of pivot nodes fetched for writes.

variable Tokudb_PIVOTS_FETCHED_FOR_WRITE_SECONDS

This variable shows the number of seconds waiting for I/O when fetching pivot nodes for writes.

variable Tokudb_BASEMENTS_FETCHED_TARGET_QUERY

This variable shows the number of basement nodes fetched from disk for queries.

variable Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_BYTES

This variable shows the number of basement node bytes fetched from disk for queries.

variable Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_SECONDS

This variable shows the number of seconds waiting for I/O when fetching basement nodes from disk for queries.

variable Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE

This variable shows the number of basement nodes fetched from disk aggressively.

variable Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_BYTES

This variable shows the number of basement node bytes fetched from disk aggressively.

variable Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_SECONDS

This variable shows the number of seconds waiting for I/O when fetching basement nodes from disk aggressively.

variable Tokudb_BASEMENTS_FETCHED_PREFETCH

This variable shows the number of basement nodes fetched from disk by a prefetch thread.

variable Tokudb_BASEMENTS_FETCHED_PREFETCH_BYTES

This variable shows the number of basement node bytes fetched from disk by a prefetch thread.

variable Tokudb_BASEMENTS_FETCHED_PREFETCH_SECONDS

This variable shows the number of seconds waiting for I/O when fetching basement nodes from disk by a prefetch
thread.

variable Tokudb_BASEMENTS_FETCHED_FOR_WRITE

This variable shows the number of buffers fetched from disk for writes.

variable Tokudb_BASEMENTS_FETCHED_FOR_WRITE_BYTES

This variable shows the number of buffer bytes fetched from disk for writes.

variable Tokudb_BASEMENTS_FETCHED_FOR_WRITE_SECONDS

This variable shows the number of seconds waiting for I/O when fetching buffers from disk for writes.

variable Tokudb_BUFFERS_FETCHED_TARGET_QUERY

This variable shows the number of buffers fetched from disk for queries.

variable Tokudb_BUFFERS_FETCHED_TARGET_QUERY_BYTES

This variable shows the number of buffer bytes fetched from disk for queries.

variable Tokudb_BUFFERS_FETCHED_TARGET_QUERY_SECONDS

69.1. TokuDB Status Variables Summary 283

Percona Server Documentation, Release 8.0.18-9

This variable shows the number of seconds waiting for I/O when fetching buffers from disk for queries.

variable Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE

This variable shows the number of buffers fetched from disk aggressively.

variable Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_BYTES

This variable shows the number of buffer bytes fetched from disk aggressively.

variable Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_SECONDS

This variable shows the number of seconds waiting for I/O when fetching buffers from disk aggressively.

variable Tokudb_BUFFERS_FETCHED_PREFETCH

This variable shows the number of buffers fetched from disk aggressively.

variable Tokudb_BUFFERS_FETCHED_PREFETCH_BYTES

This variable shows the number of buffer bytes fetched from disk by a prefetch thread.

variable Tokudb_BUFFERS_FETCHED_PREFETCH_SECONDS

This variable shows the number of seconds waiting for I/O when fetching buffers from disk by a prefetch thread.

variable Tokudb_BUFFERS_FETCHED_FOR_WRITE

This variable shows the number of buffers fetched from disk for writes.

variable Tokudb_BUFFERS_FETCHED_FOR_WRITE_BYTES

This variable shows the number of buffer bytes fetched from disk for writes.

variable Tokudb_BUFFERS_FETCHED_FOR_WRITE_SECONDS

This variable shows the number of seconds waiting for I/O when fetching buffers from disk for writes.

variable Tokudb_LEAF_COMPRESSION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent compressing leaf nodes.

variable Tokudb_LEAF_SERIALIZATION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent serializing leaf nodes.

variable Tokudb_LEAF_DECOMPRESSION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent decompressing leaf nodes.

variable Tokudb_LEAF_DESERIALIZATION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent deserializing leaf nodes.

variable Tokudb_NONLEAF_COMPRESSION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent compressing non leaf nodes.

variable Tokudb_NONLEAF_SERIALIZATION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent serializing non leaf nodes.

variable Tokudb_NONLEAF_DECOMPRESSION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent decompressing non leaf nodes.

variable Tokudb_NONLEAF_DESERIALIZATION_TO_MEMORY_SECONDS

This variable shows the total time, in seconds, spent deserializing non leaf nodes.

variable Tokudb_PROMOTION_ROOTS_SPLIT

69.1. TokuDB Status Variables Summary 284

Percona Server Documentation, Release 8.0.18-9

This variable shows the number of times the root split during promotion.

variable Tokudb_PROMOTION_LEAF_ROOTS_INJECTED_INTO

This variable shows the number of times a message stopped at a root with height 0.

variable Tokudb_PROMOTION_H1_ROOTS_INJECTED_INTO

This variable shows the number of times a message stopped at a root with height 1.

variable Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_0

This variable shows the number of times a message stopped at depth 0.

variable Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_1

This variable shows the number of times a message stopped at depth 1.

variable Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_2

This variable shows the number of times a message stopped at depth 2.

variable Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_3

This variable shows the number of times a message stopped at depth 3.

variable Tokudb_PROMOTION_INJECTIONS_LOWER_THAN_DEPTH_3

This variable shows the number of times a message was promoted past depth 3.

variable Tokudb_PROMOTION_STOPPED_NONEMPTY_BUFFER

This variable shows the number of times a message stopped because it reached a nonempty buffer.

variable Tokudb_PROMOTION_STOPPED_AT_HEIGHT_1

This variable shows the number of times a message stopped because it had reached height 1.

variable Tokudb_PROMOTION_STOPPED_CHILD_LOCKED_OR_NOT_IN_MEMORY

This variable shows the number of times a message stopped because it could not cheaply get access to a child.

variable Tokudb_PROMOTION_STOPPED_CHILD_NOT_FULLY_IN_MEMORY

This variable shows the number of times a message stopped because it could not cheaply get access to a child.

variable Tokudb_PROMOTION_STOPPED_AFTER_LOCKING_CHILD

This variable shows the number of times a message stopped before a child which had been locked.

variable Tokudb_BASEMENT_DESERIALIZATION_FIXED_KEY

This variable shows the number of basement nodes deserialized where all keys had the same size, leaving the basement
in a format that is optimal for in-memory workloads.

variable Tokudb_BASEMENT_DESERIALIZATION_VARIABLE_KEY

This variable shows the number of basement nodes deserialized where all keys did not have the same size, and thus
ineligible for an in-memory optimization.

variable Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_SUCCESS

This variable shows the number of times a message injection detected a series of sequential inserts to the rightmost
side of the tree and successfully applied an insert message directly to the rightmost leaf node. This is a not a useful
value for a regular user to use for any purpose.

variable Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_POS

69.1. TokuDB Status Variables Summary 285

Percona Server Documentation, Release 8.0.18-9

This variable shows the number of times a message injection detected a series of sequential inserts to the rightmost
side of the tree and was unable to follow the pattern of directly applying an insert message directly to the rightmost
leaf node because the key does not continue the sequence. This is a not a useful value for a regular user to use for any
purpose.

variable Tokudb_RIGHTMOST_LEAF_SHORTCUT_FAIL_REACTIVE

This variable shows the number of times a message injection detected a series of sequential inserts to the rightmost
side of the tree and was unable to follow the pattern of directly applying an insert message directly to the rightmost
leaf node because the leaf is full. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_CURSOR_SKIP_DELETED_LEAF_ENTRY

This variable shows the number of leaf entries skipped during search/scan because the result of message application
and reconciliation of the leaf entry MVCC stack reveals that the leaf entry is deleted in the current transactions
view. It is a good indicator that there might be excessive garbage in a tree if a range scan seems to take too long.

variable Tokudb_FLUSHER_CLEANER_TOTAL_NODES

This variable shows the total number of nodes potentially flushed by flusher or cleaner threads. This is a not a useful
value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_H1_NODES

This variable shows the number of height 1 nodes that had messages flushed by flusher or cleaner threads, i.e., internal
nodes immediately above leaf nodes. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_HGT1_NODES

This variable shows the number of nodes with height greater than 1 that had messages flushed by flusher or cleaner
threads. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_EMPTY_NODES

This variable shows the number of nodes cleaned by flusher or cleaner threads which had empty message buffers. This
is a not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_NODES_DIRTIED

This variable shows the number of nodes dirtied by flusher or cleaner threads as a result of flushing messages down-
ward. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_MAX_BUFFER_SIZE

This variable shows the maximum bytes in a message buffer flushed by flusher or cleaner threads. This is a not a useful
value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_MIN_BUFFER_SIZE

This variable shows the minimum bytes in a message buffer flushed by flusher or cleaner threads. This is a not a useful
value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_SIZE

This variable shows the total bytes in buffers flushed by flusher and cleaner threads. This is a not a useful value for a
regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_MAX_BUFFER_WORKDONE

This variable shows the maximum bytes worth of work done in a message buffer flushed by flusher or cleaner threads.
This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_MIN_BUFFER_WORKDONE

This variable shows the minimum bytes worth of work done in a message buffer flushed by flusher or cleaner threads.
This is a not a useful value for a regular user to use for any purpose.

69.1. TokuDB Status Variables Summary 286

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_WORKDONE

This variable shows the total bytes worth of work done in buffers flushed by flusher or cleaner threads. This is a not a
useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_STARTED

This variable shows the number of times flusher and cleaner threads tried to merge two leafs. This is a not a useful
value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_RUNNING

This variable shows the number of flusher and cleaner threads leaf merges in progress. This is a not a useful value for
a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_COMPLETED

This variable shows the number of successful flusher and cleaner threads leaf merges. This is a not a useful value for
a regular user to use for any purpose.

variable Tokudb_FLUSHER_CLEANER_NUM_DIRTIED_FOR_LEAF_MERGE

This variable shows the number of nodes dirtied by flusher or cleaner threads performing leaf node merges. This is a
not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_TOTAL

This variable shows the total number of flushes done by flusher threads or cleaner threads. This is a not a useful value
for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_IN_MEMORY

This variable shows the number of in memory flushes (required no disk reads) by flusher or cleaner threads. This is a
not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_NEEDED_IO

This variable shows the number of flushes that read something off disk by flusher or cleaner threads. This is a not a
useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_CASCADES

This variable shows the number of flushes that triggered a flush in child node by flusher or cleaner threads. This is a
not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_CASCADES_1

This variable shows the number of flushes that triggered one cascading flush by flusher or cleaner threads. This is a
not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_CASCADES_2

This variable shows the number of flushes that triggered two cascading flushes by flusher or cleaner threads. This is a
not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_CASCADES_3

This variable shows the number of flushes that triggered three cascading flushes by flusher or cleaner threads. This is
a not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_CASCADES_4

This variable shows the number of flushes that triggered four cascading flushes by flusher or cleaner threads. This is a
not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_CASCADES_5

69.1. TokuDB Status Variables Summary 287

Percona Server Documentation, Release 8.0.18-9

This variable shows the number of flushes that triggered five cascading flushes by flusher or cleaner threads. This is a
not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_FLUSH_CASCADES_GT_5

This variable shows the number of flushes that triggered more than five cascading flushes by flusher or cleaner threads.
This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_SPLIT_LEAF

This variable shows the total number of leaf node splits done by flusher threads or cleaner threads. This is a not a
useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_SPLIT_NONLEAF

This variable shows the total number of non-leaf node splits done by flusher threads or cleaner threads. This is a not a
useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_MERGE_LEAF

This variable shows the total number of leaf node merges done by flusher threads or cleaner threads. This is a not a
useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_MERGE_NONLEAF

This variable shows the total number of non-leaf node merges done by flusher threads or cleaner threads. This is a not
a useful value for a regular user to use for any purpose.

variable Tokudb_FLUSHER_BALANCE_LEAF

This variable shows the number of times two adjacent leaf nodes were rebalanced or had their content redistributed
evenly by flusher or cleaner threads. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_HOT_NUM_STARTED

This variable shows the number of hot operations started (OPTIMIZE TABLE). This is a not a useful value for a
regular user to use for any purpose.

variable Tokudb_HOT_NUM_COMPLETED

This variable shows the number of hot operations completed (OPTIMIZE TABLE). This is a not a useful value for a
regular user to use for any purpose.

variable Tokudb_HOT_NUM_ABORTED

This variable shows the number of hot operations aborted (OPTIMIZE TABLE). This is a not a useful value for a
regular user to use for any purpose.

variable Tokudb_HOT_MAX_ROOT_FLUSH_COUNT

This variable shows the maximum number of flushes from root ever required to optimize trees. This is a not a useful
value for a regular user to use for any purpose.

variable Tokudb_TXN_BEGIN

This variable shows the number of transactions that have been started.

variable Tokudb_TXN_BEGIN_READ_ONLY

This variable shows the number of read-only transactions started.

variable Tokudb_TXN_COMMITS

This variable shows the total number of transactions that have been committed.

variable Tokudb_TXN_ABORTS

This variable shows the total number of transactions that have been aborted.

69.1. TokuDB Status Variables Summary 288

Percona Server Documentation, Release 8.0.18-9

variable Tokudb_LOGGER_NEXT_LSN

This variable shows the recovery logger next LSN. This is a not a useful value for a regular user to use for any purpose.

variable Tokudb_LOGGER_WRITES

This variable shows the number of times the logger has written to disk.

variable Tokudb_LOGGER_WRITES_BYTES

This variable shows the number of bytes the logger has written to disk.

variable Tokudb_LOGGER_WRITES_UNCOMPRESSED_BYTES

This variable shows the number of uncompressed bytes the logger has written to disk.

variable Tokudb_LOGGER_WRITES_SECONDS

This variable shows the number of seconds waiting for IO when writing logs to disk.

variable Tokudb_LOGGER_WAIT_LONG

This variable shows the number of times a logger write operation required 100ms or more.

variable Tokudb_LOADER_NUM_CREATED

This variable shows the number of times one of our internal objects, a loader, has been created.

variable Tokudb_LOADER_NUM_CURRENT

This variable shows the number of loaders that currently exist.

variable Tokudb_LOADER_NUM_MAX

This variable shows the maximum number of loaders that ever existed simultaneously.

variable Tokudb_MEMORY_MALLOC_COUNT

This variable shows the number of malloc operations by PerconaFT.

variable Tokudb_MEMORY_FREE_COUNT

This variable shows the number of free operations by PerconaFT.

variable Tokudb_MEMORY_REALLOC_COUNT

This variable shows the number of realloc operations by PerconaFT.

variable Tokudb_MEMORY_MALLOC_FAIL

This variable shows the number of malloc operations that failed by PerconaFT.

variable Tokudb_MEMORY_REALLOC_FAIL

This variable shows the number of realloc operations that failed by PerconaFT.

variable Tokudb_MEMORY_REQUESTED

This variable shows the number of bytes requested by PerconaFT.

variable Tokudb_MEMORY_USED

This variable shows the number of bytes used (requested + overhead) by PerconaFT.

variable Tokudb_MEMORY_FREED

This variable shows the number of bytes freed by PerconaFT.

variable Tokudb_MEMORY_MAX_REQUESTED_SIZE

69.1. TokuDB Status Variables Summary 289

Percona Server Documentation, Release 8.0.18-9

This variable shows the largest attempted allocation size by PerconaFT.

variable Tokudb_MEMORY_LAST_FAILED_SIZE

This variable shows the size of the last failed allocation attempt by PerconaFT.

variable Tokudb_MEM_ESTIMATED_MAXIMUM_MEMORY_FOOTPRINT

This variable shows the maximum memory footprint of the storage engine, the max value of (used - freed).

variable Tokudb_MEMORY_MALLOCATOR_VERSION

This variable shows the version of the memory allocator library detected by PerconaFT.

variable Tokudb_MEMORY_MMAP_THRESHOLD

This variable shows the mmap threshold in PerconaFT, anything larger than this gets mmap'ed.

variable Tokudb_FILESYSTEM_THREADS_BLOCKED_BY_FULL_DISK

This variable shows the number of threads that are currently blocked because they are attempting to write to a full
disk. This is normally zero. If this value is non-zero, then a warning will appear in the disk free space field.

variable Tokudb_FILESYSTEM_FSYNC_TIME

This variable shows the total time, in microseconds, used to fsync to disk.

variable Tokudb_FILESYSTEM_FSYNC_NUM

This variable shows the total number of times the database has flushed the operating system’s file buffers to disk.

variable Tokudb_FILESYSTEM_LONG_FSYNC_TIME

This variable shows the total time, in microseconds, used to fsync to dis k when the operation required more than
one second.

variable Tokudb_FILESYSTEM_LONG_FSYNC_NUM

This variable shows the total number of times the database has flushed the operating system’s file buffers to disk and
this operation required more than one second.

69.1. TokuDB Status Variables Summary 290

CHAPTER

SEVENTY

TOKUDB PERFORMANCE SCHEMA INTEGRATION

TokuDB is integrated with Performance Schema

This integration can be used for profiling additional TokuDB operations.

TokuDB instruments available in Performance Schema can be seen in PERFORMANCE_SCHEMA.
SETUP_INSTRUMENTS table:

mysql> SELECT * FROM performance_schema.setup_instruments WHERE NAME LIKE "%/fti/%";
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/synch/mutex/fti/kibbutz_mutex	NO	NO
wait/synch/mutex/fti/minicron_p_mutex	NO	NO
wait/synch/mutex/fti/queue_result_mutex	NO	NO
wait/synch/mutex/fti/tpool_lock_mutex	NO	NO
wait/synch/mutex/fti/workset_lock_mutex	NO	NO
wait/synch/mutex/fti/bjm_jobs_lock_mutex	NO	NO
wait/synch/mutex/fti/log_internal_lock_mutex	NO	NO
wait/synch/mutex/fti/cachetable_ev_thread_lock_mutex	NO	NO
wait/synch/mutex/fti/cachetable_disk_nb_mutex	NO	NO
wait/synch/mutex/fti/safe_file_size_lock_mutex	NO	NO
wait/synch/mutex/fti/cachetable_m_mutex_key	NO	NO
wait/synch/mutex/fti/checkpoint_safe_mutex	NO	NO
wait/synch/mutex/fti/ft_ref_lock_mutex	NO	NO
wait/synch/mutex/fti/ft_open_close_lock_mutex	NO	NO
wait/synch/mutex/fti/loader_error_mutex	NO	NO
wait/synch/mutex/fti/bfs_mutex	NO	NO
wait/synch/mutex/fti/loader_bl_mutex	NO	NO
wait/synch/mutex/fti/loader_fi_lock_mutex	NO	NO
wait/synch/mutex/fti/loader_out_mutex	NO	NO
wait/synch/mutex/fti/result_output_condition_lock_mutex	NO	NO
wait/synch/mutex/fti/block_table_mutex	NO	NO
wait/synch/mutex/fti/rollback_log_node_cache_mutex	NO	NO
wait/synch/mutex/fti/txn_lock_mutex	NO	NO
wait/synch/mutex/fti/txn_state_lock_mutex	NO	NO
wait/synch/mutex/fti/txn_child_manager_mutex	NO	NO
wait/synch/mutex/fti/txn_manager_lock_mutex	NO	NO
wait/synch/mutex/fti/treenode_mutex	NO	NO
wait/synch/mutex/fti/locktree_request_info_mutex	NO	NO
wait/synch/mutex/fti/locktree_request_info_retry_mutex_key	NO	NO
wait/synch/mutex/fti/manager_mutex	NO	NO
wait/synch/mutex/fti/manager_escalation_mutex	NO	NO
wait/synch/mutex/fti/db_txn_struct_i_txn_mutex	NO	NO
wait/synch/mutex/fti/manager_escalator_mutex	NO	NO
wait/synch/mutex/fti/indexer_i_indexer_lock_mutex	NO	NO

291

https://dev.mysql.com/doc/refman/8.0/en/innodb-performance-schema.html

Percona Server Documentation, Release 8.0.18-9

wait/synch/mutex/fti/indexer_i_indexer_estimate_lock_mutex	NO	NO
wait/synch/mutex/fti/fti_probe_1	NO	NO
wait/synch/rwlock/fti/multi_operation_lock	NO	NO
wait/synch/rwlock/fti/low_priority_multi_operation_lock	NO	NO
wait/synch/rwlock/fti/cachetable_m_list_lock	NO	NO
wait/synch/rwlock/fti/cachetable_m_pending_lock_expensive	NO	NO
wait/synch/rwlock/fti/cachetable_m_pending_lock_cheap	NO	NO
wait/synch/rwlock/fti/cachetable_m_lock	NO	NO
wait/synch/rwlock/fti/result_i_open_dbs_rwlock	NO	NO
wait/synch/rwlock/fti/checkpoint_safe_rwlock	NO	NO
wait/synch/rwlock/fti/cachetable_value	NO	NO
wait/synch/rwlock/fti/safe_file_size_lock_rwlock	NO	NO
wait/synch/rwlock/fti/cachetable_disk_nb_rwlock	NO	NO
wait/synch/cond/fti/result_state_cond	NO	NO
wait/synch/cond/fti/bjm_jobs_wait	NO	NO
wait/synch/cond/fti/cachetable_p_refcount_wait	NO	NO
wait/synch/cond/fti/cachetable_m_flow_control_cond	NO	NO
wait/synch/cond/fti/cachetable_m_ev_thread_cond	NO	NO
wait/synch/cond/fti/bfs_cond	NO	NO
wait/synch/cond/fti/result_output_condition	NO	NO
wait/synch/cond/fti/manager_m_escalator_done	NO	NO
wait/synch/cond/fti/lock_request_m_wait_cond	NO	NO
wait/synch/cond/fti/queue_result_cond	NO	NO
wait/synch/cond/fti/ws_worker_wait	NO	NO
wait/synch/cond/fti/rwlock_wait_read	NO	NO
wait/synch/cond/fti/rwlock_wait_write	NO	NO
wait/synch/cond/fti/rwlock_cond	NO	NO
wait/synch/cond/fti/tp_thread_wait	NO	NO
wait/synch/cond/fti/tp_pool_wait_free	NO	NO
wait/synch/cond/fti/frwlock_m_wait_read	NO	NO
wait/synch/cond/fti/kibbutz_k_cond	NO	NO
wait/synch/cond/fti/minicron_p_condvar	NO	NO
wait/synch/cond/fti/locktree_request_info_retry_cv_key	NO	NO
wait/io/file/fti/tokudb_data_file	YES	YES
wait/io/file/fti/tokudb_load_file	YES	YES
wait/io/file/fti/tokudb_tmp_file	YES	YES
wait/io/file/fti/tokudb_log_file	YES	YES
+--+---------+-------+

For TokuDB-related objects, following clauses can be used when querying Performance Schema tables:

• WHERE EVENT_NAME LIKE '%fti%' or

• WHERE NAME LIKE '%fti%'

For example, to get the information about TokuDB related events you can query PERFORMANCE_SCHEMA.
events_waits_summary_global_by_event_name like:

mysql> SELECT * FROM performance_schema.events_waits_summary_global_by_event_name
→˓WHERE EVENT_NAME LIKE '%fti%';

+---+------------+----------------+-------------
→˓---+----------------+----------------+
| EVENT_NAME | COUNT_STAR | SUM_TIMER_WAIT | MIN_TIMER_
→˓WAIT | AVG_TIMER_WAIT | MAX_TIMER_WAIT |
+---+------------+----------------+-------------
→˓---+----------------+----------------+
| wait/synch/mutex/fti/kibbutz_mutex | 0 | 0 |
→˓ 0 | 0 | 0 |

292

Percona Server Documentation, Release 8.0.18-9

| wait/synch/mutex/fti/minicron_p_mutex | 0 | 0 |
→˓ 0 | 0 | 0 |
| wait/synch/mutex/fti/queue_result_mutex | 0 | 0 |
→˓ 0 | 0 | 0 |
| wait/synch/mutex/fti/tpool_lock_mutex | 0 | 0 |
→˓ 0 | 0 | 0 |
| wait/synch/mutex/fti/workset_lock_mutex | 0 | 0 |
→˓ 0 | 0 | 0 |
...
| wait/io/file/fti/tokudb_data_file | 30 | 179862410 |
→˓ 0 | 5995080 | 68488420 |
| wait/io/file/fti/tokudb_load_file | 0 | 0 |
→˓ 0 | 0 | 0 |
| wait/io/file/fti/tokudb_tmp_file | 0 | 0 |
→˓ 0 | 0 | 0 |
| wait/io/file/fti/tokudb_log_file | 1367 | 2925647870145 |
→˓ 0 | 2140195785 | 12013357720 |
+---+------------+----------------+-------------
→˓---+----------------+----------------+
71 rows in set (0.02 sec)

293

Part XI

Percona MyRocks

294

CHAPTER

SEVENTYONE

PERCONA MYROCKS INTRODUCTION

MyRocks is a storage engine for MySQL based on RocksDB, an embeddable, persistent key-value store. Percona
MyRocks is an implementation for Percona Server for MySQL.

The RocksDB store is based on the log-structured merge-tree (or LSM tree). It is optimized for fast storage and
combines outstanding space and write efficiency with acceptable read performance. As a result, MyRocks has the
following advantages compared to other storage engines, if your workload uses fast storage, such as SSD:

• Requires less storage space

• Provides more storage endurance

• Ensures better IO capacity

Percona MyRocks Installation Guide

Percona MyRocks is distributed as a separate package that can be enabled as a plugin for Percona Server for MySQL
8.0 and later versions.

Note: File formats across different MyRocks variants may not be compatible. Percona Server for MySQL supports
only Percona MyRocks. Migrating from one variant to another requires a logical data dump and reload.

• Installing Percona MyRocks

• Removing Percona MyRocks

Installing Percona MyRocks

It is recommended to install Percona software from official repositories:

1. Configure Percona repositories as described in Percona Software Repositories Documentation.

2. Install Percona MyRocks using the corresponding package manager:

• For Debian or Ubuntu:

$ sudo apt-get install percona-server-rocksdb

• For RHEL or CentOS:

295

http://myrocks.io
https://www.mysql.com
http://rocksdb.org/
https://www.percona.com/software/percona-server
https://www.percona.com/doc/percona-repo-config/index.html

Percona Server Documentation, Release 8.0.18-9

$ sudo yum install percona-server-rocksdb

After you install the Percona MyRocks package, you should see the following output:

* This release of |Percona Server| is distributed with RocksDB storage engine.

* Run the following script to enable the RocksDB storage engine in Percona Server:

$ ps-admin --enable-rocksdb -u <mysql_admin_user> -p[mysql_admin_pass] [-S
→˓<socket>] [-h <host> -P <port>]

Run the ps-admin script as system root user or with sudo and provide the MySQL root user credentials to properly
enable the RocksDB (MyRocks) storage engine:

$ sudo ps-admin --enable-rocksdb -u root -pPassw0rd

Checking if RocksDB plugin is available for installation ...
INFO: ha_rocksdb.so library for RocksDB found at /usr/lib64/mysql/plugin/ha_rocksdb.
→˓so.

Checking RocksDB engine plugin status...
INFO: RocksDB engine plugin is not installed.

Installing RocksDB engine...
INFO: Successfully installed RocksDB engine plugin.

Note: When you use the ps-admin script to enable Percona MyRocks, it performs the following:

• Disables Transparent huge pages

• Installs and enables the RocksDB plugin

If the script returns no errors, Percona MyRocks should be successfully enabled on the server. You can verify it as
follows:

mysql> SHOW ENGINES;
+---------+---------+---
→˓-----------+--------------+------+------------+
| Engine | Support | Comment
→˓ | Transactions | XA | Savepoints |
+---------+---------+---
→˓-----------+--------------+------+------------+
| ROCKSDB | YES | RocksDB storage engine
→˓ | YES | YES | YES |
...
| InnoDB | DEFAULT | Percona-XtraDB, Supports transactions, row-level locking, and
→˓foreign keys | YES | YES | YES |
+---------+---------+---
→˓-----------+--------------+------+------------+
10 rows in set (0.00 sec)

Note that the RocksDB engine is not set to be default, new tables will still be created using the InnoDB (XtraDB)
storage engine. To make RocksDB storage engine default, set default-storage-engine=rocksdb in the
[mysqld] section of my.cnf and restart Percona Server for MySQL.

Alternatively, you can add ENGINE=RocksDB after the CREATE TABLE statement for every table that you create.

71.1. Percona MyRocks Installation Guide 296

Percona Server Documentation, Release 8.0.18-9

Removing Percona MyRocks

It will not be possible to access tables created using the RocksDB engine with another storage engine after you remove
Percona MyRocks. If you need this data, alter the tables to another storage engine. For example, to alter the City
table to InnoDB, run the following:

mysql> ALTER TABLE City ENGINE=InnoDB;

To disable and uninstall the RocksDB engine plugins, use the ps-admin script as follows:

$ sudo ps-admin --disable-rocksdb -u root -pPassw0rd

Checking RocksDB engine plugin status...
INFO: RocksDB engine plugin is installed.

Uninstalling RocksDB engine plugin...
INFO: Successfully uninstalled RocksDB engine plugin.

After the engine plugins have been uninstalled, remove the Percona MyRocks package:

• For Debian or Ubuntu:

$ sudo apt-get remove percona-server-rocksdb-8.0

• For RHEL or CentOS:

$ sudo yum remove percona-server-rocksdb-80.x86_64

Finally, remove all the MyRocks Server Variables from the configuration file (my.cnf) and restart Percona Server for
MySQL.

MyRocks Limitations

The MyRocks storage engine lacks the following features compared to InnoDB:

• Online DDL

• ALTER TABLE ... EXCHANGE PARTITION

• SAVEPOINT

• Transportable tablespace

• Foreign keys

• Spatial indexes

• Fulltext indexes

• Gap locks

• Group Replication

• Partial Update of LOB in InnoDB

You should also consider the following:

• *_bin (e.g. latin1_bin) or binary collation should be used on CHAR and VARCHAR indexed columns. By
default, MyRocks prevents creating indexes with non-binary collations (including latin1). You can optionally
use it by setting rocksdb_strict_collation_exceptions to t1 (table names with regex format), but

71.2. MyRocks Limitations 297

https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-management-exchange.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transportable-tablespace-examples.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/8.0/en/using-spatial-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-index.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html#innodb-gap-locks
https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://mysqlserverteam.com/mysql-8-0-optimizing-small-partial-update-of-lob-in-innodb/

Percona Server Documentation, Release 8.0.18-9

non-binary covering indexes other than latin1 (excluding german1) still require a primary key lookup to
return the CHAR or VARCHAR column.

• Either ORDER BY DESC or ORDER BY ASC is slow. This is because of “Prefix Key Encoding” feature in
RocksDB. See http://www.slideshare.net/matsunobu/myrocks-deep-dive/58 for details. By default, ascending
scan is faster and descending scan is slower. If the “reverse column family” is configured, then descending
scan will be faster and ascending scan will be slower. Note that InnoDB also imposes a cost when the index is
scanned in the opposite order.

• MyRocks does not support operating as either a master or a slave in any replication topology that is not exclu-
sively row-based. Statement-based and mixed-format binary logging is not supported. For more information,
see Replication Formats.

• As of 8.0.17, InnoDB supports multi-valued indexes. MyRocks does not support this feature.

• As of 8.0.17, InnoDB supports the use of the Clone Plugin and the Clone Plugin API. MyRocks tables do not
support either these features.

• When converting from large MyISAM/InnoDB tables, either by using the ALTER or INSERT INTO SELECT
statements it’s recommended that you check the Data loading documentation and create MyRocks tables as
below (in case the table is sufficiently big it will cause the server to consume all the memory and then be
terminated by the OOM killer):

SET session sql_log_bin=0;
SET session rocksdb_bulk_load=1;
ALTER TABLE large_myisam_table ENGINE=RocksDB;
SET session rocksdb_bulk_load=0;

.. warning::

If you are loading large data without enabling :variable:`rocksdb_bulk_load`
or :variable:`rocksdb_commit_in_the_middle`, please make sure transaction
size is small enough. All modifications of the ongoing transactions are
kept in memory.

• The‘XA protocol <https://dev.mysql.com/doc/refman/8.0/en/xa.html>‘_ support, which allows distributed trans-
actions combining multiple separate transactional resources, is an experimental feature in MyRocks: the imple-
mentation is less tested, it may lack some functionality and be not as stable as in case of InnoDB.

• With partitioned tables that use the TokuDB or MyRocks storage engine, the upgrade only works with native
partitioning.

See also:

MySQL Documentation: Preparing Your Installation for Upgrade https://dev.mysql.com/doc/refman/8.0/
en/upgrade-prerequisites.html

• Percona Server for MySQL 8.0 and Unicode 9.0.0 standards have defined a change in the handling of binary
collations. These collations are handled as NO PAD, trailing spaces are included in key comparisons. A binary
collation comparison may result in two unique rows inserted and does not generate a‘DUP_ENTRY‘ error.
MyRocks key encoding and comparison does not account for this character set attribute.

• In version 8.0.13-3 and later, MyRocks does not support explict DEFAULT value expressions.

• Percona Server for MySQL 8.0.16 does not support encryption for the MyRocks storage engine. At this time,
during an ALTER TABLE operation, MyRocks mistakenly detects all InnoDB tables as encrypted. Therefore,
any attempt to ALTER an InnoDB table to MyRocks fails.

As a workaround, we recommend a manual move of the table. The following steps are the same as the ALTER
TABLE ... ENGINE=... process:

• Use SHOW CREATE TABLE ... to return the InnoDB table definition.

71.2. MyRocks Limitations 298

http://www.slideshare.net/matsunobu/myrocks-deep-dive/58
https://dev.mysql.com/doc/refman/8.0/en/replication-formats.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html#create-index-multi-valued
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/xa.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/data-type-defaults.html

Percona Server Documentation, Release 8.0.18-9

• With the table definition as the source, perform a CREATE TABLE ... ENGINE=RocksDB.

• In the new table, use INSERT INTO <new table> SELECT * FROM <old table>.

Note: With MyRocks and with large tables, it is recommended to set the session variable
rocksdb_bulk_load=1 during the load to prevent running out of memory. This recommendation is be-
cause of the MyRocks large transaction limitation.

See also:

MyRocks Data Loading https://www.percona.com/doc/percona-server/8.0/myrocks/data_loading.html

Differences between Percona MyRocks and Facebook MyRocks

The original MyRocks was developed by Facebook and works with their implementation of MySQL. Percona MyRocks
is a branch of MyRocks for Percona Server for MySQL and includes the following differences from the original
implementation:

• The behavior of the START TRANSACTION WITH CONSISTENT SNAPSHOT statement depends on the
transaction isolation level.

Storage EngineTransaction isolation level
READ COMMITTED REPEATABLE READ

InnoDB Success Success
Facebook
MyRocks

Fail Success (MyRocks engine only; read-only, as
all MyRocks engine snapshots)

Percona
MyRocks

Fail with any DML which would violate the
read-only snapshot constraint

Success (read-only snapshots independent of
the engines in use)

• Percona MyRocks includes the lz4 and zstd statically linked libraries.

MyRocks Column Families

MyRocks stores all data in a single server instance as a collection of key-value pairs within the log structured merge
tree data structure. This is a flat data structure that requires that keys be unique throughout the whole data structure.
MyRocks incorporates table IDs and index IDs into the keys.

Each key-value pair belongs to a column family. It is a data structure similar in concept to tablespaces. Each column
family has distinct attributes, such as block size, compression, sort order, and MemTable. Utilizing these attributes,
MyRocks effectively uses column families to store indexes.

On system initialization, MyRocks creates two column families. The __system__ column family is reserved by
MyRocks; no user created tables or indexes belong to this column family. The default column family is the location
for the indexes created by the user when you a column family is not explicitly specified.

To be able to apply a custom block size, compression, or sort order you need to create an index in its own column
family using the COMMENT clause.

The following example demonstrates how to place the PRIMARY KEY into the cf1 column family and the index kb
— into the cf2 column family.

CREATE TABLE t1 (a INT, b INT,
PRIMARY KEY(a) COMMENT 'cfname=cf1',
KEY kb(b) COMMENT 'cf_name=cf2')
ENGINE=ROCKSDB;

71.3. Differences between Percona MyRocks and Facebook MyRocks 299

https://www.percona.com/doc/percona-server/8.0/myrocks/data_loading.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html

Percona Server Documentation, Release 8.0.18-9

The column family name is specified as the value of the cf_name attribute at the beginning of the COMMENT clause.
The name is case sensitive and may not contain leading or trailing whitespace characters.

The COMMENT clause may contain other information following the semicolon character (;) after the column family
name: ‘cfname=foo; special column family’. If the column family cannot be created, MyRocks uses the default column
family.

Important: The cf_name attribute must be all lowercase. Place the equals sign (=) in front of the column family
name without any whitespace on both sides of it.

COMMENT 'cfname=Foo; Creating the Foo family name'

See also:

Using COMMENT to Specify Column Family Names with Multiple Table Partitions https://github.com/facebook/
mysql-5.6/wiki/Column-Families-on-Partitioned-Tables.

Controlling the number of column families to reduce memory consumption

Each column family has its own MemTable. It is an in-memory data structure where data are written to before they are
flushed to SST files. The queries also use MemTables first. To reduce the overall memory consumption, the number
of active column families should stay low.

With the option rocksdb_no_create_column_family set to true, the COMMENT clause will not treat cf_name
as a special token; it will not be possible to create column families using the COMMENT clause.

Column Family Options

On startup, the server applies the rocksdb_default_cf_options option to all existing column families. You
may use the rocksdb_override_cf_options option to override the value of any attribute of a chosen column
family.

Note that the options rocksdb_default_cf_options and rocksdb_override_cf_options are read-
only at runtime.

At runtime, use the the rocksdb_update_cf_options option to update some column family attributes.

Important: Changes made to a column families using the rocksdb_update_cf_options option only persist
until the server is restarted.

MyRocks Server Variables

The MyRocks server variables expose configuration of the underlying RocksDB engine. There several ways to set
these variables:

• For production deployments, you should have all variables defined in the configuration file.

• Dynamic variables can be changed at runtime using the SET statement.

71.5. MyRocks Server Variables 300

https://github.com/facebook/mysql-5.6/wiki/Column-Families-on-Partitioned-Tables
https://github.com/facebook/mysql-5.6/wiki/Column-Families-on-Partitioned-Tables

Percona Server Documentation, Release 8.0.18-9

• If you want to test things out, you can set some of the variables when starting mysqld using corresponding
command-line options.

If a variable was not set in either the configuration file or as a command-line option, the default value is used.

Also, all variables can exist in one or both of the following scopes:

• Global scope defines how the variable affects overall server operation.

• Session scope defines how the variable affects operation for individual client connections.

Name Command
Line

Dynamic Scope

rocksdb_access_hint_on_compaction_start Yes No Global
rocksdb_advise_random_on_open Yes No Global
rocksdb_allow_concurrent_memtable_write Yes No Global
rocksdb_allow_to_start_after_corruption Yes No Global
rocksdb_allow_mmap_reads Yes No Global
rocksdb_allow_mmap_writes Yes No Global
rocksdb_base_background_compactions Yes No Global
rocksdb_block_cache_size Yes Yes Global
rocksdb_block_restart_interval Yes No Global
rocksdb_block_size Yes No Global
rocksdb_block_size_deviation Yes No Global
rocksdb_bulk_load Yes Yes Global, Ses-

sion
rocksdb_bulk_load_allow_unsorted Yes Yes Global, Ses-

sion
rocksdb_bulk_load_size Yes Yes Global
rocksdb_bytes_per_sync Yes Yes Global
rocksdb_cache_index_and_filter_blocks Yes No Global
rocksdb_checksums_pct Yes Yes Global, Ses-

sion
rocksdb_collect_sst_properties Yes No Global
rocksdb_commit_in_the_middle Yes Yes Global
rocksdb_compact_cf Yes Yes Global
rocksdb_compaction_readahead_size Yes Yes Global
rocksdb_compaction_sequential_deletes Yes Yes Global
rocksdb_compaction_sequential_deletes_count_sdYes Yes Global
rocksdb_compaction_sequential_deletes_file_sizeYes Yes Global
rocksdb_compaction_sequential_deletes_window Yes Yes Global
rocksdb_concurrent_prepare Yes No Global
rocksdb_create_checkpoint Yes Yes Global
rocksdb_create_if_missing Yes No Global
rocksdb_create_missing_column_families Yes No Global
rocksdb_create_temporary_checkpoint Yes Yes Session
rocksdb_datadir Yes No Global
rocksdb_db_write_buffer_size Yes No Global
rocksdb_deadlock_detect Yes Yes Global, Ses-

sion
rocksdb_deadlock_detect_depth Yes Yes Global, Ses-

sion
rocksdb_debug_optimizer_no_zero_cardinality Yes Yes Global, Ses-

sion
Continued on next page

71.5. MyRocks Server Variables 301

Percona Server Documentation, Release 8.0.18-9

Table 71.1 – continued from previous page
Name Command

Line
Dynamic Scope

rocksdb_debug_ttl_ignore_pk Yes Yes Global
rocksdb_debug_ttl_read_filter_ts Yes Yes Global
rocksdb_debug_ttl_rec_ts Yes Yes Global
rocksdb_debug_ttl_snapshot_ts Yes Yes Global
rocksdb_default_cf_options Yes No Global
rocksdb_delayed_write_rate Yes Yes Global
rocksdb_delete_obsolete_files_period_micros Yes No Global
rocksdb_disable_file_deletions Yes Yes Session
rocksdb_enable_bulk_load_api Yes No Global
rocksdb_enable_ttl Yes No Global
rocksdb_enable_ttl_read_filtering Yes Yes Global
rocksdb_enable_thread_tracking Yes No Global
rocksdb_enable_write_thread_adaptive_yield Yes No Global
rocksdb_error_if_exists Yes No Global
rocksdb_flush_log_at_trx_commit Yes Yes Global, Ses-

sion
rocksdb_flush_memtable_on_analyze Yes Yes Global, Ses-

sion
rocksdb_force_compute_memtable_stats Yes Yes Global
rocksdb_force_compute_memtable_stats_cachetimeYes Yes Global
rocksdb_force_flush_memtable_and_lzero_now Yes Yes Global
rocksdb_force_flush_memtable_now Yes Yes Global
rocksdb_force_index_records_in_range Yes Yes Global, Ses-

sion
rocksdb_hash_index_allow_collision Yes No Global
rocksdb_ignore_unknown_options Yes No Global
rocksdb_index_type Yes No Global
rocksdb_info_log_level Yes Yes Global
rocksdb_is_fd_close_on_exec Yes No Global
rocksdb_keep_log_file_num Yes No Global
rocksdb_large_prefix Yes Yes Global
rocksdb_lock_scanned_rows Yes Yes Global, Ses-

sion
rocksdb_lock_wait_timeout Yes Yes Global, Ses-

sion
rocksdb_log_file_time_to_roll Yes No Global
rocksdb_manifest_preallocation_size Yes No Global
rocksdb_manual_wal_flush Yes No Global
rocksdb_max_background_compactions Yes Yes Global
rocksdb_max_background_flushes Yes No Global
rocksdb_max_background_jobs Yes Yes Global
rocksdb_max_latest_deadlocks Yes Yes Global
rocksdb_max_log_file_size Yes No Global
rocksdb_max_manifest_file_size Yes No Global
rocksdb_max_open_files Yes No Global
rocksdb_max_row_locks Yes Yes Global, Ses-

sion
rocksdb_max_subcompactions Yes No Global

Continued on next page

71.5. MyRocks Server Variables 302

Percona Server Documentation, Release 8.0.18-9

Table 71.1 – continued from previous page
Name Command

Line
Dynamic Scope

rocksdb_max_total_wal_size Yes No Global
rocksdb_merge_buf_size Yes Yes Global, Ses-

sion
rocksdb_merge_combine_read_size Yes Yes Global, Ses-

sion
rocksdb_merge_tmp_file_removal_delay_ms Yes Yes Global, Ses-

sion
rocksdb_new_table_reader_for_compaction_inputsYes No Global
rocksdb_no_block_cache Yes No Global
rocksdb_no_create_column_family Yes No Global
rocksdb_override_cf_options Yes No Global
rocksdb_paranoid_checks Yes No Global
rocksdb_pause_background_work Yes Yes Global
rocksdb_perf_context_level Yes Yes Global, Ses-

sion
rocksdb_persistent_cache_path Yes No Global
rocksdb_persistent_cache_size_mb Yes No Global, Ses-

sion
rocksdb_pin_l0_filter_and_index_blocks_in_cacheYes No Global
rocksdb_print_snapshot_conflict_queries Yes Yes Global
rocksdb_rate_limiter_bytes_per_sec Yes Yes Global
rocksdb_read_free_rpl_tables Yes Yes Global, Ses-

sion
rocksdb_records_in_range Yes Yes Global, Ses-

sion
rocksdb_reset_stats Yes Yes Global
rocksdb_rpl_skip_tx_api Yes Yes Global
rocksdb_seconds_between_stat_computes Yes Yes Global
rocksdb_signal_drop_index_thread Yes Yes Global
rocksdb_sim_cache_size Yes Yes Global
rocksdb_skip_bloom_filter_on_read Yes Yes Global, Ses-

sion
rocksdb_skip_fill_cache Yes Yes Global, Ses-

sion
rocksdb_sst_mgr_rate_bytes_per_sec Yes No Global
rocksdb_stats_dump_period_sec Yes No Global
rocksdb_store_row_debug_checksums Yes Yes Global, Ses-

sion
rocksdb_strict_collation_check Yes Yes Global
rocksdb_strict_collation_exceptions Yes Yes Global
rocksdb_table_cache_numshardbits Yes No Global
rocksdb_table_stats_sampling_pct Yes Yes Global
rocksdb_tmpdir Yes Yes Global, Ses-

sion
rocksdb_two_write_queues Yes No Global
rocksdb_trace_sst_api Yes Yes Global, Ses-

sion
Continued on next page

71.5. MyRocks Server Variables 303

Percona Server Documentation, Release 8.0.18-9

Table 71.1 – continued from previous page
Name Command

Line
Dynamic Scope

rocksdb_unsafe_for_binlog Yes Yes Global, Ses-
sion

rocksdb_update_cf_options Yes Yes Global
rocksdb_use_adaptive_mutex Yes No Global
rocksdb_use_direct_io_for_flush_and_compactionYes No Global
rocksdb_use_direct_reads Yes No Global
rocksdb_use_fsync Yes No Global
rocksdb_validate_tables Yes No Global
rocksdb_verify_row_debug_checksums Yes Yes Global, Ses-

sion
rocksdb_wal_bytes_per_sync Yes Yes Global
rocksdb_wal_dir Yes No Global
rocksdb_wal_recovery_mode Yes Yes Global
rocksdb_wal_size_limit_mb Yes No Global
rocksdb_wal_ttl_seconds Yes No Global
rocksdb_whole_key_filtering Yes No Global
rocksdb_write_batch_max_bytes Yes Yes Global, Ses-

sion
rocksdb_write_disable_wal Yes Yes Global, Ses-

sion
rocksdb_write_ignore_missing_column_families Yes Yes Global, Ses-

sion

variable rocksdb_access_hint_on_compaction_start

Command Line --rocksdb-access-hint-on-compaction-start

Dynamic No

Scope Global

Variable Type String or Numeric

Default Value NORMAL or 1

Specifies the file access pattern once a compaction is started, applied to all input files of a compaction. Possible values
are:

• 0 = NONE

• 1 = NORMAL (default)

• 2 = SEQUENTIAL

• 3 = WILLNEED

variable rocksdb_advise_random_on_open

Command Line --rocksdb-advise-random-on-open

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

71.5. MyRocks Server Variables 304

Percona Server Documentation, Release 8.0.18-9

Specifies whether to hint the underlying file system that the file access pattern is random, when a data file is opened.
Enabled by default.

variable rocksdb_allow_concurrent_memtable_write

Command Line --rocksdb-allow-concurrent-memtable-write

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to allow multiple writers to update memtables in parallel. Disabled by default.

variable rocksdb_allow_to_start_after_corruption

Command Line --rocksdb_allow_to_start_after_corruption

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to allow server to restart once MyRocks reported data corruption. Disabled by default.

Once corruption is detected server writes marker file (named ROCKSDB_CORRUPTED) in the data directory and
aborts. If marker file exists, then mysqld exits on startup with an error message. The restart failure will continue until
the problem is solved or until mysqld is started with this variable turned on in the command line.

Note: Not all memtables support concurrent writes.

variable rocksdb_allow_mmap_reads

Command Line --rocksdb-allow-mmap-reads

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to allow the OS to map a data file into memory for reads. Disabled by default. If you enable this,
make sure that rocksdb_use_direct_reads is disabled.

variable rocksdb_allow_mmap_writes

Command Line --rocksdb-allow-mmap-writes

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to allow the OS to map a data file into memory for writes. Disabled by default.

variable rocksdb_base_background_compactions

71.5. MyRocks Server Variables 305

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-base-background-compactions

Dynamic No

Scope Global

Variable Type Numeric

Default Value 2

Specifies the suggested number of concurrent background compaction jobs, submitted to the default LOW
priority thread pool in RocksDB. Default is 1. Allowed range of values is from -1 to 64. Maxi-
mum depends on the rocksdb_max_background_compactions variable. This variable was replaced
with rocksdb_max_background_jobs, which automatically decides how many threads to allocate towards
flush/compaction.

variable rocksdb_block_cache_size

Command Line --rocksdb-block-cache-size

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 536870912

Specifies the size of the LRU block cache for RocksDB. This memory is reserved for the block cache, which is in
addition to any filesystem caching that may occur.

Minimum value is 1024, because that’s the size of one block.

Default value is 536870912.

Maximum value is 9223372036854775807.

variable rocksdb_block_restart_interval

Command Line --rocksdb-block-restart-interval

Dynamic No

Scope Global

Variable Type Numeric

Default Value 16

Specifies the number of keys for each set of delta encoded data. Default value is 16. Allowed range is from 1 to
2147483647.

variable rocksdb_block_size

Command Line --rocksdb-block-size

Dynamic No

Scope Global

Variable Type Numeric

Default Value 16 KB

Specifies the size of the data block for reading RocksDB data files. The default value is 16 KB. The allowed range is
from 1024 to 18446744073709551615 bytes.

variable rocksdb_block_size_deviation

71.5. MyRocks Server Variables 306

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-block-size-deviation

Dynamic No

Scope Global

Variable Type Numeric

Default Value 10

Specifies the threshold for free space allowed in a data block (see rocksdb_block_size). If there is less space
remaining, close the block (and write to new block). Default value is 10, meaning that the block is not closed until
there is less than 10 bits of free space remaining.

Allowed range is from 1 to 2147483647.

variable rocksdb_bulk_load_allow_unsorted

Command Line --rocksdb-bulk-load-allow-unsorted

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

By default, the bulk loader requires its input to be sorted in the primary key order. If enabled, unsorted inputs are
allowed too, which are then sorted by the bulkloader itself, at a performance penalty.

variable rocksdb_bulk_load

Command Line --rocksdb-bulk-load

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether to use bulk load: MyRocks will ignore checking keys for uniqueness or acquiring locks during
transactions. Disabled by default. Enable this only if you are certain that there are no row conflicts, for example, when
setting up a new MyRocks instance from a MySQL dump.

Enabling this variable will also enable the rocksdb_commit_in_the_middle variable.

variable rocksdb_bulk_load_size

Command Line --rocksdb-bulk-load-size

Dynamic Yes

Scope Global. Session

Variable Type Numeric

Default Value 1000

Specifies the number of keys to accumulate before committing them to the storage engine when bulk load is enabled
(see rocksdb_bulk_load). Default value is 1000, which means that a batch can contain up to 1000 records
before they are implicitly committed. Allowed range is from 1 to 1073741824.

variable rocksdb_bytes_per_sync

Command Line --rocksdb-bytes-per-sync

71.5. MyRocks Server Variables 307

Percona Server Documentation, Release 8.0.18-9

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

Specifies how often should the OS sync files to disk as they are being written, asynchronously, in the background.
This operation can be used to smooth out write I/O over time. Default value is 0 meaning that files are never synced.
Allowed range is up to 18446744073709551615.

variable rocksdb_cache_index_and_filter_blocks

Command Line --rocksdb-cache-index-and-filter-blocks

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether RocksDB should use the block cache for caching the index and bloomfilter data blocks from each
data file. Enabled by default. If you disable this feature, RocksDB will allocate additional memory to maintain these
data blocks.

variable rocksdb_checksums_pct

Command Line --rocksdb-checksums-pct

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 100

Specifies the percentage of rows to be checksummed. Default value is 100 (checksum all rows). Allowed range is
from 0 to 100.

variable rocksdb_collect_sst_properties

Command Line --rocksdb-collect-sst-properties

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether to collect statistics on each data file to improve optimizer behavior. Enabled by default.

variable rocksdb_commit_in_the_middle

Command Line --rocksdb-commit-in-the-middle

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

71.5. MyRocks Server Variables 308

Percona Server Documentation, Release 8.0.18-9

Specifies whether to commit rows implicitly when a batch contains more than the value of
rocksdb_bulk_load_size. This is disabled by default and will be enabled if rocksdb_bulk_load
is enabled.

variable rocksdb_compact_cf

Command Line --rocksdb-compact-cf

Dynamic Yes

Scope Global

Variable Type String

Default Value

Specifies the name of the column family to compact.

variable rocksdb_compaction_readahead_size

Command Line --rocksdb-compaction-readahead-size

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

Specifies the size of reads to perform ahead of compaction. Default value is 0. Set this to at least 2 megabytes
(16777216) when using MyRocks with spinning disks to ensure sequential reads instead of random. Maximum
allowed value is 18446744073709551615.

Note: If you set this variable to a non-zero value, rocksdb_new_table_reader_for_compaction_inputs
is enabled.

variable rocksdb_compaction_sequential_deletes

Command Line --rocksdb-compaction-sequential-deletes

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

Specifies the threshold to trigger compaction on a file if it has more than this number of sequential delete markers.
Default value is 0 meaning that compaction is not triggered regardless of the number of delete markers. Maximum
allowed value is 2000000 (two million delete markers).

Note: Depending on workload patterns, MyRocks can potentially maintain large numbers of delete markers, which
increases latency of queries. This compaction feature will reduce latency, but may also increase the MyRocks write
rate. Use this variable together with rocksdb_compaction_sequential_deletes_file_size to only
perform compaction on large files.

variable rocksdb_compaction_sequential_deletes_count_sd

Command Line --rocksdb-compaction-sequential-deletes-count-sd

Dynamic Yes

71.5. MyRocks Server Variables 309

Percona Server Documentation, Release 8.0.18-9

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to count single deletes as delete markers recognized by
rocksdb_compaction_sequential_deletes. Disabled by default.

variable rocksdb_compaction_sequential_deletes_file_size

Command Line --rocksdb-compaction-sequential-deletes-file-size

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

Specifies the minimum file size required to trigger compaction on it by
rocksdb_compaction_sequential_deletes. Default value is 0, meaning that compaction is triggered
regardless of file size. Allowed range is from -1 to 9223372036854775807.

variable rocksdb_compaction_sequential_deletes_window

Command Line --rocksdb-compaction-sequential-deletes-window

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

Specifies the size of the window for counting delete markers by rocksdb_compaction_sequential_deletes.
Default value is 0. Allowed range is up to 2000000 (two million).

variable rocksdb_concurrent_prepare

Command Line --rocksdb-concurrent_prepare

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

When enabled this variable allows/encourages threads that are using two-phase commit to prepare in parallel. This
variable was renamed in upstream to rocksdb_two_write_queues.

variable rocksdb_create_checkpoint

Command Line --rocksdb-create-checkpoint

Dynamic Yes

Scope Global

Variable Type String

Default Value

Specifies the directory where MyRocks should create a checkpoint. Empty by default.

variable rocksdb_create_if_missing

71.5. MyRocks Server Variables 310

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-create-if-missing

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether MyRocks should create its database if it does not exist. Enabled by default.

variable rocksdb_create_missing_column_families

Command Line --rocksdb-create-missing-column-families

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether MyRocks should create new column families if they do not exist. Disabled by default.

variable rocksdb_create_temporary_checkpoint

Command Line --rocksdb-create-temporary-checkpoint

Dynamic Yes

Scope Session

Variable Type String

This variable has been implemented in Percona Server for MySQL 8.0.15-6. When specified it will create a
temporary RocksDB ‘checkpoint’ or ‘snapshot’ in the datadir. If the session ends with an existing checkpoint, or if
the variable is reset to another value, the checkpoint will get removed. This variable should be used by backup tools.
Prolonged use or other misuse can have serious side effects to the server instance.

variable rocksdb_datadir

Command Line --rocksdb-datadir

Dynamic No

Scope Global

Variable Type String

Default Value ./.rocksdb

Specifies the location of the MyRocks data directory. By default, it is created in the current working directory.

variable rocksdb_db_write_buffer_size

Command Line --rocksdb-db-write-buffer-size

Dynamic No

Scope Global

Variable Type Numeric

Default Value 0

Specifies the size of the memtable used to store writes in MyRocks. This is the size per column family. When
this size is reached, the memtable is flushed to persistent media. Default value is 0. Allowed range is up to
18446744073709551615.

71.5. MyRocks Server Variables 311

https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir

Percona Server Documentation, Release 8.0.18-9

variable rocksdb_deadlock_detect

Command Line --rocksdb-deadlock-detect

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether MyRocks should detect deadlocks. Disabled by default.

variable rocksdb_deadlock_detect_depth

Command Line --rocksdb-deadlock-detect-depth

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 50

Specifies the number of transactions deadlock detection will traverse through before assuming deadlock.

variable rocksdb_debug_optimizer_no_zero_cardinality

Command Line --rocksdb-debug-optimizer-no-zero-cardinality

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether MyRocks should prevent zero cardinality by always overriding it with some value.

variable rocksdb_debug_ttl_ignore_pk

Command Line --rocksdb-debug-ttl-ignore-pk

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

For debugging purposes only. If true, compaction filtering will not occur on Primary Key TTL data. This variable is a
no-op in non-debug builds.

variable rocksdb_debug_ttl_read_filter_ts

Command Line --rocksdb_debug-ttl-read-filter-ts

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

For debugging purposes only. Overrides the TTL read filtering time to time + debug_ttl_read_filter_ts. A
value of 0 denotes that the variable is not set. This variable is a no-op in non-debug builds.

71.5. MyRocks Server Variables 312

Percona Server Documentation, Release 8.0.18-9

variable rocksdb_debug_ttl_rec_ts

Command Line --rocksdb-debug-ttl-rec-ts

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

For debugging purposes only. Overrides the TTL of records to now() + debug_ttl_rec_ts. The value can be
+/- to simulate a record inserted in the past vs a record inserted in the “future”. A value of 0 denotes that the variable
is not set. This variable is a no-op in non-debug builds.

variable rocksdb_debug_ttl_snapshot_ts

Command Line --rocksdb_debug_ttl_ignore_pk

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

For debugging purposes only. Sets the snapshot during compaction to now() +
rocksdb_debug_set_ttl_snapshot_ts. The value can be +/- to simulate a snapshot in the past vs a
snapshot created in the “future”. A value of 0 denotes that the variable is not set. This variable is a no-op in non-debug
builds.

variable rocksdb_default_cf_options

Command Line --rocksdb-default-cf-options

Dynamic No

Scope Global

Variable Type String

Default Value

block_based_table_factory= { cache_index_and_filter_blocks=1;
filter_policy=bloomfilter:10:false;
whole_key_filtering=1};

level_compaction_dynamic_level_bytes=true;
optimize_filters_for_hits=true;
compaction_pri=kMinOverlappingRatio;
compression=kLZ4Compression;
bottommost_compression=kLZ4Compression;

Specifies the default column family options for MyRocks. On startup, the server applies this option to all existing
column families. This option is read-only at runtime.

variable rocksdb_delayed_write_rate

Command Line --rocksdb-delayed-write-rate

Dynamic Yes

71.5. MyRocks Server Variables 313

Percona Server Documentation, Release 8.0.18-9

Scope Global

Variable Type Numeric

Default Value 16777216

Specifies the write rate in bytes per second, which should be used if MyRocks hits a soft limit or threshold for writes.
Default value is 16777216 (16 MB/sec). Allowed range is from 0 to 18446744073709551615.

variable rocksdb_delete_obsolete_files_period_micros

Command Line --rocksdb-delete-obsolete-files-period-micros

Dynamic No

Scope Global

Variable Type Numeric

Default Value 21600000000

Specifies the period in microseconds to delete obsolete files regardless of files removed during compaction. Default
value is 21600000000 (6 hours). Allowed range is up to 9223372036854775807.

variable rocksdb_disable_file_deletions

Command Line --rocksdb-disable-file-deletions

Dynamic Yes

Scope Session

Variable Type Boolean

Default Value OFF

This variable has been implemented in Percona Server for MySQL 8.0.15-6. It allows a client to temporarily
disable RocksDB deletion of old WAL and .sst files for the purposes of making a consistent backup. If the client
session terminates for any reason after disabling deletions and has not re-enabled deletions, they will be explicitly
re-enabled. This variable should be used by backup tools. Prolonged use or other misuse can have serious side effects
to the server instance.

variable rocksdb_enable_bulk_load_api

Command Line --rocksdb-enable-bulk-load-api

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether to use the SSTFileWriter feature for bulk loading, This feature bypasses the memtable, but
requires keys to be inserted into the table in either ascending or descending order. Enabled by default. If disabled,
bulk loading uses the normal write path via the memtable and does not require keys to be inserted in any order.

variable rocksdb_enable_ttl

Command Line --rocksdb-enable-ttl

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

71.5. MyRocks Server Variables 314

Percona Server Documentation, Release 8.0.18-9

Specifies whether to keep expired TTL records during compaction. Enabled by default. If disabled, expired TTL
records will be dropped during compaction.

variable rocksdb_enable_ttl_read_filtering

Command Line --rocksdb-enable-ttl-read-filtering

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value ON

For tables with TTL, expired records are skipped/filtered out during processing and in query results. Disabling this
will allow these records to be seen, but as a result rows may disappear in the middle of transactions as they are dropped
during compaction. Use with caution.

variable rocksdb_enable_thread_tracking

Command Line --rocksdb-enable-thread-tracking

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to enable tracking the status of threads accessing the database. Disabled by default. If enabled,
thread status will be available via GetThreadList().

variable rocksdb_enable_write_thread_adaptive_yield

Command Line --rocksdb-enable-write-thread-adaptive-yield

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether the MyRocks write batch group leader should wait up to the maximum allowed time before blocking
on a mutex. Disabled by default. Enable it to increase throughput for concurrent workloads.

variable rocksdb_error_if_exists

Command Line --rocksdb-error-if-exists

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to report an error when a database already exists. Disabled by default.

variable rocksdb_flush_log_at_trx_commit

Command Line --rocksdb-flush-log-at-trx-commit

Dynamic Yes

Scope Global, Session

71.5. MyRocks Server Variables 315

Percona Server Documentation, Release 8.0.18-9

Variable Type Numeric

Default Value 1

Specifies whether to sync on every transaction commit, similar to innodb_flush_log_at_trx_commit. En-
abled by default, which ensures ACID compliance.

Possible values:

• 0: Do not sync on transaction commit. This provides better performance, but may lead to data inconsistency in
case of a crash.

• 1: Sync on every transaction commit. This is set by default and recommended as it ensures data consistency,
but reduces performance.

• 2: Sync every second.

variable rocksdb_flush_memtable_on_analyze

Command Line --rocksdb-flush-memtable-on-analyze

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value ON

Specifies whether to flush the memtable when running ANALYZE on a table. Enabled by default. This ensures accurate
cardinality by including data in the memtable for calculating stats.

variable rocksdb_force_compute_memtable_stats

Command Line --rocksdb-force-compute-memtable-stats

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether data in the memtables should be included for calculating index statistics used by the query optimizer.
Enabled by default. This provides better accuracy, but may reduce performance.

variable rocksdb_force_compute_memtable_stats_cachetime

Command Line --rocksdb-force-compute-memtable-stats-cachetime

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 60000000

Specifies for how long the cached value of memtable statistics should be used instead of computing it every time
during the query plan analysis.

variable rocksdb_force_flush_memtable_and_lzero_now

Command Line --rocksdb-force-flush-memtable-and-lzero-now

Dynamic Yes

Scope Global

71.5. MyRocks Server Variables 316

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Percona Server Documentation, Release 8.0.18-9

Variable Type Boolean

Default Value OFF

Works similar to force_flush_memtable_now but also flushes all L0 files.

variable rocksdb_force_flush_memtable_now

Command Line --rocksdb-force-flush-memtable-now

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

Forces MyRocks to immediately flush all memtables out to data files.

Warning: Use with caution! Write requests will be blocked until all memtables are flushed.

variable rocksdb_force_index_records_in_range

Command Line --rocksdb-force-index-records-in-range

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 1

Specifies the value used to override the number of rows returned to query optimizer when FORCE INDEX is used.
Default value is 1. Allowed range is from 0 to 2147483647. Set to 0 if you do not want to override the returned
value.

variable rocksdb_hash_index_allow_collision

Command Line --rocksdb-hash-index-allow-collision

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether hash collisions are allowed. Enabled by default, which uses less memory. If disabled, full prefix is
stored to prevent hash collisions.

variable rocksdb_ignore_unknown_options

Command Line --rocksdb-ignore-unknown-options

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

When enabled, it allows RocksDB to receive unknown options and not exit.

variable rocksdb_index_type

71.5. MyRocks Server Variables 317

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-index-type

Dynamic No

Scope Global

Variable Type Enum

Default Value kBinarySearch

Specifies the type of indexing used by MyRocks:

• kBinarySearch: Binary search (default).

• kHashSearch: Hash search.

variable rocksdb_info_log_level

Command Line --rocksdb-info-log-level

Dynamic Yes

Scope Global

Variable Type Enum

Default Value error_level

Specifies the level for filtering messages written by MyRocks to the mysqld log.

• debug_level: Maximum logging (everything including debugging log messages)

• info_level

• warn_level

• error_level (default)

• fatal_level: Minimum logging (only fatal error messages logged)

variable rocksdb_is_fd_close_on_exec

Command Line --rocksdb-is-fd-close-on-exec

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether child processes should inherit open file jandles. Enabled by default.

variable rocksdb_large_prefix

Command Line --rocksdb-large-prefix

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value TRUE

When enabled, this option allows index key prefixes longer than 767 bytes (up to 3072 bytes). This option mirrors the
innodb_large_prefix The values for rocksdb_large_prefix should be the same between master and slave.

71.5. MyRocks Server Variables 318

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_large_prefix

Percona Server Documentation, Release 8.0.18-9

Note: In version 8.0.16-7 and later, the default value is changed to TRUE.

variable rocksdb_keep_log_file_num

Command Line --rocksdb-keep-log-file-num

Dynamic No

Scope Global

Variable Type Numeric

Default Value 1000

Specifies the maximum number of info log files to keep. Default value is 1000. Allowed range is from 1 to
18446744073709551615.

variable rocksdb_lock_scanned_rows

Command Line --rocksdb-lock-scanned-rows

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether to hold the lock on rows that are scanned during UPDATE and not actually updated. Disabled by
default.

variable rocksdb_lock_wait_timeout

Command Line --rocksdb-lock-wait-timeout

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 1

Specifies the number of seconds MyRocks should wait to acquire a row lock before aborting the request. Default value
is 1. Allowed range is up to 1073741824.

variable rocksdb_log_file_time_to_roll

Command Line --rocksdb-log-file-time-to-roll

Dynamic No

Scope Global

Variable Type Numeric

Default Value 0

Specifies the period (in seconds) for rotating the info log files. Default value is 0, meaning that the log file is not
rotated. Allowed range is up to 18446744073709551615.

variable rocksdb_manifest_preallocation_size

Command Line --rocksdb-manifest-preallocation-size

Dynamic No

71.5. MyRocks Server Variables 319

Percona Server Documentation, Release 8.0.18-9

Scope Global

Variable Type Numeric

Default Value 0

Specifies the number of bytes to preallocate for the MANIFEST file used by MyRocks to store information about
column families, levels, active files, etc. Default value is 0. Allowed range is up to 18446744073709551615.

Note: A value of 4194304 (4 MB) is reasonable to reduce random I/O on XFS.

variable rocksdb_manual_wal_flush

Command Line --rocksdb-manual-wal-flush

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

This variable can be used to disable automatic/timed WAL flushing and instead rely on the application to do the
flushing.

variable rocksdb_max_background_compactions

Command Line --rocksdb-max-background-compactions

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 1

Specifies the maximum number of concurrent background compaction threads, submitted to the low-priority
thread pool. Default value is 1. Allowed range is up to 64. This variable has been replaced with
rocksdb_max_background_jobs, which automatically decides how many threads to allocate towards
flush/compaction.

Replaced with rocksdb_max_background_jobs

variable rocksdb_max_background_flushes

Command Line --rocksdb-max-background-flushes

Dynamic No

Scope Global

Variable Type Numeric

Default Value 1

Specifies the maximum number of concurrent background memtable flush threads, submitted to the high-
priority thread-pool. Default value is 1. Allowed range is up to 64. This variable has been replaced
with rocksdb_max_background_jobs, which automatically decides how many threads to allocate towards
flush/compaction.

Replaced with rocksdb_max_background_jobs

variable rocksdb_max_background_jobs

71.5. MyRocks Server Variables 320

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-max-background-jobs

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 2

This variable replaced rocksdb_base_background_compactions, rocksdb_max_background_compactions,
and rocksdb_max_background_flushes variables. This variable specifies the maximum number of back-
ground jobs. It automatically decides how many threads to allocate towards flush/compaction. It was implemented to
reduce the number of (confusing) options users and can tweak and push the responsibility down to RocksDB level.

variable rocksdb_max_latest_deadlocks

Command Line --rocksdb-max-latest-deadlocks

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 5

Specifies the maximum number of recent deadlocks to store.

variable rocksdb_max_log_file_size

Command Line --rocksdb-max-log-file-size

Dynamic No

Scope Global

Variable Type Numeric

Default Value 0

Specifies the maximum size for info log files, after which the log is rotated. Default value is 0, meaning that only one
log file is used. Allowed range is up to 18446744073709551615.

Also see rocksdb_log_file_time_to_roll.

variable rocksdb_max_manifest_file_size

Command Line --rocksdb-manifest-log-file-size

Dynamic No

Scope Global

Variable Type Numeric

Default Value 18446744073709551615

Specifies the maximum size of the MANIFEST data file, after which it is rotated. Default value is also the maximum,
making it practically unlimited: only one manifest file is used.

variable rocksdb_max_open_files

Command Line --rocksdb-max-open-files

Dynamic No

Scope Global

Variable Type Numeric

71.5. MyRocks Server Variables 321

Percona Server Documentation, Release 8.0.18-9

Default Value 1000

Specifies the maximum number of file handles opened by MyRocks. Values in the range between 0
and open_files_limit are taken as they are. If rocksdb_max_open_files value is greater than
open_files_limit, it will be reset to 1/2 of open_files_limit, and a warning will be emitted to the
mysqld error log. A value of -2 denotes auto tuning: just sets rocksdb_max_open_files value to 1/2 of
open_files_limit. Finally, -1 means no limit, i.e. an infinite number of file handles.

Warning: Setting rocksdb_max_open_files to -1 is dangerous, as server may quickly run out of file
handles in this case.

variable rocksdb_max_row_locks

Command Line --rocksdb-max-row-locks

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 1048576

Specifies the limit on the maximum number of row locks a transaction can have before it fails. Default value is also
the maximum, making it practically unlimited: transactions never fail due to row locks.

variable rocksdb_max_subcompactions

Command Line --rocksdb-max-subcompactions

Dynamic No

Scope Global

Variable Type Numeric

Default Value 1

Specifies the maximum number of threads allowed for each compaction job. Default value of 1 means no subcom-
pactions (one thread per compaction job). Allowed range is up to 64.

variable rocksdb_max_total_wal_size

Command Line --rocksdb-max-total-wal-size

Dynamic No

Scope Global

Variable Type Numeric

Default Value 2 GB

Specifies the maximum total size of WAL (write-ahead log) files, after which memtables are flushed. Default value is
2 GB The allowed range is up to 9223372036854775807.

variable rocksdb_merge_buf_size

Command Line --rocksdb-merge-buf-size

Dynamic Yes

Scope Global, Session

Variable Type Numeric

71.5. MyRocks Server Variables 322

Percona Server Documentation, Release 8.0.18-9

Default Value 67108864

Specifies the size (in bytes) of the merge-sort buffers used to accumulate data during secondary key creation. New
entries are written directly to the lowest level in the database, instead of updating indexes through the memtable and
L0. These values are sorted using merge-sort, with buffers set to 64 MB by default (67108864). Allowed range is
from 100 to 18446744073709551615.

variable rocksdb_merge_combine_read_size

Command Line --rocksdb-merge-combine-read-size

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 1073741824

Specifies the size (in bytes) of the merge-combine buffer used for the merge-sort algorithm as described in
rocksdb_merge_buf_size. Default size is 1 GB (1073741824). Allowed range is from 100 to
18446744073709551615.

variable rocksdb_merge_tmp_file_removal_delay_ms

Command Line --rocksdb_merge_tmp_file_removal_delay_ms

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 0

Fast secondary index creation creates merge files when needed. After finishing secondary index creation, merge files
are removed. By default, the file removal is done without any sleep, so removing GBs of merge files within <1s may
happen, which will cause trim stalls on Flash. This variable can be used to rate limit the delay in milliseconds.

variable rocksdb_new_table_reader_for_compaction_inputs

Command Line --rocksdb-new-table-reader-for-compaction-inputs

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether MyRocks should create a new file descriptor and table reader for each compaction input. Disabled
by default. Enabling this may increase memory consumption, but will also allow pre-fetch options to be specified for
compaction input files without impacting table readers used for user queries.

variable rocksdb_no_block_cache

Command Line --rocksdb-no-block-cache

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

71.5. MyRocks Server Variables 323

Percona Server Documentation, Release 8.0.18-9

Specifies whether to disable the block cache for column families. Variable is disabled by default, meaning that using
the block cache is allowed.

variable rocksdb_no_create_column_family

Command Line --rocksdb-no-create-column-family

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Controls the processing of the column family name given in the COMMENT clause in the CREATE TABLE or ALTER
TABLE statement in case the column family name does not refer to an existing column family.

If rocksdb_no_create_column_family is set to NO, a new column family will be created and the new index
will be placed into it.

If rocksdb_no_create_column_family is set to YES, no new column family will be created and the index
will be placed into the default column family. A warning is issued in this case informing that the specified column
family does not exist and cannot be created.

See also:

More information about column families MyRocks Column Families

variable rocksdb_override_cf_options

Command Line --rocksdb-override-cf-options

Dynamic No

Scope Global

Variable Type String

Default Value

Specifies option overrides for each column family. Empty by default.

variable rocksdb_paranoid_checks

Command Line --rocksdb-paranoid-checks

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether MyRocks should re-read the data file as soon as it is created to verify correctness. Enabled by
default.

variable rocksdb_pause_background_work

Command Line --rocksdb-pause-background-work

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

71.5. MyRocks Server Variables 324

Percona Server Documentation, Release 8.0.18-9

Specifies whether MyRocks should pause all background operations. Disabled by default. There is no practical reason
for a user to ever use this variable because it is intended as a test synchronization tool for the MyRocks MTR test
suites.

Warning: If someone were to set a rocksdb_force_flush_memtable_now
to 1 while rocksdb_pause_background_work is set to 1, the client that is-
sued the rocksdb_force_flush_memtable_now=1 will be blocked indefinitely until
rocksdb_pause_background_work is set to 0.

variable rocksdb_perf_context_level

Command Line --rocksdb-perf-context-level

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 0

Specifies the level of information to capture with the Perf Context plugins. Default value is 0. Allowed range is up to
4.

variable rocksdb_persistent_cache_path

Command Line --rocksdb-persistent-cache-path

Dynamic No

Scope Global

Variable Type String

Default Value

Specifies the path to the persistent cache. Set this together with rocksdb_persistent_cache_size_mb.

variable rocksdb_persistent_cache_size_mb

Command Line --rocksdb-persistent-cache-size-mb

Dynamic No

Scope Global

Variable Type Numeric

Default Value 0

Specifies the size of the persisten cache in megabytes. Default is 0 (persistent cache disabled). Allowed range is up to
18446744073709551615. Set this together with rocksdb_persistent_cache_path.

variable rocksdb_pin_l0_filter_and_index_blocks_in_cache

Command Line --rocksdb-pin-l0-filter-and-index-blocks-in-cache

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

71.5. MyRocks Server Variables 325

Percona Server Documentation, Release 8.0.18-9

Specifies whether MyRocks pins the filter and index blocks in the cache if
rocksdb_cache_index_and_filter_blocks is enabled. Enabled by default.

variable rocksdb_print_snapshot_conflict_queries

Command Line --rocksdb-print-snapshot-conflict-queries

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether queries that generate snapshot conflicts should be logged to the error log. Disabled by default.

variable rocksdb_rate_limiter_bytes_per_sec

Command Line --rocksdb-rate-limiter-bytes-per-sec

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

Specifies the maximum rate at which MyRocks can write to media via memtable flushes and compaction. Default
value is 0 (write rate is not limited). Allowed range is up to 9223372036854775807.

variable rocksdb_read_free_rpl_tables

Command Line --rocksdb-read-free-rpl-tables

Dynamic Yes

Scope Global, Session

Variable Type String

Default Value

Lists tables (as a regular expression) that should use read-free replication on the slave (that is, replication without row
lookups). Empty by default.

variable rocksdb_records_in_range

Command Line --rocksdb-records-in-range

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 0

Specifies the value to override the result of records_in_range(). Default value is 0. Allowed range is up to
2147483647.

variable rocksdb_reset_stats

Command Line --rocksdb-reset-stats

Dynamic Yes

Scope Global

71.5. MyRocks Server Variables 326

Percona Server Documentation, Release 8.0.18-9

Variable Type Boolean

Default Value OFF

Resets MyRocks internal statistics dynamically (without restarting the server).

variable rocksdb_rpl_skip_tx_api

Command Line --rocksdb-rpl-skip-tx-api

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether write batches should be used for replication thread instead of the transaction API. Disabled by
default.

There are two conditions which are necessary to use it: row replication format and slave operating in super read only
mode.

variable rocksdb_seconds_between_stat_computes

Command Line --rocksdb-seconds-between-stat-computes

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 3600

Specifies the number of seconds to wait between recomputation of table statistics for the optimizer. During that time,
only changed indexes are updated. Default value is 3600. Allowed is from 0 to 4294967295.

variable rocksdb_signal_drop_index_thread

Command Line --rocksdb-signal-drop-index-thread

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value OFF

Signals the MyRocks drop index thread to wake up.

variable rocksdb_sim_cache_size

Command Line --rocksdb-sim-cache-size

Dynamic No

Scope Global

Variable Type Numeric

Default Value 0

Enables the simulated cache, which allows us to figure out the hit/miss rate with a specific cache size without changing
the real block cache.

variable rocksdb_skip_bloom_filter_on_read

71.5. MyRocks Server Variables 327

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-skip-bloom-filter-on_read

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether bloom filters should be skipped on reads. Disabled by default (bloom filters are not skipped).

variable rocksdb_skip_fill_cache

Command Line --rocksdb-skip-fill-cache

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether to skip caching data on read requests. Disabled by default (caching is not skipped).

variable rocksdb_sst_mgr_rate_bytes_per_sec

Command Line --rocksdb-sst-mgr-rate-bytes-per-sec

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 0

Specifies the maximum rate for writing to data files. Default value is 0. This option is not effective on HDD. Allowed
range is from 0 to 18446744073709551615.

variable rocksdb_stats_dump_period_sec

Command Line --rocksdb-stats-dump-period-sec

Dynamic No

Scope Global

Variable Type Numeric

Default Value 600

Specifies the period in seconds for performing a dump of the MyRocks statistics to the info log. Default value is 600.
Allowed range is up to 2147483647.

variable rocksdb_store_row_debug_checksums

Command Line --rocksdb-store-row-debug-checksums

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether to include checksums when writing index or table records. Disabled by default.

variable rocksdb_strict_collation_check

71.5. MyRocks Server Variables 328

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-strict-collation-check

Dynamic Yes

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether to check and verify that table indexes have proper collation settings. Enabled by default.

variable rocksdb_strict_collation_exceptions

Command Line --rocksdb-strict-collation-exceptions

Dynamic Yes

Scope Global

Variable Type String

Default Value

Lists tables (as a regular expression) that should be excluded from verifying case-sensitive collation enforced by
rocksdb_strict_collation_check. Empty by default.

variable rocksdb_table_cache_numshardbits

Command Line --rocksdb-table-cache-numshardbits

Dynamic No

Scope Global

Variable Type Numeric

Default Value 6

Specifies the number if table caches. The default value is 6. The allowed range is from 0 to 19.

variable rocksdb_table_stats_sampling_pct

Command Line --rocksdb-table-stats-sampling-pct

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 10

Specifies the percentage of entries to sample when collecting statistics about table properties. Default value is 10.
Allowed range is from 0 to 100.

variable rocksdb_tmpdir

Command Line --rocksdb-tmpdir

Dynamic Yes

Scope Global, Session

Variable Type String

Default Value

Specifies the path to the directory for temporary files during DDL operations.

variable rocksdb_trace_sst_api

71.5. MyRocks Server Variables 329

Percona Server Documentation, Release 8.0.18-9

Command Line --rocksdb-trace-sst-api

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether to generate trace output in the log for each call to SstFileWriter. Disabled by default.

variable rocksdb_two_write_queues

Command Line --rocksdb-two_write_queues

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

When enabled this variable allows/encourages threads that are using two-phase commit to prepare in parallel.

variable rocksdb_unsafe_for_binlog

Command Line --rocksdb-unsafe-for-binlog

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Specifies whether to allow statement-based binary logging which may break consistency. Disabled by default.

variable rocksdb_update_cf_options

Command Line --rocksdb-update-cf-options

Dynamic No

Scope Global

Variable Type String

Default Value

Specifies option updates for each column family. Empty by default.

variable rocksdb_use_adaptive_mutex

Command Line --rocksdb-use-adaptive-mutex

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to use adaptive mutex which spins in user space before resorting to the kernel. Disabled by default.

variable rocksdb_use_direct_io_for_flush_and_compaction

Command Line --rocksdb-use-direct-io-for-flush-and-compaction

71.5. MyRocks Server Variables 330

Percona Server Documentation, Release 8.0.18-9

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to write to data files directly, without caches or buffers. Disabled by default.

variable rocksdb_use_direct_reads

Command Line --rocksdb-use-direct-reads

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether to read data files directly, without caches or buffers. Disabled by default. If you enable this, make
sure that rocksdb_allow_mmap_reads is disabled.

variable rocksdb_use_fsync

Command Line --rocksdb-use-fsync

Dynamic No

Scope Global

Variable Type Boolean

Default Value OFF

Specifies whether MyRocks should use fsync instead of fdatasyncwhen requesting a sync of a data file. Disabled
by default.

variable rocksdb_validate_tables

Command Line --rocksdb-validate-tables

Dynamic No

Scope Global

Variable Type Numeric

Default Value 1

Specifies whether to verify that MySQL .frm files match MyRocks tables.

• 0: do not verify.

• 1: verify and fail on error (default).

• 2: verify and continue with error.

variable rocksdb_verify_row_debug_checksums

Command Line --rocksdb-verify-row-debug-checksums

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

71.5. MyRocks Server Variables 331

Percona Server Documentation, Release 8.0.18-9

Specifies whether to verify checksums when reading index or table records. Disabled by default.

variable rocksdb_wal_bytes_per_sync

Command Line --rocksdb-wal-bytes-per-sync

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 0

Specifies how often should the OS sync WAL (write-ahead log) files to disk as they are being written, asynchronously,
in the background. This operation can be used to smooth out write I/O over time. Default value is 0, meaning that
files are never synced. Allowed range is up to 18446744073709551615.

variable rocksdb_wal_dir

Command Line --rocksdb-wal-dir

Dynamic No

Scope Global

Variable Type String

Default Value

Specifies the path to the directory where MyRocks stores WAL files.

variable rocksdb_wal_recovery_mode

Command Line --rocksdb-wal-recovery-mode

Dynamic Yes

Scope Global

Variable Type Numeric

Default Value 1

Specifies the level of tolerance when recovering write-ahead logs (WAL) files after a system crash.

The following are the options:

• 0: if the last WAL entry is corrupted, truncate the entry and either start the server normally or refuse to start.

• 1 (default): if a WAL entry is corrupted, the server fails to start and does not recover from the crash.

• 2: if a corrupted WAL entry is detected, truncate all entries after the detected corrupted entry. You can select
this setting for replication slaves.

• 3: If a corrupted WAL entry is detected, skip only the corrupted entry and continue the apply WAL entries. This
option can be dangerous.

variable rocksdb_wal_size_limit_mb

Command Line --rocksdb-wal-size-limit-mb

Dynamic No

Scope Global

Variable Type Numeric

Default Value 0

71.5. MyRocks Server Variables 332

Percona Server Documentation, Release 8.0.18-9

Specifies the maximum size of all WAL files in megabytes before attempting to flush memtables and delete the oldest
files. Default value is 0 (never rotated). Allowed range is up to 9223372036854775807.

variable rocksdb_wal_ttl_seconds

Command Line --rocksdb-wal-ttl-seconds

Dynamic No

Scope Global

Variable Type Numeric

Default Value 0

Specifies the timeout in seconds before deleting archived WAL files. Default is 0 (archived WAL files are never
deleted). Allowed range is up to 9223372036854775807.

variable rocksdb_whole_key_filtering

Command Line --rocksdb-whole-key-filtering

Dynamic No

Scope Global

Variable Type Boolean

Default Value ON

Specifies whether the bloomfilter should use the whole key for filtering instead of just the prefix. Enabled by default.
Make sure that lookups use the whole key for matching.

variable rocksdb_write_batch_max_bytes

Command Line --rocksdb-write-batch-max-bytes

Dynamic Yes

Scope Global, Session

Variable Type Numeric

Default Value 0

Specifies the maximum size of a RocksDB write batch in bytes. 0means no limit. In case user exceeds the limit follow-
ing error will be shown: ERROR HY000: Status error 10 received from RocksDB: Operation
aborted: Memory limit reached.

variable rocksdb_write_disable_wal

Command Line --rocksdb-write-disable-wal

Dynamic Yes

Scope Global, Session

Variable Type Boolean

Default Value OFF

Lets you temporarily disable writes to WAL files, which can be useful for bulk loading.

variable rocksdb_write_ignore_missing_column_families

Command Line --rocksdb-write-ignore-missing-column-families

Dynamic Yes

Scope Global, Session

71.5. MyRocks Server Variables 333

Percona Server Documentation, Release 8.0.18-9

Variable Type Boolean

Default Value OFF

Specifies whether to ignore writes to column families that do not exist. Disabled by default (writes to non-existent
column families are not ignored).

MyRocks Information Schema Tables

When you install the MyRocks plugin for MySQL, the Information Schema is extended to include the following tables:

• ROCKSDB_GLOBAL_INFO

• ROCKSDB_CFSTATS

• ROCKSDB_TRX

• ROCKSDB_CF_OPTIONS

• ROCKSDB_COMPACTION_STATS

• ROCKSDB_DBSTATS

• ROCKSDB_DDL

• ROCKSDB_INDEX_FILE_MAP

• ROCKSDB_LOCKS

• ROCKSDB_PERF_CONTEXT

• ROCKSDB_PERF_CONTEXT_GLOBAL

• ROCKSDB_DEADLOCK

ROCKSDB_GLOBAL_INFO

Columns

Column Name Type
TYPE varchar(513)
NAME varchar(513)
VALUE varchar(513)

ROCKSDB_CFSTATS

Columns

Column Name Type
CF_NAME varchar(193)
STAT_TYPE varchar(193)
VALUE bigint(8)

71.6. MyRocks Information Schema Tables 334

Percona Server Documentation, Release 8.0.18-9

ROCKSDB_TRX

This table stores mappings of RocksDB transaction identifiers to MySQL client identifiers to enable associating a
RocksDB transaction with a MySQL client operation.

Columns

Column Name Type
TRANSACTION_ID bigint(8)
STATE varchar(193)
NAME varchar(193)
WRITE_COUNT bigint(8)
LOCK_COUNT bigint(8)
TIMEOUT_SEC int(4)
WAITING_KEY varchar(513)
WAITING_COLUMN_FAMILY_ID int(4)
IS_REPLICATION int(4)
SKIP_TRX_API int(4)
READ_ONLY int(4)
HAS_DEADLOCK_DETECTION int(4)
NUM_ONGOING_BULKLOAD int(4)
THREAD_ID int(8)
QUERY varchar(193)

ROCKSDB_CF_OPTIONS

Columns

Column Name Type
CF_NAME varchar(193)
OPTION_TYPE varchar(193)
VALUE varchar(193)

ROCKSDB_COMPACTION_STATS

Columns

Column Name Type
CF_NAME varchar(193)
LEVEL varchar(513)
TYPE varchar(513)
VALUE double

ROCKSDB_DBSTATS

71.6. MyRocks Information Schema Tables 335

Percona Server Documentation, Release 8.0.18-9

Columns

Column Name Type
STAT_TYPE varchar(193)
VALUE bigint(8)

ROCKSDB_DDL

Columns

Column Name Type
TABLE_SCHEMA varchar(193)
TABLE_NAME varchar(193)
PARTITION_NAME varchar(193)
INDEX_NAME varchar(193)
COLUMN_FAMILY int(4)
INDEX_NUMBER int(4)
INDEX_TYPE smallint(2)
KV_FORMAT_VERSION smallint(2)
TTL_DURATION bigint(8)
INDEX_FLAGS bigint(8)
CF varchar(193)
AUTO_INCREMENT bigint(8) unsigned

ROCKSDB_INDEX_FILE_MAP

Columns

Column Name Type
COLUMN_FAMILY int(4)
INDEX_NUMBER int(4)
SST_NAME varchar(193)
NUM_ROWS bigint(8)
DATA_SIZE bigint(8)
ENTRY_DELETES bigint(8)
ENTRY_SINGLEDELETES bigint(8)
ENTRY_MERGES bigint(8)
ENTRY_OTHERS bigint(8)
DISTINCT_KEYS_PREFIX varchar(400)

ROCKSDB_LOCKS

This table contains the set of locks granted to MyRocks transactions.

71.6. MyRocks Information Schema Tables 336

Percona Server Documentation, Release 8.0.18-9

Columns

Column Name Type
COLUMN_FAMILY_ID int(4)
TRANSACTION_ID int(4)
KEY varchar(513)
MODE varchar(32)

ROCKSDB_PERF_CONTEXT

Columns

Column Name Type
TABLE_SCHEMA varchar(193)
TABLE_NAME varchar(193)
PARTITION_NAME varchar(193)
STAT_TYPE varchar(193)
VALUE bigint(8)

ROCKSDB_PERF_CONTEXT_GLOBAL

Columns

Column Name Type
STAT_TYPE varchar(193)
VALUE bigint(8)

ROCKSDB_DEADLOCK

This table records information about deadlocks.

Columns

Column Name Type
DEADLOCK_ID bigint(8)
TRANSACTION_ID bigint(8)
CF_NAME varchar(193)
WAITING_KEY varchar(513)
LOCK_TYPE varchar(193)
INDEX_NAME varchar(193)
TABLE_NAME varchar(193)
ROLLED_BACK bigint(8)

71.6. MyRocks Information Schema Tables 337

Percona Server Documentation, Release 8.0.18-9

Performance Schema MyRocks changes

RocksDB WAL file information can be seen in the performance_schema.log_status table in the STORAGE ENGINE
column.

This feature has been implemented in Percona Server 8.0.15-6 release.

Example

mysql> select * from performance_schema.log_status\G

*************************** 1. row ***************************

SERVER_UUID: f593b4f8-6fde-11e9-ad90-080027c2be11
LOCAL: {"gtid_executed": "", "binary_log_file": "binlog.000004", "binary_log_

→˓position": 1698222}
REPLICATION: {"channels": []}
STORAGE_ENGINES: {"InnoDB": {"LSN": 36810235, "LSN_checkpoint": 36810235}, "RocksDB":
→˓{"wal_files": [{"path_name": "/000026.log", "log_number": 26, "size_file_bytes":
→˓371869}]}}
1 row in set (0.00 sec)

71.7. Performance Schema MyRocks changes 338

https://dev.mysql.com/doc/mysql-perfschema-excerpt/8.0/en/log-status-table.html

CHAPTER

SEVENTYTWO

MYROCKS STATUS VARIABLES

MyRocks status variables provide details about the inner workings of the storage engine and they can be useful in
tuning the storage engine to a particular environment.

You can view these variables and their values by running:

mysql> SHOW STATUS LIKE 'rocksdb%';

The following global status variables are available:

Name Var Type
rocksdb_rows_deleted Numeric
rocksdb_rows_inserted Numeric
rocksdb_rows_read Numeric
rocksdb_rows_updated Numeric
rocksdb_rows_expired Numeric
rocksdb_system_rows_deleted Numeric
rocksdb_system_rows_inserted Numeric
rocksdb_system_rows_read Numeric
rocksdb_system_rows_updated Numeric
rocksdb_memtable_total Numeric
rocksdb_memtable_unflushed Numeric
rocksdb_queries_point Numeric
rocksdb_queries_range Numeric
rocksdb_covered_secondary_key_lookups Numeric
rocksdb_block_cache_add Numeric
rocksdb_block_cache_add_failures Numeric
rocksdb_block_cache_bytes_read Numeric
rocksdb_block_cache_bytes_write Numeric
rocksdb_block_cache_data_add Numeric
rocksdb_block_cache_data_bytes_insert Numeric
rocksdb_block_cache_data_hit Numeric
rocksdb_block_cache_data_miss Numeric
rocksdb_block_cache_filter_add Numeric
rocksdb_block_cache_filter_bytes_evict Numeric
rocksdb_block_cache_filter_bytes_insert Numeric
rocksdb_block_cache_filter_hit Numeric
rocksdb_block_cache_filter_miss Numeric
rocksdb_block_cache_hit Numeric
rocksdb_block_cache_index_add Numeric
rocksdb_block_cache_index_bytes_evict Numeric

Continued on next page

339

Percona Server Documentation, Release 8.0.18-9

Table 72.1 – continued from previous page
Name Var Type
rocksdb_block_cache_index_bytes_insert Numeric
rocksdb_block_cache_index_hit Numeric
rocksdb_block_cache_index_miss Numeric
rocksdb_block_cache_miss Numeric
rocksdb_block_cache_compressed_hit Numeric
rocksdb_block_cache_compressed_miss Numeric
rocksdb_bloom_filter_prefix_checked Numeric
rocksdb_bloom_filter_prefix_useful Numeric
rocksdb_bloom_filter_useful Numeric
rocksdb_bytes_read Numeric
rocksdb_bytes_written Numeric
rocksdb_compact_read_bytes Numeric
rocksdb_compact_write_bytes Numeric
rocksdb_compaction_key_drop_new Numeric
rocksdb_compaction_key_drop_obsolete Numeric
rocksdb_compaction_key_drop_user Numeric
rocksdb_flush_write_bytes Numeric
rocksdb_get_hit_l0 Numeric
rocksdb_get_hit_l1 Numeric
rocksdb_get_hit_l2_and_up Numeric
rocksdb_get_updates_since_calls Numeric
rocksdb_iter_bytes_read Numeric
rocksdb_memtable_hit Numeric
rocksdb_memtable_miss Numeric
rocksdb_no_file_closes Numeric
rocksdb_no_file_errors Numeric
rocksdb_no_file_opens Numeric
rocksdb_num_iterators Numeric
rocksdb_number_block_not_compressed Numeric
rocksdb_number_db_next Numeric
rocksdb_number_db_next_found Numeric
rocksdb_number_db_prev Numeric
rocksdb_number_db_prev_found Numeric
rocksdb_number_db_seek Numeric
rocksdb_number_db_seek_found Numeric
rocksdb_number_deletes_filtered Numeric
rocksdb_number_keys_read Numeric
rocksdb_number_keys_updated Numeric
rocksdb_number_keys_written Numeric
rocksdb_number_merge_failures Numeric
rocksdb_number_multiget_bytes_read Numeric
rocksdb_number_multiget_get Numeric
rocksdb_number_multiget_keys_read Numeric
rocksdb_number_reseeks_iteration Numeric
rocksdb_number_sst_entry_delete Numeric
rocksdb_number_sst_entry_merge Numeric
rocksdb_number_sst_entry_other Numeric
rocksdb_number_sst_entry_put Numeric
rocksdb_number_sst_entry_singledelete Numeric

Continued on next page

340

Percona Server Documentation, Release 8.0.18-9

Table 72.1 – continued from previous page
Name Var Type
rocksdb_number_stat_computes Numeric
rocksdb_number_superversion_acquires Numeric
rocksdb_number_superversion_cleanups Numeric
rocksdb_number_superversion_releases Numeric
rocksdb_rate_limit_delay_millis Numeric
rocksdb_row_lock_deadlocks Numeric
rocksdb_row_lock_wait_timeouts Numeric
rocksdb_snapshot_conflict_errors Numeric
rocksdb_stall_l0_file_count_limit_slowdowns Numeric
rocksdb_stall_locked_l0_file_count_limit_slowdownsNumeric
rocksdb_stall_l0_file_count_limit_stops Numeric
rocksdb_stall_locked_l0_file_count_limit_stopsNumeric
rocksdb_stall_pending_compaction_limit_stops Numeric
rocksdb_stall_pending_compaction_limit_slowdownsNumeric
rocksdb_stall_memtable_limit_stops Numeric
rocksdb_stall_memtable_limit_slowdowns Numeric
rocksdb_stall_total_stops Numeric
rocksdb_stall_total_slowdowns Numeric
rocksdb_stall_micros Numeric
rocksdb_wal_bytes Numeric
rocksdb_wal_group_syncs Numeric
rocksdb_wal_synced Numeric
rocksdb_write_other Numeric
rocksdb_write_self Numeric
rocksdb_write_timedout Numeric
rocksdb_write_wal Numeric

variable rocksdb_rows_deleted

This variable shows the number of rows that were deleted from MyRocks tables.

variable rocksdb_rows_inserted

This variable shows the number of rows that were inserted into MyRocks tables.

variable rocksdb_rows_read

This variable shows the number of rows that were read from MyRocks tables.

variable rocksdb_rows_updated

This variable shows the number of rows that were updated in MyRocks tables.

variable rocksdb_rows_expired

This variable shows the number of expired rows in MyRocks tables.

variable rocksdb_system_rows_deleted

This variable shows the number of rows that were deleted from MyRocks system tables.

variable rocksdb_system_rows_inserted

This variable shows the number of rows that were inserted into MyRocks system tables.

variable rocksdb_system_rows_read

This variable shows the number of rows that were read from MyRocks system tables.

341

Percona Server Documentation, Release 8.0.18-9

variable rocksdb_system_rows_updated

This variable shows the number of rows that were updated in MyRocks system tables.

variable rocksdb_memtable_total

This variable shows the memory usage, in bytes, of all memtables.

variable rocksdb_memtable_unflushed

This variable shows the memory usage, in bytes, of all unflushed memtables.

variable rocksdb_queries_point

This variable shows the number of single row queries.

variable rocksdb_queries_range

This variable shows the number of multi/range row queries.

variable rocksdb_covered_secondary_key_lookups

This variable shows the number of lookups via secondary index that were able to return all fields requested directly
from the secondary index when the secondary index contained a field that is only a prefix of the varchar column.

variable rocksdb_block_cache_add

This variable shows the number of blocks added to block cache.

variable rocksdb_block_cache_add_failures

This variable shows the number of failures when adding blocks to block cache.

variable rocksdb_block_cache_bytes_read

This variable shows the number of bytes read from cache.

variable rocksdb_block_cache_bytes_write

This variable shows the number of bytes written into cache.

variable rocksdb_block_cache_data_add

This variable shows the number of data blocks added to block cache.

variable rocksdb_block_cache_data_bytes_insert

This variable shows the number of bytes of data blocks inserted into cache.

variable rocksdb_block_cache_data_hit

This variable shows the number of cache hits when accessing the data block from the block cache.

variable rocksdb_block_cache_data_miss

This variable shows the number of cache misses when accessing the data block from the block cache.

variable rocksdb_block_cache_filter_add

This variable shows the number of filter blocks added to block cache.

variable rocksdb_block_cache_filter_bytes_evict

This variable shows the number of bytes of bloom filter blocks removed from cache.

variable rocksdb_block_cache_filter_bytes_insert

This variable shows the number of bytes of bloom filter blocks inserted into cache.

variable rocksdb_block_cache_filter_hit

342

Percona Server Documentation, Release 8.0.18-9

This variable shows the number of times cache hit when accessing filter block from block cache.

variable rocksdb_block_cache_filter_miss

This variable shows the number of times cache miss when accessing filter block from block cache.

variable rocksdb_block_cache_hit

This variable shows the total number of block cache hits.

variable rocksdb_block_cache_index_add

This variable shows the number of index blocks added to block cache.

variable rocksdb_block_cache_index_bytes_evict

This variable shows the number of bytes of index block erased from cache.

variable rocksdb_block_cache_index_bytes_insert

This variable shows the number of bytes of index blocks inserted into cache.

variable rocksdb_block_cache_index_hit

This variable shows the total number of block cache index hits.

variable rocksdb_block_cache_index_miss

This variable shows the number of times cache hit when accessing index block from block cache.

variable rocksdb_block_cache_miss

This variable shows the total number of block cache misses.

variable rocksdb_block_cache_compressed_hit

This variable shows the number of hits in the compressed block cache.

variable rocksdb_block_cache_compressed_miss

This variable shows the number of misses in the compressed block cache.

variable rocksdb_bloom_filter_prefix_checked

This variable shows the number of times bloom was checked before creating iterator on a file.

variable rocksdb_bloom_filter_prefix_useful

This variable shows the number of times the check was useful in avoiding iterator creation (and thus likely IOPs).

variable rocksdb_bloom_filter_useful

This variable shows the number of times bloom filter has avoided file reads.

variable rocksdb_bytes_read

This variable shows the total number of uncompressed bytes read. It could be either from memtables, cache, or table
files.

variable rocksdb_bytes_written

This variable shows the total number of uncompressed bytes written.

variable rocksdb_compact_read_bytes

This variable shows the number of bytes read during compaction

variable rocksdb_compact_write_bytes

This variable shows the number of bytes written during compaction.

343

Percona Server Documentation, Release 8.0.18-9

variable rocksdb_compaction_key_drop_new

This variable shows the number of key drops during compaction because it was overwritten with a newer value.

variable rocksdb_compaction_key_drop_obsolete

This variable shows the number of key drops during compaction because it was obsolete.

variable rocksdb_compaction_key_drop_user

This variable shows the number of key drops during compaction because user compaction function has dropped the
key.

variable rocksdb_flush_write_bytes

This variable shows the number of bytes written during flush.

variable rocksdb_get_hit_l0

This variable shows the number of Get() queries served by L0.

variable rocksdb_get_hit_l1

This variable shows the number of Get() queries served by L1.

variable rocksdb_get_hit_l2_and_up

This variable shows the number of Get() queries served by L2 and up.

variable rocksdb_get_updates_since_calls

This variable shows the number of calls to GetUpdatesSince function. Useful to keep track of transaction log
iterator refreshes

variable rocksdb_iter_bytes_read

This variable shows the number of uncompressed bytes read from an iterator. It includes size of key and value.

variable rocksdb_memtable_hit

This variable shows the number of memtable hits.

variable rocksdb_memtable_miss

This variable shows the number of memtable misses.

variable rocksdb_no_file_closes

This variable shows the number of time file were closed.

variable rocksdb_no_file_errors

This variable shows number of errors trying to read in data from an sst file.

variable rocksdb_no_file_opens

This variable shows the number of time file were opened.

variable rocksdb_num_iterators

This variable shows the number of currently open iterators.

variable rocksdb_number_block_not_compressed

This variable shows the number of uncompressed blocks.

variable rocksdb_number_db_next

This variable shows the number of calls to next.

variable rocksdb_number_db_next_found

344

Percona Server Documentation, Release 8.0.18-9

This variable shows the number of calls to next that returned data.

variable rocksdb_number_db_prev

This variable shows the number of calls to prev.

variable rocksdb_number_db_prev_found

This variable shows the number of calls to prev that returned data.

variable rocksdb_number_db_seek

This variable shows the number of calls to seek.

variable rocksdb_number_db_seek_found

This variable shows the number of calls to seek that returned data.

variable rocksdb_number_deletes_filtered

This variable shows the number of deleted records that were not required to be written to storage because key did not
exist.

variable rocksdb_number_keys_read

This variable shows the number of keys read.

variable rocksdb_number_keys_updated

This variable shows the number of keys updated, if inplace update is enabled.

variable rocksdb_number_keys_written

This variable shows the number of keys written to the database.

variable rocksdb_number_merge_failures

This variable shows the number of failures performing merge operator actions in RocksDB.

variable rocksdb_number_multiget_bytes_read

This variable shows the number of bytes read during RocksDB MultiGet() calls.

variable rocksdb_number_multiget_get

This variable shows the number MultiGet() requests to RocksDB.

variable rocksdb_number_multiget_keys_read

This variable shows the keys read via MultiGet().

variable rocksdb_number_reseeks_iteration

This variable shows the number of times reseek happened inside an iteration to skip over large number of keys with
same userkey.

variable rocksdb_number_sst_entry_delete

This variable shows the total number of delete markers written by MyRocks.

variable rocksdb_number_sst_entry_merge

This variable shows the total number of merge keys written by MyRocks.

variable rocksdb_number_sst_entry_other

This variable shows the total number of non-delete, non-merge, non-put keys written by MyRocks.

variable rocksdb_number_sst_entry_put

This variable shows the total number of put keys written by MyRocks.

345

Percona Server Documentation, Release 8.0.18-9

variable rocksdb_number_sst_entry_singledelete

This variable shows the total number of single delete keys written by MyRocks.

variable rocksdb_number_stat_computes

This variable isn’t used anymore and will be removed in future releases.

variable rocksdb_number_superversion_acquires

This variable shows the number of times the superversion structure has been acquired in RocksDB, this is used for
tracking all of the files for the database.

variable rocksdb_number_superversion_cleanups

variable rocksdb_number_superversion_releases

variable rocksdb_rate_limit_delay_millis

This variable isn’t used anymore and will be removed in future releases.

variable rocksdb_row_lock_deadlocks

This variable shows the total number of deadlocks that have been detected since the instance was started.

variable rocksdb_row_lock_wait_timeouts

This variable shows the total number of row lock wait timeouts that have been detected since the instance was started.

variable rocksdb_snapshot_conflict_errors

This variable shows the number of snapshot conflict errors occurring during write transactions that forces the transac-
tion to rollback.

variable rocksdb_stall_l0_file_count_limit_slowdowns

This variable shows the slowdowns in write due to L0 being close to full.

variable rocksdb_stall_locked_l0_file_count_limit_slowdowns

This variable shows the slowdowns in write due to L0 being close to full and compaction for L0 is already in progress.

variable rocksdb_stall_l0_file_count_limit_stops

This variable shows the stalls in write due to L0 being full.

variable rocksdb_stall_locked_l0_file_count_limit_stops

This variable shows the stalls in write due to L0 being full and compaction for L0 is already in progress.

variable rocksdb_stall_pending_compaction_limit_stops

This variable shows the stalls in write due to hitting limits set for max number of pending compaction bytes.

variable rocksdb_stall_pending_compaction_limit_slowdowns

This variable shows the slowdowns in write due to getting close to limits set for max number of pending compaction
bytes.

variable rocksdb_stall_memtable_limit_stops

This variable shows the stalls in write due to hitting max number of memTables allowed.

variable rocksdb_stall_memtable_limit_slowdowns

This variable shows the slowdowns in writes due to getting close to max number of memtables allowed.

variable rocksdb_stall_total_stops

346

Percona Server Documentation, Release 8.0.18-9

This variable shows the total number of write stalls.

variable rocksdb_stall_total_slowdowns

This variable shows the total number of write slowdowns.

variable rocksdb_stall_micros

This variable shows how long (in microseconds) the writer had to wait for compaction or flush to finish.

variable rocksdb_wal_bytes

This variables shows the number of bytes written to WAL.

variable rocksdb_wal_group_syncs

This variable shows the number of group commit WAL file syncs that have occurred.

variable rocksdb_wal_synced

This variable shows the number of times WAL sync was done.

variable rocksdb_write_other

This variable shows the number of writes processed by another thread.

variable rocksdb_write_self

This variable shows the number of writes that were processed by a requesting thread.

variable rocksdb_write_timedout

This variable shows the number of writes ending up with timed-out.

variable rocksdb_write_wal

This variable shows the number of Write calls that request WAL.

347

CHAPTER

SEVENTYTHREE

GAP LOCKS DETECTION

The Gap locks detection is based on a Facebook MySQL patch.

If a transactional storage engine does not support gap locks (for example MyRocks) and a gap lock is being attempted
while the transaction isolation level is either REPEATABLE READ or SERIALIZABLE, the following SQL error will
be returned to the client and no actual gap lock will be taken on the effected rows.

ERROR HY000: Using Gap Lock without full unique key in multi-table or multi-statement
→˓transactions is not allowed. You need to either rewrite queries to use all unique
→˓key columns in WHERE equal conditions, or rewrite to single-table, single-statement
→˓transaction.

348

https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html#innodb-gap-locks

CHAPTER

SEVENTYFOUR

DATA LOADING

By default, MyRocks configurations are optimized for short transactions, and not for data loading. MyRocks has a
couple of special session variables to speed up data loading dramatically.

Sorted bulk loading

If your data is guaranteed to be loaded in primary key order, then this method is recommended. This method works by
dropping any secondary keys first, loading data into your table in primary key order, and then restoring the secondary
keys via Fast Secondary Index Creation.

Creating Secondary Indexes

When loading data into empty tables, it is highly recommended to drop all secondary indexes first, then loading data,
and adding all secondary indexes after finishing loading data. MyRocks has a feature called Fast Secondary
Index Creation. Fast Secondary Index Creation is automatically used when executing CREATE INDEX or
ALTER TABLE ... ADD INDEX. With Fast Secondary Index Creation, the secondary index entries are directly
written to bottommost RocksDB levels and bypassing compaction. This significantly reduces total write volume and
CPU time for decompressing and compressing data on higher levels.

Loading Data

As described above, loading data is highly recommended for tables with primary key only (no secondary keys), with
all secondary indexes added after loading data.

When loading data into MyRocks tables, there are two recommended session variables:

SET session sql_log_bin=0;
SET session rocksdb_bulk_load=1;

When converting from large MyISAM/InnoDB tables, either by using the ALTER or INSERT INTO SELECT state-
ments it’s recommended that you create MyRocks tables as below (in case the table is sufficiently big it will cause the
server to consume all the memory and then be terminated by the OOM killer):

SET session sql_log_bin=0;
SET session rocksdb_bulk_load=1;
ALTER TABLE large_myisam_table ENGINE=RocksDB;
SET session rocksdb_bulk_load=0;

349

Percona Server Documentation, Release 8.0.18-9

Using sql_log_bin=0 avoids writing to binary logs.

With rocksdb_bulk_load set to 1, MyRocks enters special mode to write all inserts into bottommost RocksDB
levels, and skips writing data into MemTable and the following compactions. This is very efficient way to load data.

The rocksdb_bulk_load mode operates with a few conditions:

• None of the data being bulk loaded can overlap with existing data in the table. The easiest way to ensure this is
to always bulk load into an empty table, but the mode will allow loading some data into the table, doing other
operations, and then returning and bulk loading addition data if there is no overlap between what is being loaded
and what already exists.

• The data may not be visible until bulk load mode is ended (i.e. the rocksdb_bulk_load is set to zero
again). The method that is used is building up SST files which will later be added as-is to the database. Until a
particular SST has been added the data will not be visible to the rest of the system, thus issuing a SELECT on
the table currently being bulk loaded will only show older data and will likely not show the most recently added
rows. Ending the bulk load mode will cause the most recent SST file to be added. When bulk loading multiple
tables, starting a new table will trigger the code to add the most recent SST file to the system – as a result, it is
inadvisable to interleave INSERT statements to two or more tables during bulk load mode.

By default, the rocksdb_bulk_load mode expects all data be inserted in primary key order (or reversed order).
If the data is in the reverse order (i.e. the data is descending on a normally ordered primary key or is ascending on a
reverse ordered primary key), the rows are cached in chunks to switch the order to match the expected order.

Inserting one or more rows out of order will result in an error and may result in some of the data being inserted in
the table and some not. To resolve the problem, one can either fix the data order of the insert, truncate the table, and
restart.

Unsorted bulk loading

If your data is not ordered in primary key order, then this method is recommended. With this method, secondary keys
do not need to be dropped and restored. However, writing to the primary key no longer goes directly to SST files, and
are written to temporary files for sorted first, so there is extra cost to this method.

To allow for loading unsorted data:

SET session sql_log_bin=0;
SET session rocksdb_bulk_load_allow_unsorted=1;
SET session rocksdb_bulk_load=1;
...
SET session rocksdb_bulk_load=0;
SET session rocksdb_bulk_load_allow_unsorted=0;

Note that rocksdb_bulk_load_allow_unsorted can only be changed when rocksdb_bulk_load is dis-
abled (set to 0). In this case, all input data will go through an intermediate step that writes the rows to temporary SST
files, sorts them rows in the primary key order, and then writes to final SST files in the correct order.

Other Approaches

If rocksdb_commit_in_the_middle is enabled, MyRocks implicitly commits every
rocksdb_bulk_load_size records (default is 1,000) in the middle of your transaction. If your data
loading fails in the middle of the statement (LOAD DATA or bulk INSERT), rows are not entirely rolled back, but
some of rows are stored in the table. To restart data loading, you’ll need to truncate the table and loading data again.

74.2. Unsorted bulk loading 350

Percona Server Documentation, Release 8.0.18-9

Warning: If you are loading large data without enabling rocksdb_bulk_load or
rocksdb_commit_in_the_middle, please make sure transaction size is small enough. All modifica-
tions of the ongoing transactions are kept in memory.

Other Reading

• Data Loading - this document has been used as a source for writing this documentation

• ALTER TABLE ... ENGINE=ROCKSDB uses too much memory

74.4. Other Reading 351

https://github.com/facebook/mysql-5.6/wiki/Data-Loading
https://github.com/facebook/mysql-5.6/issues/692

Part XII

Reference

352

353

Percona Server Documentation, Release 8.0.18-9

CHAPTER

SEVENTYFIVE

LIST OF UPSTREAM MYSQL BUGS FIXED IN PERCONA SERVER
FOR MYSQL 8.0

Upstream Bug #93788 - main.mysqldump is failing because of dropped event
JIRA bug #5268
Upstream State Duplicate (checked on 2019-01-16)
Fix Released 8.0.13-4
Upstream Fix N/A

Upstream Bug #93708 - Page Cleaner will sleep for long time if clock changes
JIRA bug #5221
Upstream State Verified (checked on 2019-03-11)
Fix Released 8.0.15-5
Upstream Fix N/A

Upstream Bug #93703 - EXPLAIN SELECT returns inconsistent number of ROWS in
main.group_by

JIRA bug #5306
Upstream State Need Feedback (checked on 2019-01-16)
Fix Released 8.0.13-4
Upstream Fix N/A

Upstream Bug #93686 - innodb.upgrade_orphan fails because of left files
JIRA bug #5209
Upstream State Verified (checked on 2019-01-16)
Fix Released 8.0.13-4
Upstream Fix N/A

Upstream Bug #93544 - SHOW BINLOG EVENTS FROM <bad offset> is not diagnosed
JIRA bug #5126
Upstream State Verified (checked on 2019-01-16)
Fix Released 8.0.13-4
Upstream Fix N/A

Upstream Bug #89840 - 60-80k connections causing empty reply for select
JIRA bug #314
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #89607 - MySQL crash in debug, PFS thread not handling singals.
JIRA bug #311
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #89598 - plugin_mecab.cc:54:19: warning: unused variable ‘bundle_mecab’
JIRA bug #3804
Upstream State Closed
Fix Released 8.0.12-2rc1
Upstream Fix 8.0

Upstream Bug #89467 - Redundant GTID unsafe mark for CREATE/DROP TEMPORARY TABLE
in RBR/MBR

JIRA bug #1816
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #89313 - 60-80k connections causing empty reply for select
JIRA bug #314
Upstream State N/A
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #88720 - Inconsistent and unsafe FLUSH behavior in terms of replication
JIRA bug #1827
Upstream State Verified (checked on 2019-03-11)
Fix Released 8.0.15-5
Upstream Fix N/A

Upstream Bug #88057 - Intermediary slave does not log master changes with ...
JIRA bug #1119
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #85208 - A follow-up fix for buffer pool mutex split patch might be suboptimal, ...
JIRA bug #3755
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #85205 - A follow-up fix for buffer pool mutex split patch might be suboptimal, ...
JIRA bug #3754
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #84366 - InnoDB index dives do not detect concurrent tree changes, return bogus ...
JIRA bug #1743
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #83648 - Assertion failure in thread x in file fts0que.cc line 3659
JIRA bug #1023
Upstream State N/A
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #82935 - Cipher ECDHE-RSA-AES128-GCM-SHA256 listed in
man/Ssl_cipher_list, not ...

JIRA bug #1737
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #82480 - Incorrect schema mismatch error message when importing mismatched ta-
bles

JIRA bug #1697
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #80496 - buf_dblwr_init_or_load_pages now returns an error code, but caller not ...
JIRA bug #3384
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #77591 - ALTER TABLE does not allow to change NULL/NOT NULL if foreign key
exists

JIRA bug #1635
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #77399 - Deadlocks missed by INFORMATION_SCHEMA.INNODB_METRICS
lock_deadlocks ...

JIRA bug #1632
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #76418 - Server crashes when querying partitioning table MySQL_5.7.14
JIRA bug #1050
Upstream State N/A
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #76142 - InnoDB tablespace import fails when importing table w/ different data ...
JIRA bug #1697
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #76020 - InnoDB does not report filename in I/O error message for reads
JIRA bug #2455
Upstream State Verified (checked on 2019-03-11)
Fix Released 8.0.15-5
Upstream Fix N/A

Upstream Bug #75480 - Selecting wrong pos with SHOW BINLOG EVENTS causes a potentially
...

JIRA bug #1600
Upstream State N/A
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #75311 - Error for SSL cipher is unhelpful
JIRA bug #1779
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #71761 - ANALYZE TABLE should remove its table from background stat processing
...

JIRA bug #1749
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream Bug #71411 - buf_flush_LRU() does not return correct number in case of compressed ...
JIRA bug #2053
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

Upstream bug #71217 - Threadpool - add thd_wait_begin/thd_wait_end to the network IO functions
JIRA bug #1343
Upstream state Open (checked on 2018-05-24)
Fix Released 8.0.13-3
Upstream Fix N/A

Upstream Bug #53588 - Blackhole : Specified key was too long; max key length is 1000 bytes
JIRA bug #1126
Upstream State Verified (checked on 2018-11-20)
Fix Released 8.0.12-2rc1
Upstream Fix N/A

354

http://bugs.mysql.com/bug.php?id=93788
https://jira.percona.com/browse/PS-5268
http://bugs.mysql.com/bug.php?id=93708
https://jira.percona.com/browse/PS-5221
http://bugs.mysql.com/bug.php?id=93703
https://jira.percona.com/browse/PS-5306
http://bugs.mysql.com/bug.php?id=93686
https://jira.percona.com/browse/PS-5209
http://bugs.mysql.com/bug.php?id=93544
https://jira.percona.com/browse/PS-5126
http://bugs.mysql.com/bug.php?id=89840
https://jira.percona.com/browse/PS-314
http://bugs.mysql.com/bug.php?id=89607
https://jira.percona.com/browse/PS-311
http://bugs.mysql.com/bug.php?id=89598
https://jira.percona.com/browse/PS-3804
http://bugs.mysql.com/bug.php?id=89467
https://jira.percona.com/browse/PS-1816
http://bugs.mysql.com/bug.php?id=89313
https://jira.percona.com/browse/PS-314
http://bugs.mysql.com/bug.php?id=88720
https://jira.percona.com/browse/PS-1827
http://bugs.mysql.com/bug.php?id=88057
https://jira.percona.com/browse/PS-1119
http://bugs.mysql.com/bug.php?id=85208
https://jira.percona.com/browse/PS-3755
http://bugs.mysql.com/bug.php?id=85205
https://jira.percona.com/browse/PS-3754
http://bugs.mysql.com/bug.php?id=84366
https://jira.percona.com/browse/PS-1743
http://bugs.mysql.com/bug.php?id=83648
https://jira.percona.com/browse/PS-1023
http://bugs.mysql.com/bug.php?id=82935
https://jira.percona.com/browse/PS-1737
http://bugs.mysql.com/bug.php?id=82480
https://jira.percona.com/browse/PS-1697
http://bugs.mysql.com/bug.php?id=80496
https://jira.percona.com/browse/PS-3384
http://bugs.mysql.com/bug.php?id=77591
https://jira.percona.com/browse/PS-1635
http://bugs.mysql.com/bug.php?id=77399
https://jira.percona.com/browse/PS-1632
http://bugs.mysql.com/bug.php?id=76418
https://jira.percona.com/browse/PS-1050
http://bugs.mysql.com/bug.php?id=76142
https://jira.percona.com/browse/PS-1697
http://bugs.mysql.com/bug.php?id=76020
https://jira.percona.com/browse/PS-2455
http://bugs.mysql.com/bug.php?id=75480
https://jira.percona.com/browse/PS-1600
http://bugs.mysql.com/bug.php?id=75311
https://jira.percona.com/browse/PS-1779
http://bugs.mysql.com/bug.php?id=71761
https://jira.percona.com/browse/PS-1749
http://bugs.mysql.com/bug.php?id=71411
https://jira.percona.com/browse/PS-2053
http://bugs.mysql.com/bug.php?id=71217
https://jira.percona.com/browse/PS-1343
http://bugs.mysql.com/bug.php?id=53588
https://jira.percona.com/browse/PS-1126

CHAPTER

SEVENTYSIX

LIST OF VARIABLES INTRODUCED IN PERCONA SERVER FOR
MYSQL 8.0

System Variables

Name Cmd-
Line

Option
File

Var Scope Dynamic

audit_log_buffer_size Yes Yes Global No
audit_log_file Yes Yes Global No
audit_log_flush Yes Yes Global Yes
audit_log_format Yes Yes Global No
audit_log_handler Yes Yes Global No
audit_log_policy Yes Yes Global Yes
audit_log_rotate_on_size Yes Yes Global No
audit_log_rotations Yes Yes Global No
audit_log_strategy Yes Yes Global No
audit_log_syslog_facility Yes Yes Global No
audit_log_syslog_ident Yes Yes Global No
audit_log_syslog_priority Yes Yes Global No
csv_mode Yes Yes Both Yes
enforce_storage_engine Yes Yes Global No
expand_fast_index_creation Yes No Both Yes
extra_max_connections Yes Yes Global Yes
extra_port Yes Yes Global No
have_backup_locks Yes No Global No
have_backup_safe_binlog_info Yes No Global No
have_snapshot_cloning Yes No Global No
innodb_cleaner_lsn_age_factor Yes Yes Global Yes
innodb_corrupt_table_action Yes Yes Global Yes
innodb_empty_free_list_algorithm Yes Yes Global Yes
innodb_encrypt_online_alter_logs Yes Yes Global Yes
innodb_encrypt_tables Yes Yes Global Yes
innodb_kill_idle_transaction Yes Yes Global Yes
innodb_max_bitmap_file_size Yes Yes Global Yes
innodb_max_changed_pages Yes Yes Global Yes
innodb_print_lock_wait_timeout_info Yes Yes Global Yes
innodb_show_locks_held Yes Yes Global Yes
innodb_temp_tablespace_encrypt Yes Yes Global No
innodb_track_changed_pages Yes Yes Global No

Continued on next page

355

Percona Server Documentation, Release 8.0.18-9

Table 76.1 – continued from previous page
Name Cmd-

Line
Option
File

Var Scope Dynamic

keyring_vault_config Yes Yes Global Yes
keyring_vault_timeout Yes Yes Global Yes
log_slow_filter Yes Yes Both Yes
log_slow_rate_limit Yes Yes Both Yes
log_slow_rate_type Yes Yes Global Yes
log_slow_sp_statements Yes Yes Global Yes
log_slow_verbosity Yes Yes Both Yes
log_warnings_suppress Yes Yes Global Yes
proxy_protocol_networks Yes Yes Global No
query_response_time_flush Yes No Global No
query_response_time_range_base Yes Yes Global Yes
query_response_time_stats Yes Yes Global Yes
slow_query_log_always_write_time Yes Yes Global Yes
slow_query_log_use_global_control Yes Yes Global Yes
thread_pool_high_prio_mode Yes Yes Both Yes
thread_pool_high_prio_tickets Yes Yes Both Yes
thread_pool_idle_timeout Yes Yes Global Yes
thread_pool_max_threads Yes Yes Global Yes
thread_pool_oversubscribe Yes Yes Global Yes
thread_pool_size Yes Yes Global Yes
thread_pool_stall_limit Yes Yes Global No
thread_statistics Yes Yes Global Yes
tokudb_alter_print_error
tokudb_analyze_delete_fraction
tokudb_analyze_in_background Yes Yes Both Yes
tokudb_analyze_mode Yes Yes Both Yes
tokudb_analyze_throttle Yes Yes Both Yes
tokudb_analyze_time Yes Yes Both Yes
tokudb_auto_analyze Yes Yes Both Yes
tokudb_block_size
tokudb_bulk_fetch
tokudb_cache_size
tokudb_cachetable_pool_threads Yes Yes Global No
tokudb_cardinality_scale_percent
tokudb_check_jemalloc
tokudb_checkpoint_lock
tokudb_checkpoint_on_flush_logs
tokudb_checkpoint_pool_threads Yes Yes Global No
tokudb_checkpointing_period
tokudb_cleaner_iterations
tokudb_cleaner_period
tokudb_client_pool_threads Yes Yes Global No
tokudb_commit_sync
tokudb_compress_buffers_before_eviction Yes Yes Global No
tokudb_create_index_online
tokudb_data_dir
tokudb_debug
tokudb_directio

Continued on next page

76.1. System Variables 356

Percona Server Documentation, Release 8.0.18-9

Table 76.1 – continued from previous page
Name Cmd-

Line
Option
File

Var Scope Dynamic

tokudb_disable_hot_alter
tokudb_disable_prefetching
tokudb_disable_slow_alter
tokudb_empty_scan
tokudb_enable_partial_eviction Yes Yes Global No
tokudb_fanout Yes Yes Both Yes
tokudb_fs_reserve_percent
tokudb_fsync_log_period
tokudb_hide_default_row_format
tokudb_killed_time
tokudb_last_lock_timeout
tokudb_load_save_space
tokudb_loader_memory_size
tokudb_lock_timeout
tokudb_lock_timeout_debug
tokudb_log_dir
tokudb_max_lock_memory
tokudb_optimize_index_fraction
tokudb_optimize_index_name
tokudb_optimize_throttle
tokudb_pk_insert_mode
tokudb_prelock_empty
tokudb_read_block_size
tokudb_read_buf_size
tokudb_read_status_frequency
tokudb_row_format
tokudb_rpl_check_readonly
tokudb_rpl_lookup_rows
tokudb_rpl_lookup_rows_delay
tokudb_rpl_unique_checks
tokudb_rpl_unique_checks_delay
tokudb_strip_frm_data Yes Yes Global No
tokudb_support_xa
tokudb_tmp_dir
tokudb_version
tokudb_write_status_frequency
userstat Yes Yes Global Yes
version_comment Yes Yes Global Yes
version_suffix Yes Yes Global Yes

Status Variables

Name Var Type Var
Scope

Binlog_snapshot_file String Global
Binlog_snapshot_position Numeric Global

Continued on next page

76.2. Status Variables 357

Percona Server Documentation, Release 8.0.18-9

Table 76.2 – continued from previous page
Name Var Type Var

Scope
Com_lock_binlog_for_backup Numeric Both
Com_lock_tables_for_backup Numeric Both
Com_show_client_statistics Numeric Both
Com_show_index_statistics Numeric Both
Com_show_table_statistics Numeric Both
Com_show_thread_statistics Numeric Both
Com_show_user_statistics Numeric Both
Com_unlock_binlog Numeric Both
Innodb_background_log_sync Numeric Global
Innodb_buffer_pool_pages_LRU_flushed Numeric Global
Innodb_buffer_pool_pages_made_not_young Numeric Global
Innodb_buffer_pool_pages_made_young Numeric Global
Innodb_buffer_pool_pages_old Numeric Global
Innodb_checkpoint_age Numeric Global
Innodb_checkpoint_max_age Numeric Global
Innodb_ibuf_free_list Numeric Global
Innodb_ibuf_segment_size Numeric Global
Innodb_lsn_current Numeric Global
Innodb_lsn_flushed Numeric Global
Innodb_lsn_last_checkpoint Numeric Global
Innodb_master_thread_active_loops Numeric Global
Innodb_master_thread_idle_loops Numeric Global
Innodb_max_trx_id Numeric Global
Innodb_mem_adaptive_hash Numeric Global
Innodb_mem_dictionary Numeric Global
Innodb_oldest_view_low_limit_trx_id Numeric Global
Innodb_purge_trx_id Numeric Global
Innodb_purge_undo_no Numeric Global
Threadpool_idle_threads Numeric Global
Threadpool_threads Numeric Global
Tokudb_DB_OPENS
Tokudb_DB_CLOSES
Tokudb_DB_OPEN_CURRENT
Tokudb_DB_OPEN_MAX
Tokudb_LEAF_ENTRY_MAX_COMMITTED_XR
Tokudb_LEAF_ENTRY_MAX_PROVISIONAL_XR
Tokudb_LEAF_ENTRY_EXPANDED
Tokudb_LEAF_ENTRY_MAX_MEMSIZE
Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_IN
Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_OUT
Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_IN
Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_OUT
Tokudb_CHECKPOINT_PERIOD
Tokudb_CHECKPOINT_FOOTPRINT
Tokudb_CHECKPOINT_LAST_BEGAN
Tokudb_CHECKPOINT_LAST_COMPLETE_BEGAN
Tokudb_CHECKPOINT_LAST_COMPLETE_ENDED
Tokudb_CHECKPOINT_DURATION

Continued on next page

76.2. Status Variables 358

Percona Server Documentation, Release 8.0.18-9

Table 76.2 – continued from previous page
Name Var Type Var

Scope
Tokudb_CHECKPOINT_DURATION_LAST
Tokudb_CHECKPOINT_LAST_LSN
Tokudb_CHECKPOINT_TAKEN
Tokudb_CHECKPOINT_FAILED
Tokudb_CHECKPOINT_WAITERS_NOW
Tokudb_CHECKPOINT_WAITERS_MAX
Tokudb_CHECKPOINT_CLIENT_WAIT_ON_MO
Tokudb_CHECKPOINT_CLIENT_WAIT_ON_CS
Tokudb_CHECKPOINT_BEGIN_TIME
Tokudb_CHECKPOINT_LONG_BEGIN_TIME
Tokudb_CHECKPOINT_LONG_BEGIN_COUNT
Tokudb_CHECKPOINT_END_TIME
Tokudb_CHECKPOINT_LONG_END_TIME
Tokudb_CHECKPOINT_LONG_END_COUNT
Tokudb_CACHETABLE_MISS
Tokudb_CACHETABLE_MISS_TIME
Tokudb_CACHETABLE_PREFETCHES
Tokudb_CACHETABLE_SIZE_CURRENT
Tokudb_CACHETABLE_SIZE_LIMIT
Tokudb_CACHETABLE_SIZE_WRITING
Tokudb_CACHETABLE_SIZE_NONLEAF
Tokudb_CACHETABLE_SIZE_LEAF
Tokudb_CACHETABLE_SIZE_ROLLBACK
Tokudb_CACHETABLE_SIZE_CACHEPRESSURE
Tokudb_CACHETABLE_SIZE_CLONED
Tokudb_CACHETABLE_EVICTIONS
Tokudb_CACHETABLE_CLEANER_EXECUTIONS
Tokudb_CACHETABLE_CLEANER_PERIOD
Tokudb_CACHETABLE_CLEANER_ITERATIONS
Tokudb_CACHETABLE_WAIT_PRESSURE_COUNT
Tokudb_CACHETABLE_WAIT_PRESSURE_TIME
Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_COUNT
Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_TIME
Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS
Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS_ACTIVE
Tokudb_CACHETABLE_POOL_CLIENT_QUEUE_SIZE
Tokudb_CACHETABLE_POOL_CLIENT_MAX_QUEUE_SIZE
Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_ITEMS_PROCESSED
Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_EXECUTION_TIME
Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADS
Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADS_ACTIVE
Tokudb_CACHETABLE_POOL_CACHETABLE_QUEUE_SIZE
Tokudb_CACHETABLE_POOL_CACHETABLE_MAX_QUEUE_SIZE
Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_ITEMS_PROCESSED
Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_EXECUTION_TIME
Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADS
Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADS_ACTIVE
Tokudb_CACHETABLE_POOL_CHECKPOINT_QUEUE_SIZE

Continued on next page

76.2. Status Variables 359

Percona Server Documentation, Release 8.0.18-9

Table 76.2 – continued from previous page
Name Var Type Var

Scope
Tokudb_CACHETABLE_POOL_CHECKPOINT_MAX_QUEUE_SIZE
Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_ITEMS_PROCESSED
Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_EXECUTION_TIME
Tokudb_LOCKTREE_MEMORY_SIZE
Tokudb_LOCKTREE_MEMORY_SIZE_LIMIT
Tokudb_LOCKTREE_ESCALATION_NUM
Tokudb_LOCKTREE_ESCALATION_SECONDS
Tokudb_LOCKTREE_LATEST_POST_ESCALATION_MEMORY_SIZE
Tokudb_LOCKTREE_OPEN_CURRENT
Tokudb_LOCKTREE_PENDING_LOCK_REQUESTS
Tokudb_LOCKTREE_STO_ELIGIBLE_NUM
Tokudb_LOCKTREE_STO_ENDED_NUM
Tokudb_LOCKTREE_STO_ENDED_SECONDS
Tokudb_LOCKTREE_WAIT_COUNT
Tokudb_LOCKTREE_WAIT_TIME
Tokudb_LOCKTREE_LONG_WAIT_COUNT
Tokudb_LOCKTREE_LONG_WAIT_TIME
Tokudb_LOCKTREE_TIMEOUT_COUNT
Tokudb_LOCKTREE_WAIT_ESCALATION_COUNT
Tokudb_LOCKTREE_WAIT_ESCALATION_TIME
Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_COUNT
Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_TIME
Tokudb_DICTIONARY_UPDATES
Tokudb_DICTIONARY_BROADCAST_UPDATES
Tokudb_DESCRIPTOR_SET
Tokudb_MESSAGES_IGNORED_BY_LEAF_DUE_TO_MSN
Tokudb_TOTAL_SEARCH_RETRIES
Tokudb_SEARCH_TRIES_GT_HEIGHT
Tokudb_SEARCH_TRIES_GT_HEIGHTPLUS3
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_BYTES
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_UNCOMPRESSED_BYTES
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_SECONDS
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_BYTES
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_UNCOMPRESSE
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_SECONDS
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_BYTES
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_UNCOMPRESSED_BYTES
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_SECONDS
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_BYTES
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_UNCOMPRESSED_BY
Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_SECONDS
Tokudb_LEAF_NODE_COMPRESSION_RATIO
Tokudb_NONLEAF_NODE_COMPRESSION_RATIO
Tokudb_OVERALL_NODE_COMPRESSION_RATIO

Continued on next page

76.2. Status Variables 360

Percona Server Documentation, Release 8.0.18-9

Table 76.2 – continued from previous page
Name Var Type Var

Scope
Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS
Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS_BYTES
Tokudb_LEAF_NODE_PARTIAL_EVICTIONS
Tokudb_LEAF_NODE_PARTIAL_EVICTIONS_BYTES
Tokudb_LEAF_NODE_FULL_EVICTIONS
Tokudb_LEAF_NODE_FULL_EVICTIONS_BYTES
Tokudb_NONLEAF_NODE_FULL_EVICTIONS
Tokudb_NONLEAF_NODE_FULL_EVICTIONS_BYTES
Tokudb_LEAF_NODES_CREATED
Tokudb_NONLEAF_NODES_CREATED
Tokudb_LEAF_NODES_DESTROYED
Tokudb_NONLEAF_NODES_DESTROYED
Tokudb_MESSAGES_INJECTED_AT_ROOT_BYTES
Tokudb_MESSAGES_FLUSHED_FROM_H1_TO_LEAVES_BYTES
Tokudb_MESSAGES_IN_TREES_ESTIMATE_BYTES
Tokudb_MESSAGES_INJECTED_AT_ROOT
Tokudb_BROADCASE_MESSAGES_INJECTED_AT_ROOT
Tokudb_BASEMENTS_DECOMPRESSED_TARGET_QUERY
Tokudb_BASEMENTS_DECOMPRESSED_PRELOCKED_RANGE
Tokudb_BASEMENTS_DECOMPRESSED_PREFETCH
Tokudb_BASEMENTS_DECOMPRESSED_FOR_WRITE
Tokudb_BUFFERS_DECOMPRESSED_TARGET_QUERY
Tokudb_BUFFERS_DECOMPRESSED_PRELOCKED_RANGE
Tokudb_BUFFERS_DECOMPRESSED_PREFETCH
Tokudb_BUFFERS_DECOMPRESSED_FOR_WRITE
Tokudb_PIVOTS_FETCHED_FOR_QUERY
Tokudb_PIVOTS_FETCHED_FOR_QUERY_BYTES
Tokudb_PIVOTS_FETCHED_FOR_QUERY_SECONDS
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_BYTES
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_SECONDS
Tokudb_PIVOTS_FETCHED_FOR_WRITE
Tokudb_PIVOTS_FETCHED_FOR_WRITE_BYTES
Tokudb_PIVOTS_FETCHED_FOR_WRITE_SECONDS
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_BYTES
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_SECONDS
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_BYTES
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_SECONDS
Tokudb_BASEMENTS_FETCHED_PREFETCH
Tokudb_BASEMENTS_FETCHED_PREFETCH_BYTES
Tokudb_BASEMENTS_FETCHED_PREFETCH_SECONDS
Tokudb_BASEMENTS_FETCHED_FOR_WRITE
Tokudb_BASEMENTS_FETCHED_FOR_WRITE_BYTES
Tokudb_BASEMENTS_FETCHED_FOR_WRITE_SECONDS
Tokudb_BUFFERS_FETCHED_TARGET_QUERY
Tokudb_BUFFERS_FETCHED_TARGET_QUERY_BYTES

Continued on next page

76.2. Status Variables 361

Percona Server Documentation, Release 8.0.18-9

Table 76.2 – continued from previous page
Name Var Type Var

Scope
Tokudb_BUFFERS_FETCHED_TARGET_QUERY_SECONDS
Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE
Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_BYTES
Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_SECONDS
Tokudb_BUFFERS_FETCHED_PREFETCH
Tokudb_BUFFERS_FETCHED_PREFETCH_BYTES
Tokudb_BUFFERS_FETCHED_PREFETCH_SECONDS
Tokudb_BUFFERS_FETCHED_FOR_WRITE
Tokudb_BUFFERS_FETCHED_FOR_WRITE_BYTES
Tokudb_BUFFERS_FETCHED_FOR_WRITE_SECONDS
Tokudb_LEAF_COMPRESSION_TO_MEMORY_SECONDS
Tokudb_LEAF_SERIALIZATION_TO_MEMORY_SECONDS
Tokudb_LEAF_DECOMPRESSION_TO_MEMORY_SECONDS
Tokudb_LEAF_DESERIALIZATION_TO_MEMORY_SECONDS
Tokudb_NONLEAF_COMPRESSION_TO_MEMORY_SECONDS
Tokudb_NONLEAF_SERIALIZATION_TO_MEMORY_SECONDS
Tokudb_NONLEAF_DECOMPRESSION_TO_MEMORY_SECONDS
Tokudb_NONLEAF_DESERIALIZATION_TO_MEMORY_SECONDS
Tokudb_PROMOTION_ROOTS_SPLIT
Tokudb_PROMOTION_LEAF_ROOTS_INJECTED_INTO
Tokudb_PROMOTION_H1_ROOTS_INJECTED_INTO
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_0
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_1
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_2
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_3
Tokudb_PROMOTION_INJECTIONS_LOWER_THAN_DEPTH_3
Tokudb_PROMOTION_STOPPED_NONEMPTY_BUFFER
Tokudb_PROMOTION_STOPPED_AT_HEIGHT_1
Tokudb_PROMOTION_STOPPED_CHILD_LOCKED_OR_NOT_IN_MEMORY
Tokudb_PROMOTION_STOPPED_CHILD_NOT_FULLY_IN_MEMORY
Tokudb_PROMOTION_STOPPED_AFTER_LOCKING_CHILD
Tokudb_BASEMENT_DESERIALIZATION_FIXED_KEY
Tokudb_BASEMENT_DESERIALIZATION_VARIABLE_KEY
Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_SUCCESS
Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_POS
Tokudb_RIGHTMOST_LEAF_SHORTCUT_FAIL_REACTIVE
Tokudb_CURSOR_SKIP_DELETED_LEAF_ENTRY
Tokudb_FLUSHER_CLEANER_TOTAL_NODES
Tokudb_FLUSHER_CLEANER_H1_NODES
Tokudb_FLUSHER_CLEANER_HGT1_NODES
Tokudb_FLUSHER_CLEANER_EMPTY_NODES
Tokudb_FLUSHER_CLEANER_NODES_DIRTIED
Tokudb_FLUSHER_CLEANER_MAX_BUFFER_SIZE
Tokudb_FLUSHER_CLEANER_MIN_BUFFER_SIZE
Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_SIZE
Tokudb_FLUSHER_CLEANER_MAX_BUFFER_WORKDONE
Tokudb_FLUSHER_CLEANER_MIN_BUFFER_WORKDONE
Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_WORKDONE

Continued on next page

76.2. Status Variables 362

Percona Server Documentation, Release 8.0.18-9

Table 76.2 – continued from previous page
Name Var Type Var

Scope
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_STARTED
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_RUNNING
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_COMPLETED
Tokudb_FLUSHER_CLEANER_NUM_DIRTIED_FOR_LEAF_MERGE
Tokudb_FLUSHER_FLUSH_TOTAL
Tokudb_FLUSHER_FLUSH_IN_MEMORY
Tokudb_FLUSHER_FLUSH_NEEDED_IO
Tokudb_FLUSHER_FLUSH_CASCADES
Tokudb_FLUSHER_FLUSH_CASCADES_1
Tokudb_FLUSHER_FLUSH_CASCADES_2
Tokudb_FLUSHER_FLUSH_CASCADES_3
Tokudb_FLUSHER_FLUSH_CASCADES_4
Tokudb_FLUSHER_FLUSH_CASCADES_5
Tokudb_FLUSHER_FLUSH_CASCADES_GT_5
Tokudb_FLUSHER_SPLIT_LEAF
Tokudb_FLUSHER_SPLIT_NONLEAF
Tokudb_FLUSHER_MERGE_LEAF
Tokudb_FLUSHER_MERGE_NONLEAF
Tokudb_FLUSHER_BALANCE_LEAF
Tokudb_HOT_NUM_STARTED
Tokudb_HOT_NUM_COMPLETED
Tokudb_HOT_NUM_ABORTED
Tokudb_HOT_MAX_ROOT_FLUSH_COUNT
Tokudb_TXN_BEGIN
Tokudb_TXN_BEGIN_READ_ONLY
Tokudb_TXN_COMMITS
Tokudb_TXN_ABORTS
Tokudb_LOGGER_NEXT_LSN
Tokudb_LOGGER_WRITES
Tokudb_LOGGER_WRITES_BYTES
Tokudb_LOGGER_WRITES_UNCOMPRESSED_BYTES
Tokudb_LOGGER_WRITES_SECONDS
Tokudb_LOGGER_WAIT_LONG
Tokudb_LOADER_NUM_CREATED
Tokudb_LOADER_NUM_CURRENT
Tokudb_LOADER_NUM_MAX
Tokudb_MEMORY_MALLOC_COUNT
Tokudb_MEMORY_FREE_COUNT
Tokudb_MEMORY_REALLOC_COUNT
Tokudb_MEMORY_MALLOC_FAIL
Tokudb_MEMORY_REALLOC_FAIL
Tokudb_MEMORY_REQUESTED
Tokudb_MEMORY_USED
Tokudb_MEMORY_FREED
Tokudb_MEMORY_MAX_REQUESTED_SIZE
Tokudb_MEMORY_LAST_FAILED_SIZE
Tokudb_MEM_ESTIMATED_MAXIMUM_MEMORY_FOOTPRINT
Tokudb_MEMORY_MALLOCATOR_VERSION

Continued on next page

76.2. Status Variables 363

Percona Server Documentation, Release 8.0.18-9

Table 76.2 – continued from previous page
Name Var Type Var

Scope
Tokudb_MEMORY_MMAP_THRESHOLD
Tokudb_FILESYSTEM_THREADS_BLOCKED_BY_FULL_DISK
Tokudb_FILESYSTEM_FSYNC_TIME
Tokudb_FILESYSTEM_FSYNC_NUM
Tokudb_FILESYSTEM_LONG_FSYNC_TIME
Tokudb_FILESYSTEM_LONG_FSYNC_NUM

76.2. Status Variables 364

CHAPTER

SEVENTYSEVEN

DEVELOPMENT OF PERCONA SERVER FOR MYSQL

Percona Server for MySQL is an open source project to produce a distribution of the MySQL Server with improved
performance, scalability and diagnostics.

Submitting Changes

We keep trunk in a constant state of stability to allow for a release at any time and to minimize wasted time by
developers due to broken code.

Overview

At Percona we use Git for source control, GitHub for code hosting, and Jira for release management.

We change our software to implement new features or to fix bugs. Refactoring could be classed either as a new feature
or a bug depending on the scope of work.

New features and bugs are targeted to specific milestones (releases). A milestone is part of a series. For example, 1.6
is a series in Percona XtraBackup and 1.6.1, 1.6.2 and 1.6.3 are milestones in this series.

Code is proposed for merging in the form of pull requests on GitHub.

For some software (such as Percona Xtrabackup), we maintain both a development branch and a stable branch. For
example: Xtrabackup 1.6 is the current stable series. Changes that should make it into bugfix releases of 1.6 should
be proposed for the 1.6 tree. However, most new features or more invasive (or smaller) bug fixes should be targeted to
the next release, in this example - 1.7. If submitting something to the stable release, you should also propose a branch
that has these changes merged to the development release. This way somebody else doesn’t have to attempt to merge
your code and we get to run any extra tests that may be in the tree (and check compatibility with all platforms).

For Percona Server for MySQL, we have several Git branches on which development occurs: 5.5, 5.6, 5.7, and 8.0. As
Percona Server for MySQL is not a traditional project, instead of being a set of patches against an existing product,
these branches are not related. In other words, we do not merge from one release branch to another. To have your
changes in several branches, you must propose branches to each release branch.

Making a Change to a Project

In this case, we are going to use percona-xtrabackup as an example. The workflow is similar for Percona Server
for MySQL, but the patch will need to be modified in all release branches of Percona Server for MySQL.

• git branch https://github.com/percona/percona-xtrabackup/featureX (where ‘fea-
tureX’ is a sensible name for the task at hand)

• (developer makes changes in featureX, testing locally)

365

https://git-scm.com
https://github.com/percona
https://jira.percona.com

Percona Server Documentation, Release 8.0.18-9

• The Developer pushes to https://github.com/percona/username/percona-xtrabackup/
featureX

• The developer can submit a pull request to https://github.com/percona/percona-xtrabackup,

• Code undergoes a review

• Once code is accepted, it can be merged

If the change also applies to a stable release (e.g. 1.6) then changes should be made on a branch of 1.6 and merged
to a branch of trunk. In this case there should be two branches run through the param build and two merge proposals
(one for the stable release and one with the changes merged to trunk). This prevents somebody else having to guess
how to merge your changes.

Percona Server for MySQL

The same process for Percona Server for MySQL, but we have several different branches (and merge requests).

77.1. Submitting Changes 366

https://github.com/percona/percona-xtrabackup

CHAPTER

SEVENTYEIGHT

TRADEMARK POLICY

This Trademark Policy is to ensure that users of Percona-branded products or services know that what they receive
has really been developed, approved, tested and maintained by Percona. Trademarks help to prevent confusion in the
marketplace, by distinguishing one company’s or person’s products and services from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB, XtraBackup, Per-
cona XtraBackup, Percona Server for MySQL, and Percona Live, plus the distinctive visual icons and logos associated
with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service, website,
or other use is not permitted without Percona’s written permission with the following three limited exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona fide Percona
product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”), you may
use the appropriate Percona mark when distributing a verbatim copy of that product in accordance with the terms and
conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software that has
been modified with minor changes for the sole purpose of allowing the software to operate on an operating system
or hardware platform for which Percona has not yet released the software, provided that those third party changes
do not affect the behavior, functionality, features, design or performance of the software. Users who acquire this
Percona-branded software receive substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if Percona
believes that your modification is beyond the scope of the limited license granted in this Policy or that your use
of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon revocation, you must
immediately cease using the applicable Percona mark. If you do not immediately cease using the Percona mark upon
revocation, Percona may take action to protect its rights and interests in the Percona mark. Percona does not grant any
license to use any Percona mark for any other modified versions of Percona software; such use will require our prior
written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate, modify
or otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a modified version of
the Percona Server for MySQL, XYZ may not brand that modification as “XYZ Percona Server” or “Percona XYZ
Server”, even if that modification otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as amended from
time to time. For instance, any mention of Percona trademarks should include the full trademarked name, with proper
spelling and capitalization, along with attribution of ownership to Percona Inc. For example, the full proper name for
XtraBackup is Percona XtraBackup. However, it is acceptable to omit the word “Percona” for brevity on the second
and subsequent uses, where such omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please contact
trademarks@percona.com for assistance and we will do our very best to be helpful.

367

mailto:trademarks@percona.com

CHAPTER

SEVENTYNINE

INDEX OF INFORMATION_SCHEMA TABLES

This is a list of the INFORMATION_SCHEMA TABLES that exist in Percona Server for MySQL with XtraDB. The
entry for each table points to the page in the documentation where it’s described.

• CLIENT_STATISTICS

• GLOBAL_TEMPORARY_TABLES

• INDEX_STATISTICS

• INNODB_CHANGED_PAGES

• QUERY_RESPONSE_TIME

• TABLE_STATISTICS

• TEMPORARY_TABLES

• THREAD_STATISTICS

• USER_STATISTICS

• XTRADB_INTERNAL_HASH_TABLES

• XTRADB_READ_VIEW

• XTRADB_RSEG

• XTRADB_ZIP_DICT

• XTRADB_ZIP_DICT_COLS

368

https://www.percona.com/doc/percona-server/5.7/diagnostics/response_time_distribution.html#QUERY_RESPONSE_TIME
https://www.percona.com/doc/percona-server/5.7/diagnostics/misc_info_schema_tables.html#XTRADB_RSEG
https://www.percona.com/doc/percona-server/5.7/flexibility/compressed_columns.html#XTRADB_ZIP_DICT
https://www.percona.com/doc/percona-server/5.7/flexibility/compressed_columns.html#XTRADB_ZIP_DICT_COLS

CHAPTER

EIGHTY

FREQUENTLY ASKED QUESTIONS

Q: Will Percona Server for MySQL with XtraDB invalidate our MySQL
support?

A: We don’t know the details of your support contract. You should check with your Oracle representative. We have
heard anecdotal stories from MySQL Support team members that they have customers who use Percona Server for
MySQL with XtraDB, but you should not base your decision on that.

Q: Will we have to GPL our whole application if we use Percona
Server for MySQL with XtraDB?

A: This is a common misconception about the GPL. We suggest reading the Free Software Foundation ‘s excellent
reference material on the GPL Version 2, which is the license that applies to MySQL and therefore to Percona Server
for MySQL with XtraDB. That document contains links to many other documents which should answer your questions.
Percona is unable to give legal advice about the GPL.

Q: Do I need to install Percona client libraries?

A: No, you don’t need to change anything on the clients. Percona Server for MySQL is 100% compatible with all
existing client libraries and connectors.

Q: When using the Percona XtraBackup to setup a replication slave
on Debian based systems I’m getting: “ERROR 1045 (28000):
Access denied for user ‘debian-sys-maint’@’localhost‘ (using
password: YES)”

A: In case you’re using init script on Debian based system to start mysqld, be sure that the password for
debian-sys-maint user has been updated and it’s the same as that user’s password from the server that the
backup has been taken from. The password can be seen and updated in /etc/mysql/debian.cnf. For more
information on how to set up a replication slave using Percona XtraBackup see this how-to.

369

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.percona.com/doc/percona-xtrabackup/2.1/howtos/setting_up_replication.html

CHAPTER

EIGHTYONE

COPYRIGHT AND LICENSING INFORMATION

Documentation Licensing

This software documentation is (C)2009-2018 Percona LLC and/or its affiliates and is distributed under the Creative
Commons Attribution-ShareAlike 2.0 Generic license.

Software License

Percona Server for MySQL is built upon MySQL from Oracle. Along with making our own modifications, we merge
in changes from other sources such as community contributions and changes from MariaDB.

The original SHOW USER/TABLE/INDEX statistics code came from Google.

Percona does not require copyright assignment.

See the COPYING files accompanying the software distribution.

370

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

CHAPTER

EIGHTYTWO

PERCONA SERVER FOR MYSQL 8.0 RELEASE NOTES

Percona Server for MySQL 8.0.18-9

Percona announces the release of Percona Server for MySQL 8.0.18-9 on December 11, 2019 (downloads are available
here and from the Percona Software Repositories).

This release includes fixes to bugs found in previous releases of Percona Server for MySQL 8.0.

Percona Server for MySQL 8.0.18-9 is now the current GA release in the 8.0 series. All of Percona’s software is
open-source and free.

Percona Server for MySQL 8.0 includes all the features available in MySQL 8.0.18 Community Edition in addition to
enterprise-grade features developed by Percona.

Bugs Fixed

• Setting the none value for slow_query_log_use_global_control generates an error. Bugs fixed
#5813.

• If pam_krb5 allows the user to change their password, and the password expired, a new password may cause a
server exit. Bug fixed #6023.

• An incorrect assertion was triggered if any temporary tables should be logged to binlog. This event may cause
a server exit. Bug fixed #5181.

• The Handler failed to trigger on Error 1049, SQLSTATE 42000, or plain sqlexception. Bug fixed #6094. (Up-
stream #97682)

• When executing SHOW GLOBAL STATUS, the variables may return incorrect values. Bug fixed #5966.

• The memory storage engine detected an incorrect full condition even though the space contained reusable
memory chunks released by deleted records and the space could be reused. Bug fixed #1469.

Other bugs fixed:

#6051, #5876, #5996, #6021, #6052, #4775, #5836 (Upstream #96449), #6123, #5819, #5836, #6054, #6056, #6058,
#6059, #6078, #6057, #6111, #6117, and #6073.

Percona Server for MySQL 8.0.17-8

Percona announces the release of Percona Server for MySQL 8.0.17-8 on October 30, 2019 (downloads are available
here and from the Percona Software Repositories).

This release includes fixes to bugs found in previous releases of Percona Server for MySQL 8.0.

371

https://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/doc/percona-server/8.0/installation.html#installing-from-binaries
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-18.html
https://jira.percona.com/browse/PS-5813
https://docs.oracle.com/cd/E88353_01/html/E37853/pam-krb5-7.html
https://jira.percona.com/browse/PS-6023
https://jira.percona.com/browse/PS-5181
https://jira.percona.com/browse/PS-6094
http://bugs.mysql.com/bug.php?id=97682
https://jira.percona.com/browse/PS-5966
https://jira.percona.com/browse/PS-1469
https://jira.percona.com/browse/PS-6051
https://jira.percona.com/browse/PS-5876
https://jira.percona.com/browse/PS-5996
https://jira.percona.com/browse/PS-6021
https://jira.percona.com/browse/PS-6052
https://jira.percona.com/browse/PS-4775
https://jira.percona.com/browse/PS-5836
http://bugs.mysql.com/bug.php?id=96449
https://jira.percona.com/browse/PS-6123
https://jira.percona.com/browse/PS-5819
https://jira.percona.com/browse/PS-5836
https://jira.percona.com/browse/PS-6054
https://jira.percona.com/browse/PS-6056
https://jira.percona.com/browse/PS-6058
https://jira.percona.com/browse/PS-6059
https://jira.percona.com/browse/PS-6078
https://jira.percona.com/browse/PS-6057
https://jira.percona.com/browse/PS-6111
https://jira.percona.com/browse/PS-6117
https://jira.percona.com/browse/PS-6073
https://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/doc/percona-server/8.0/installation.html#installing-from-binaries

Percona Server Documentation, Release 8.0.18-9

Percona Server for MySQL 8.0.17-8 is now the current GA release in the 8.0 series. All of Percona’s software is
open-source and free.

Percona Server for MySQL 8.0 includes all the features available in MySQL 8.0.17 Community Edition in addition to
enterprise-grade features developed by Percona.

New Features

Percona Server for MySQL has implemented the ability to have a MySQL Utility user who has system access to do
administrative tasks but limited access to user schemas. The user is invisible to other users. This feature is especially
useful to those who are operating MySQL as a Service. This feature has the same functionality as the utility user in
earlier versions and has been delay-ported to version 8.0.

Percona Server for MySQL has implemented Data Masking.

Bugs Fixed

• Changed the default of innodb_empty_free_list_algorithm to backoff. Bugs fixed #5881

• When the Adaptive Hash Index (AHI) was enabled or disabled, there was an AHI overhead during DDL opera-
tions. Bugs fixed #5747.

• An upgrade to 8.0.16-7 with encrypted tablespace fails on innodb_dynamic_metadata. Bugs fixed
#5874.

• The rocksdb.ttl_primary test case sometimes fails. Bugs fixed #5722 (Louis Hust)

• The rocksdb.ns_snapshot_read_committed test case sometimes fails. Bugs fixed #5798 (Louis
Hust).

• During a binlogging replication event, if the master crashes after the multi-threaded slave has begun copying
to the slave’s relay log and before the process has completed, a STOP SLAVE on the slave takes longer than
expected. Bugs fixed #5824.

• The purpose of the sql_require_primary_key option is to avoid replication performance issues. Temporary tables
are not replicated. The option cannot be used with temporary tables. Bugs fixed #5931.

• When using skip-innodb_doublewrite in my.cnf, a parallel doublewrite buffer is still created. Bugs
fixed #3411.

• The metadata for every InnoDB table contains encryption information, either a ‘Y’ or an ‘N’ value based on the
ENCRYPTION clause or the default_table_encryption value. You are unable to switch the storage
engine from InnoDB to MyRocks because MyRocks does not support the ENCRYPTION clause. Bugs fixed
#5865.

• MyRocks does not allow index condition pushdown optimization for specific data types, such as varchar.
Bugs fixed #5024.

Other bugs fixed: #5880, #5427, #5838, #5682, #5979, #5793, #6020, #6025, #5327, #5839, #5933, #5939, #5659,
#5924, #5687, #5926, #5925, #5875, #5533, #5867, #5864, #5760, #5909, #5985, #5941, #5954, #5790, and #5593.

Percona Server for MySQL 8.0.16-7

Percona announces the release of Percona Server for MySQL 8.0.16-7 on August 15, 2019 (downloads are available
here and from the Percona Software Repositories). This release includes fixes to bugs found in previous releases of
Percona Server for MySQL 8.0. Percona Server for MySQL 8.0.16-7 is now the current GA release in the 8.0 series.
All of Percona’s software is open-source and free.

82.3. Percona Server for MySQL 8.0.16-7 372

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-17.html
https://jira.percona.com/browse/PS-5881
https://jira.percona.com/browse/PS-5747
https://jira.percona.com/browse/PS-5874
https://jira.percona.com/browse/PS-5722
https://jira.percona.com/browse/PS-5798
https://jira.percona.com/browse/PS-5824
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_require_primary_key
https://jira.percona.com/browse/PS-5931
https://jira.percona.com/browse/PS-3411
https://jira.percona.com/browse/PS-5865
https://jira.percona.com/browse/PS-5024
https://jira.percona.com/browse/PS-5880
https://jira.percona.com/browse/PS-5427
https://jira.percona.com/browse/PS-5838
https://jira.percona.com/browse/PS-5682
https://jira.percona.com/browse/PS-5979
https://jira.percona.com/browse/PS-5793
https://jira.percona.com/browse/PS-6020
https://jira.percona.com/browse/PS-6025
https://jira.percona.com/browse/PS-5327
https://jira.percona.com/browse/PS-5839
https://jira.percona.com/browse/PS-5933
https://jira.percona.com/browse/PS-5939
https://jira.percona.com/browse/PS-5659
https://jira.percona.com/browse/PS-5924
https://jira.percona.com/browse/PS-5687
https://jira.percona.com/browse/PS-5926
https://jira.percona.com/browse/PS-5925
https://jira.percona.com/browse/PS-5875
https://jira.percona.com/browse/PS-5533
https://jira.percona.com/browse/PS-5867
https://jira.percona.com/browse/PS-5864
https://jira.percona.com/browse/PS-5760
https://jira.percona.com/browse/PS-5909
https://jira.percona.com/browse/PS-5985
https://jira.percona.com/browse/PS-5941
https://jira.percona.com/browse/PS-5954
https://jira.percona.com/browse/PS-5790
https://jira.percona.com/browse/PS-5593
https://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/doc/percona-server/8.0/installation.html#installing-from-binaries

Percona Server Documentation, Release 8.0.18-9

Percona Server for MySQL 8.0 includes all the features and bug fixes available in MySQL 8.0.16 Community Edition
in addition to enterprise-grade features developed by Percona.

Encryption Features General Availability (GA)

• Encrypting Temporary Files

• Encrypting the Undo Tablespace

• Encrypting the System Tablespace

• default_table_encryption =OFF/ON

• table_encryption_privilege_check =OFF/ON

• Encrypting the Redo Log for master key encryption only

• Merge-sort-encryption

• Encrypting Doublewrite Buffers

Bugs Fixed

• Parallel doublewrite buffer writes must crash the server on an I/O error occurs. Bug fixed #5678.

• After resetting the innodb_temp_tablespace_encrypt to OFF during runtime the subsequent file-per-
table temporary tables continue to be encrypted. Bug fixed #5734.

• Setting the encryption to ON for the system tablespace generates an encryption key and encrypts system tem-
porary tablespace pages. Resetting the encryption to OFF, all subsequent pages are written to the temporary
tablespace without encryption. To allow any encrypted tables to be decrypted, the generated keys are not erased.
Modifying the innodb_temp_tablespace_encrypt does not affect file-per-table temporary tables. This
type of table is encrypted if ENCRYPTION =’Y’ is set during table creation. Bug fixed #5736.

• An instance started with the default values but setting the redo-log without specifying the keyring plugin param-
eters does not fail or throw an error. Bug fixed #5476.

• The rocksdb_large_prefix allows index key prefixes up to 3072 bytes. The default value is changed to
TRUE to match the behavior of the innodb_large_prefix. #5655.

• On a server with a large number of tables, a shutdown may take a measurable length of time. Bug fixed #5639.

• The changed page tracking uses the LOG flag during read operations. The redo log encryption may attempt to
decrypt pages with a specific bit set and fail. This failure generates error messages. A NO_ENCRYPTION flag
lets the read process safely disable decryption errors in this case. Bug fixed #5541.

• If large pages are enabled on MySQL side, the maximum size for innodb_buffer_pool_chunk_size is
effectively limited to 4GB. Bug fixed #5517. (Upstream 94747)

• The TokuDB hot backup library continually dumps TRACE information to the server error log. The user cannot
enable or disable the dump of this information. Bug fixed #4850.

Other bugs fixed: #5688, #5723, #5695, #5749, #5752, #5610, #5689, #5645, #5734, #5772, #5753, #5129, #5102,
#5681, #5686, #5681, #5310, #5713, #5007, #5102, #5129, #5130, #5149, #5696, #3845, #5149, #5581, #5652,
#5662, #5697, #5775, #5668, #5752, #5782, #5767, #5669, #5753, #5696, #5733, #5803, #5804, #5820, #5827,
#5835, #5724, #5767, #5782, #5794, #5796, #5746 and, #5748.

82.3. Percona Server for MySQL 8.0.16-7 373

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-16.html
https://jira.percona.com/browse/PS-5678
https://jira.percona.com/browse/PS-5734
https://jira.percona.com/browse/PS-5736
https://jira.percona.com/browse/PS-5476
https://jira.percona.com/browse/PS-5655
https://jira.percona.com/browse/PS-5639
https://jira.percona.com/browse/PS-5541
https://jira.percona.com/browse/PS-5517
https://bugs.mysql.com/bug.php?id=94747
https://jira.percona.com/browse/PS-4850
https://jira.percona.com/browse/PS-5688
https://jira.percona.com/browse/PS-5723
https://jira.percona.com/browse/PS-5695
https://jira.percona.com/browse/PS-5749
https://jira.percona.com/browse/PS-5752
https://jira.percona.com/browse/PS-5610
https://jira.percona.com/browse/PS-5689
https://jira.percona.com/browse/PS-5645
https://jira.percona.com/browse/PS-5734
https://jira.percona.com/browse/PS-5772
https://jira.percona.com/browse/PS-5753
https://jira.percona.com/browse/PS-5129
https://jira.percona.com/browse/PS-5102
https://jira.percona.com/browse/PS-5681
https://jira.percona.com/browse/PS-5686
https://jira.percona.com/browse/PS-5681
https://jira.percona.com/browse/PS-5310
https://jira.percona.com/browse/PS-5713
https://jira.percona.com/browse/PS-5007
https://jira.percona.com/browse/PS-5102
https://jira.percona.com/browse/PS-5129
https://jira.percona.com/browse/PS-5130
https://jira.percona.com/browse/PS-5149
https://jira.percona.com/browse/PS-5696
https://jira.percona.com/browse/PS-3845
https://jira.percona.com/browse/PS-5149
https://jira.percona.com/browse/PS-5581
https://jira.percona.com/browse/PS-5652
https://jira.percona.com/browse/PS-5662
https://jira.percona.com/browse/PS-5697
https://jira.percona.com/browse/PS-5775
https://jira.percona.com/browse/PS-5668
https://jira.percona.com/browse/PS-5752
https://jira.percona.com/browse/PS-5782
https://jira.percona.com/browse/PS-5767
https://jira.percona.com/browse/PS-5669
https://jira.percona.com/browse/PS-5753
https://jira.percona.com/browse/PS-5696
https://jira.percona.com/browse/PS-5733
https://jira.percona.com/browse/PS-5803
https://jira.percona.com/browse/PS-5804
https://jira.percona.com/browse/PS-5820
https://jira.percona.com/browse/PS-5827
https://jira.percona.com/browse/PS-5835
https://jira.percona.com/browse/PS-5724
https://jira.percona.com/browse/PS-5767
https://jira.percona.com/browse/PS-5782
https://jira.percona.com/browse/PS-5794
https://jira.percona.com/browse/PS-5796
https://jira.percona.com/browse/PS-5746
https://jira.percona.com/browse/PS-5748

Percona Server Documentation, Release 8.0.18-9

Known Issues

• #5865: Percona Server for MySQL 8.0.16-7 does not support encryption for the MyRocks storage engine. An
attempt to move any table from InnoDB to MyRocks fails as MyRocks currently sees all InnoDB tables as being
encrypted.

Percona Server for MySQL 8.0.15-6

Percona announces the release of Percona Server for MySQL 8.0.15-6 on May 07, 2019 (downloads are available here
and from the Percona Software Repositories).

This release includes fixes to bugs found in previous releases of Percona Server for MySQL 8.0.

Percona Server for MySQL 8.0.15-6 is now the current GA release in the 8.0 series. All of Percona’s software is
open-source and free.

Percona Server for MySQL 8.0 includes all the features available in MySQL 8.0 Community Edition in addition to
enterprise-grade features developed by Percona. For a list of highlighted features from both MySQL 8.0 and Percona
Server for MySQL 8.0, please see the GA release announcement.

Note: If you are upgrading from 5.7 to 8.0, please ensure that you read the upgrade guide and the document Changed
in Percona Server for MySQL 8.0.

New Features

• The server part of MyRocks cross-engine consistent physical backups has been implemented by introducing
rocksdb_disable_file_deletions and rocksdb_create_temporary_checkpoint session
variables. These variables are intended to be used by backup tools. Prolonged use or other misuse can have
serious side effects to the server instance.

• RocksDB WAL file information can now be seen in the performance_schema.log_status table.

• New Audit_log_buffer_size_overflow status variable has been implemented to track when an Au-
dit Log Plugin entry was either dropped or written directly to the file due to its size being bigger than
audit_log_buffer_size variable.

Bugs Fixed

• TokuDB and MyRocks native partitioning handler objects were allocated from a wrong memory allocator. Mem-
ory was released only on shutdown and concurrent access to global memory allocator caused memory corrup-
tions and therefore crashes. Bug fixed #5508.

• using TokuDB or MyRocks native partitioning and index_merge could lead to a server crash. Bugs fixed
#5206, #5562.

• upgrade from Percona Server for MySQL 5.7.24 to 8.0.13-3 wasn’t working with encrypted undo ta-
blespaces. Bug fixed #5223.

• Keyring Vault plugin couldn’t be initialized on Ubuntu Cosmic 17.10. Bug fixed #5453.

• rotated key encryption did not register encryption_key_id as a valid table option. Bug fixed #5482.

• INFORMATION_SCHEMA.GLOBAL_TEMPORARY_TABLES queries could crash if online ALTER TABLE
was running in parallel. Bug fixed #5566.

82.4. Percona Server for MySQL 8.0.15-6 374

https://jira.percona.com/browse/PS-5865
https://www.percona.com/doc/percona-server/LATEST/myrocks/limitations.html
https://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/doc/percona-server/8.0/installation.html#installing-from-binaries
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://www.percona.com/blog/2018/12/21/announcing-general-availability-of-percona-server-for-mysql-8-0/
https://www.percona.com/doc/percona-server/8.0/upgrading_guide.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://jira.percona.com/browse/PS-5508
https://jira.percona.com/browse/PS-5206
https://jira.percona.com/browse/PS-5562
https://jira.percona.com/browse/PS-5223
https://www.percona.com/doc/percona-server/5.7/management/data_at_rest_encryption.html#keyring-vault-plugin
https://jira.percona.com/browse/PS-5453
https://jira.percona.com/browse/PS-5482
https://jira.percona.com/browse/PS-5566

Percona Server Documentation, Release 8.0.18-9

• setting the log_slow_verbosity to include innodb value and enabling the slow_query_log could
lead to a server crash. Bug fixed #4933.

• Compression dictionary support operations were not allowed under innodb-force-recovery.
Now they work correctly when innodb_force_recovery is <= 2, and are forbidden when
innodb_force_recovery is >= 3. Bug fixed #5148.

• BLOB entries in the binary log could become corrupted in case when a database with Blackhole tables served
as an intermediate binary log server in a replication chain. Bug fixed #5353.

• FLUSH CHANGED_PAGE_BITMAPS would leave gaps between the last written bitmap LSN and the InnoDB
checkpoint LSN. Bug fixed #5446.

• XtraDB changed page tracking was missing pages changed by the in-place DDL. Bug fixed #5447.

• innodb_system tablespace information was missing from the INFORMATION_SCHEMA.
innodb_tablespaces view. Bug fixed #5473.

• undo log tablespace encryption status is now available through INFORMATION_SCHEMA.
innodb_tablespaces view. Bug fixed #5485 (upstream #94665).

• enabling temporay tablespace encryption didn’t mark the innodb_temporary tablespace with the encryption
flag. Bug fixed #5490.

• server would crash during bootstrap if innodb_encrypt_tables was set to 1. Bug fixed #5492.

• fixed intermittent shutdown crashes that were happening if Thread Pool was enabled. Bug fixed #5510.

• compression dictionary INFORMATION_SCHEMA views were missing when datadir was upgraded from 8.0.13
to 8.0.15. Bug fixed #5529.

• innodb_encrypt_tables variable accepted FORCE option only as a string. Bug fixed #5538.

• ibd2sdi utility was missing in Debian/Ubuntu packages. Bug fixed #5549.

• Docker image is now ignoring password that is set in the configuration file when first initializing. Bug fixed
#5573.

• long running ALTER TABLE ADD INDEX could cause a semaphore wait > 600 assertion. Bug fixed
#3410 (upstream #82940).

• system keyring keys initialization wasn’t thread safe. Bugs fixed #5554.

• Backup Locks was blocking DML for RocksDB. Bug fixed #5583.

• PerconaFT locktree library was re-licensed to Apache v2 license. Bug fixed #5501.

Other bugs fixed: #5537, #5243, #5371, #5475, #5484, #5512, #5514, #5523, #5528, #5536, #5550, #5570, #5578,
#5441, #5442, #5456, #5462, #5487, #5489, #5520, and #5560.

Percona Server for MySQL 8.0.15-5

Percona announces the release of Percona Server for MySQL 8.0.15-5 on March 15, 2019 (downloads are available
here and from the Percona Software Repositories).

This release includes fixes to bugs found in previous releases of Percona Server for MySQL 8.0.

Incompatible changes

82.5. Percona Server for MySQL 8.0.15-5 375

https://jira.percona.com/browse/PS-4933
https://jira.percona.com/browse/PS-5148
https://jira.percona.com/browse/PS-5353
https://jira.percona.com/browse/PS-5446
https://jira.percona.com/browse/PS-5447
https://jira.percona.com/browse/PS-5473
https://jira.percona.com/browse/PS-5485
http://bugs.mysql.com/bug.php?id=94665
https://jira.percona.com/browse/PS-5490
https://jira.percona.com/browse/PS-5492
https://jira.percona.com/browse/PS-5510
https://www.percona.com/doc/percona-xtrabackup/2.1/glossary.html#term-datadir
https://jira.percona.com/browse/PS-5529
https://jira.percona.com/browse/PS-5538
https://jira.percona.com/browse/PS-5549
https://jira.percona.com/browse/PS-5573
https://jira.percona.com/browse/PS-3410
http://bugs.mysql.com/bug.php?id=82940
https://jira.percona.com/browse/PS-5554
https://jira.percona.com/browse/PS-5583
https://jira.percona.com/browse/PS-5501
https://jira.percona.com/browse/PS-5537
https://jira.percona.com/browse/PS-5243
https://jira.percona.com/browse/PS-5371
https://jira.percona.com/browse/PS-5475
https://jira.percona.com/browse/PS-5484
https://jira.percona.com/browse/PS-5512
https://jira.percona.com/browse/PS-5514
https://jira.percona.com/browse/PS-5523
https://jira.percona.com/browse/PS-5528
https://jira.percona.com/browse/PS-5536
https://jira.percona.com/browse/PS-5550
https://jira.percona.com/browse/PS-5570
https://jira.percona.com/browse/PS-5578
https://jira.percona.com/browse/PS-5441
https://jira.percona.com/browse/PS-5442
https://jira.percona.com/browse/PS-5456
https://jira.percona.com/browse/PS-5462
https://jira.percona.com/browse/PS-5487
https://jira.percona.com/browse/PS-5489
https://jira.percona.com/browse/PS-5520
https://jira.percona.com/browse/PS-5560
https://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/doc/percona-server/8.0/installation.html#installing-from-binaries

Percona Server Documentation, Release 8.0.18-9

In previous releases, the audit log used to produce time stamps inconsistent with the ISO 8601 standard. Release
8.0.15-5 of Percona Server for MySQL solves this problem. This change, however, may break programs that rely on
the old time stamp format.

Starting from release 8.0.15-5, Percona Server for MySQL uses the upstream implementation of binary log encryp-
tion. The variable encrypt_binlog is removed and the related command line option --encrypt_binlog is
not supported. It is important that you remove the encrypt_binlog variable from your configuration file before
you attempt to upgrade either from another release in the Percona Server for MySQL 8.0 series or from Percona Server
for MySQL 5.7. Otherwise, a server boot error will be produced reporting an unknown variable. The implemented
binary log encryption is compatible with the old format: the binary log encrypted in a previous version of MySQL 8.0
series or Percona Server for MySQL are supported.

See also:

MySQL Documentation

• Encrypting Binary Log Files and Relay Log Files

• binlog_encryption variable

This release is based on MySQL 8.0.14 and 8.0.15. It includes all bug fixes in these releases. Percona Server for
MySQL 8.0.14 was skipped.

Percona Server for MySQL 8.0.15-5 is now the current GA release in the 8.0 series. All of Percona’s software is
open-source and free.

Percona Server for MySQL 8.0 includes all the features available in MySQL 8.0 Community Edition in addition to
enterprise-grade features developed by Percona. For a list of highlighted features from both MySQL 8.0 and Percona
Server for MySQL 8.0, please see the GA release announcement.

Note: If you are upgrading from 5.7 to 8.0, please ensure that you read the upgrade guide and the document Changed
in Percona Server for MySQL 8.0.

Bugs Fixed

• The audit log produced time stamps inconsistent with the ISO8601 standard. Bug fixed #226.

• FLUSH commands written to the binary log could cause errors in case of replication. Bug fixed #1827 (upstream
#88720).

• When audit_plugin was enabled, the server could use a lot of memory when handling large queries. Bug fixed
#5395.

• The page cleaner could sleep for long time when the system clock was adjusted to an earlier point in time. Bug
fixed #5221 (upstream #93708).

• In some cases, the MyRocks storage engine could crash without triggering the crash recovery. Bug fixed #5366.

• In some cases, when it failed to read from a file, InnoDB did not inform the name of the file in the related error
message. Bug fixed #2455 (upstream #76020).

• The ACCESS_DENIED field of the information_schema.user_statistics table was not updated
correctly. Bugs fixed #3956, #4996.

• MyRocks could crash while running START TRANSACTION WITH CONSISTENT SNAPSHOT if other
transactions were in specific states. Bug fixed #4705.

• In some cases, the server using the the MyRocks storage engine could crash when TTL (Time to Live) was
defined on a table. Bug fixed #4911.

82.5. Percona Server for MySQL 8.0.15-5 376

https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_encryption
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://www.percona.com/blog/2018/12/21/announcing-general-availability-of-percona-server-for-mysql-8-0/
https://www.percona.com/doc/percona-server/8.0/upgrading_guide.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://jira.percona.com/browse/PS-226
https://jira.percona.com/browse/PS-1827
http://bugs.mysql.com/bug.php?id=88720
https://jira.percona.com/browse/PS-5395
https://jira.percona.com/browse/PS-5221
http://bugs.mysql.com/bug.php?id=93708
https://jira.percona.com/browse/PS-5366
https://jira.percona.com/browse/PS-2455
http://bugs.mysql.com/bug.php?id=76020
https://jira.percona.com/browse/PS-3956
https://jira.percona.com/browse/PS-4996
https://jira.percona.com/browse/PS-4705
https://jira.percona.com/browse/PS-4911

Percona Server Documentation, Release 8.0.18-9

• MyRocks incorrectly processed transactions in which multiple statements had to be rolled back. Bug fixed
#5219.

• A stack buffer overrun could happen if the redo log encryption with key rotation was enabled. Bug fixed #5305.

• The TokuDB storage engine would assert on load when used with jemalloc 5.x. Bug fixed #5406.

Other bugs fixed: #4106, #4107, #4108, #4121, #4474, #4640, #5055, #5218, #5263, #5328, #5369.

Percona Server for MySQL 8.0.14

Due to a critical fix, MySQL Community Server 8.0.15 was released shortly (11 days later) after MySQL Community
Server 8.0.14. Percona has skipped the release of Percona Server for MySQL 8.0.14. The next release of Percona
Server for MySQL is 8.0.15-5 which contains all bug fixes and contents of both MySQL Community Server 8.0.14
and MySQL Community Server 8.0.15.

Percona Server for MySQL 8.0 includes all the features available in MySQL 8.0 Community Edition in addition to
enterprise-grade features developed by Percona. For a list of highlighted features from both MySQL 8.0 and Percona
Server for MySQL 8.0, please see the GA release announcement.

Note: If you are upgrading from 5.7 to 8.0, please ensure that you read the upgrade guide and the document Changed
in Percona Server for MySQL 8.0.

Percona Server for MySQL 8.0.13-4

Percona announces the release of Percona Server for MySQL 8.0.13-4 on January 17, 2019 (downloads are available
here and from the Percona Software Repositories). This release contains a fix for a critical bug that prevented Percona
Server for MySQL 5.7.24-26 from being upgraded to version 8.0.13-3 if there were more than around 1000 tables, or
if the maximum allocated InnoDB table ID was around 1000. Percona Server for MySQL 8.0.13-4 is now the current
GA release in the 8.0 series. All of Percona’s software is open-source and free.

Percona Server for MySQL 8.0 includes all the features available in MySQL 8.0 Community Edition in addition to
enterprise-grade features developed by Percona. For a list of highlighted features from both MySQL 8.0 and Percona
Server for MySQL 8.0, please see the GA release announcement.

Note: If you are upgrading from 5.7 to 8.0, please ensure that you read the upgrade guide and the document Changed
in Percona Server for MySQL 8.0.

Bugs Fixed

• It was not possible to upgrade from MySQL 5.7.24-26 to 8.0.13-3 if there were more than around 1000 tables,
or if the maximum allocated InnoDB table ID was around 1000. Bug fixed #5245.

• SHOW BINLOG EVENTS FROM <bad offset> is not diagnosed inside
Format_description_log_events. Bug fixed #5126 (Upstream #93544).

• There was a typo in mysqld_safe.sh: trottling was replaced with throttling. Bug fixed #240. Thanks to Michael
Coburn for the patch.

82.6. Percona Server for MySQL 8.0.14 377

https://jira.percona.com/browse/PS-5219
https://jira.percona.com/browse/PS-5305
https://jira.percona.com/browse/PS-5406
https://jira.percona.com/browse/PS-4106
https://jira.percona.com/browse/PS-4107
https://jira.percona.com/browse/PS-4108
https://jira.percona.com/browse/PS-4121
https://jira.percona.com/browse/PS-4474
https://jira.percona.com/browse/PS-4640
https://jira.percona.com/browse/PS-5055
https://jira.percona.com/browse/PS-5218
https://jira.percona.com/browse/PS-5263
https://jira.percona.com/browse/PS-5328
https://jira.percona.com/browse/PS-5369
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://www.percona.com/blog/2018/12/21/announcing-general-availability-of-percona-server-for-mysql-8-0/
https://www.percona.com/doc/percona-server/8.0/upgrading_guide.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/doc/percona-server/8.0/installation.html#installing-from-binaries
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://www.percona.com/blog/2018/12/21/announcing-general-availability-of-percona-server-for-mysql-8-0/
https://www.percona.com/doc/percona-server/8.0/upgrading_guide.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://jira.percona.com/browse/PS-5245
https://jira.percona.com/browse/PS-5126
http://bugs.mysql.com/bug.php?id=93544
https://jira.percona.com/browse/PS-240

Percona Server Documentation, Release 8.0.18-9

• Percona Server for MySQL 8.0 could crash with the “Assertion failure: dict0dict.cc:7451:space_id !=
SPACE_UNKNOWN” exception during an upgrade from Percona Server for MySQL 5.7.23 to Percona Server
for MySQL 8.0.13-3 with --innodb_file_per_table=OFF. Bug fixed #5222.

• On Debian or Ubuntu, a conflict was reported on the /usr/bin/innochecksum file when attempting to
install Percona Server for MySQL 8 over the MySQL 8. Bug fixed #5225.

• An out-of-bound read exception could occur on debug builds in the compressed columns with dictionaries
feature. Bug fixed #5311:.

• The innodb_data_pending_reads server status variable contained an incorrect value. Bug fixed #5264:.
Thanks to Fangxin Lou for the patch.

• A memory leak and needless allocation in compression dictionaries could happen in mysqldump. Bug
fixed #5307.

• A compression-related memory leak could happen in mysqlbinlog. Bug fixed #5308:.

Other bugs fixed: #4797:, #5209, #5268, #5270:, #5306, #5309:

Percona Server for MySQL 8.0.13-3

Percona announces the GA release of Percona Server for MySQL 8.0.13-3 on December 21, 2018 (downloads are
available here and from the Percona SoftwareRepositories). This release merges changes of MySQL 8.0.13, including
all the bug fixes in it. Percona Server for MySQL 8.0.13-3 is now the current GA release in the 8.0 series. All of
Percona’s software is open-source and free.

Percona Server for MySQL 8.0 includes all the features available in MySQL 8.0 Community Edition in addition to
enterprise-grade features developed by Percona. For a list of highlighted features from both MySQL 8.0 and Percona
Server for MySQL 8.0, please see the GA release announcement.

Note: If you are upgrading from 5.7 to 8.0, please ensure that you read the upgrade guide and the document Changed
in Percona Server for MySQL 8.0.

Features Removed in Percona Server for MySQL 8.0

• Slow Query Log Rotation and Expiration: Not widely used, can be accomplished using logrotate

• CSV engine mode for standard-compliant quote and comma parsing

• Expanded program option modifiers

• The ALL_O_DIRECT InnoDB flush method: it is not compatible with the new redo logging implementation

• XTRADB_RSEG table from INFORMATION_SCHEMA

• InnoDB memory size information from SHOW ENGINE INNODB STATUS; the same information is avail-
able from Performance Schema memory summary tables

• Query cache enhancements: The query cache is no longer present in MySQL 8.0

Features Being Deprecated in Percona Server for MySQL 8.0

• TokuDB Storage Engine: TokuDB will be supported throughout the Percona Server for MySQL 8.0 release series,
but will not be available in the next major release. Percona encourages TokuDB users to explore the MyRocks

82.8. Percona Server for MySQL 8.0.13-3 378

https://jira.percona.com/browse/PS-5222
https://jira.percona.com/browse/PS-5225
https://jira.percona.com/browse/PS-5311
https://jira.percona.com/browse/PS-5264
https://jira.percona.com/browse/PS-5307
https://jira.percona.com/browse/PS-5308
https://jira.percona.com/browse/PS-4797
https://jira.percona.com/browse/PS-5209
https://jira.percona.com/browse/PS-5268
https://jira.percona.com/browse/PS-5270
https://jira.percona.com/browse/PS-5306
https://jira.percona.com/browse/PS-5309
https://www.percona.com/downloads/Percona-Server-8.0/
https://www.percona.com/doc/percona-server/8.0/installation.html#installing-from-binaries
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://www.percona.com/blog/2018/12/21/announcing-general-availability-of-percona-server-for-mysql-8-0/
https://www.percona.com/doc/percona-server/8.0/upgrading_guide.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html
https://www.percona.com/doc/percona-server/8.0/changed_in_version.html

Percona Server Documentation, Release 8.0.18-9

Storage Engine which provides similar benefits for the majority of workloads and has better optimized support
for modern hardware.

Issues Resolved in Percona Server for MySQL 8.0.13-3

Improvements

• #5014: Update Percona Backup Locks feature to use the new BACKUP_ADMIN privilege in MySQL 8.0

• #4805: Re-Implemented Compressed Columns with Dictionaries feature in PS 8.0

• #4790: Improved accuracy of User Statistics feature

Bugs Fixed Since 8.0.12-rc1

• Fixed a crash in mysqldump in the --innodb-optimize-keys functionality #4972

• Fixed a crash that can occur when system tables are locked by the user due to a lock_wait_timeout #5134

• Fixed a crash that can occur when system tables are locked by the user from a SELECT FOR UPDATE state-
ment #5027

• Fixed a bug that caused innodb_buffer_pool_size to be uninitialized after a restart if it was set using
SET PERSIST #5069

• Fixed a crash in TokuDB that can occur when a temporary table experiences an autoincrement rollover #5056

• Fixed a bug where marking an index as invisible would cause a table rebuild in TokuDB and also in MyRocks
#5031

• Fixed a bug where audit logs could get corrupted if the audit_log_rotations was changed during run-
time. #4950

• Fixed a bug where LOCK INSTANCE FOR BACKUP and STOP SLAVE SQL_THREAD would cause repli-
cation to be blocked and unable to be restarted. #4758 (Upstream #93649)

Other Bugs Fixed:

#5155, #5139, #5057, #5049, #4999, #4971, #4943, #4918, #4917, #4898, and #4744.

Known Issues

We have a few features and issues outstanding that should be resolved in the next release.

Pending Feature Re-Implementations and Improvements

• #4892: Re-Implement Expanded Fast Index Creation feature.

• #5216: Re-Implement Utility User feature.

• #5143: Identify Percona features which can make use of dynamic privileges instead of SUPER

82.8. Percona Server for MySQL 8.0.13-3 379

https://jira.percona.com/browse/PS-5014
https://jira.percona.com/browse/PS-4805
https://jira.percona.com/browse/PS-4790
https://jira.percona.com/browse/PS-4972
https://jira.percona.com/browse/PS-5134
https://jira.percona.com/browse/PS-5027
https://jira.percona.com/browse/PS-5069
https://jira.percona.com/browse/PS-5056
https://jira.percona.com/browse/PS-5031
https://jira.percona.com/browse/PS-4950
https://jira.percona.com/browse/PS-4758
http://bugs.mysql.com/bug.php?id=93649
https://jira.percona.com/browse/PS-5155
https://jira.percona.com/browse/PS-5139
https://jira.percona.com/browse/PS-5057
https://jira.percona.com/browse/PS-5049
https://jira.percona.com/browse/PS-4999
https://jira.percona.com/browse/PS-4971
https://jira.percona.com/browse/PS-4943
https://jira.percona.com/browse/PS-4918
https://jira.percona.com/browse/PS-4917
https://jira.percona.com/browse/PS-4898
https://jira.percona.com/browse/PS-4744
https://jira.percona.com/browse/PS-4892
https://jira.percona.com/browse/PS-5216
https://jira.percona.com/browse/PS-5143

Percona Server Documentation, Release 8.0.18-9

Notable Issues in Features

• #5148: Regression in Compressed Columns Feature when using innodb-force-recovery

• #4996: Regression in User Statistics feature where TOTAL_CONNECTIONS field report incorrect data

• #4933: Regression in Slow Query Logging Extensions feature where incorrect transaction idaccounting can
cause an assert during certain DDLs.

• #5206: TokuDB: A crash can occur in TokuDB when using Native Partioning and the
optimizer has index_merge_union enabled. Workaround by using SET SESSION
optimizer_switch="index_merge_union=off";

• #5174: MyRocks: Attempting to use unsupported features against MyRocks can lead to a crash rather than an
error.

• #5024: MyRocks: Queries can return the wrong results on tables with no primary key, non-unique
CHAR/VARCHAR rows, and UTF8MB4 charset.

• #5045: MyRocks: Altering a column or table comment cause the table to be rebuilt

Find the release notes for Percona Server for MySQL 8.0.13-3 in our online documentation. Report bugs in the Jira
bug tracker.

Percona Server for MySQL 8.0.12-2rc1

Following the alpha release announced earlier, Percona announces the release candidate of Percona Server for MySQL
8.0.12-2rc1 on October 31, 2018. Download the latest version from the Percona web site or the Percona Software
Repositories.

This release is based on MySQL 8.0.12 and includes all bug fixes in it. It is a Release Candidate quality release and it
is not intended for production. If you want a high quality, Generally Available release, use the current Stable version
(the most recent stable release at the time of writing in the 5.7 series is 5.7.23-23).

Percona provides completely open-source and free software.

Installation

As this is a release candidate, installation is performed by enabling the testing repository and installing the software via
your package manager. For Debian based distributions, see apt installation instructions; for RPM based distributions.
see yum installation instructions. Note that in both cases after installing the current percona-release package, you’ll
need to enable the testing repository in order to install Percona Server for MySQL for MySQL 8.0.12-2rc1. For manual
installations, you can download from the testing repository directly through our website.

New Features

• #4550: Native Partitioning support for MyRocks storage engine

• #3911: Native Partitioning support for TokuDB storage engine

• #4946: Add an option to prevent implicit creation of column family in MyRocks

• #4839: Better default configuration for MyRocks and TokuDB

• InnoDB changed page tracking has been rewritten to account for redo logging changes in MySQL 8.0.11. This
fixes fast incremental backups for PS 8.0

82.9. Percona Server for MySQL 8.0.12-2rc1 380

https://jira.percona.com/browse/PS-5148
https://jira.percona.com/browse/PS-4996
https://jira.percona.com/browse/PS-4933
https://jira.percona.com/browse/PS-5206
https://jira.percona.com/browse/PS-5174
https://jira.percona.com/browse/PS-5024
https://jira.percona.com/browse/PS-5045
https://www.percona.com/blog/2018/09/27/announcement-alpha-build-of-percona-server-8-0/
https://www.percona.com/doc/percona-server/8.0/installation/apt_repo.html
https://www.percona.com/doc/percona-server/8.0/installation/yum_repo.html
https://www.percona.com/downloads/TESTING/Percona-Server-80-rc1/
https://jira.percona.com/browse/PS-4550
https://jira.percona.com/browse/PS-3911
https://jira.percona.com/browse/PS-4946
https://jira.percona.com/browse/PS-4839

Percona Server Documentation, Release 8.0.18-9

• #4434: TokuDB ROW_FORMAT clause has been removed, compression may be set by using the session vari-
able tokudb_row_format instead.

Improvements

• Several packaging changes to bring Percona packages more in line with upstream, including split repositories.
As you’ll note from our instructions above we now ship a tool with our release packages to help manage this.

Bugs Fixed

• #4785: Setting version_suffix to NULL could lead to handle_fatal_signal (sig=11) in
Sys_var_version::global_value_ptr

• #4788: Setting log_slow_verbosity and enabling the slow_query_log could lead to a server crash

• #4937: Any index comment generated a new column family in MyRocks

• #1107: Binlog could be corrupted when tmpdir got full

• #1549: Server side prepared statements lead to a potential off-by-second timestamp on slaves

• #4937: rocksdb_update_cf_options was useless when specified in my.cnf or on command line.

• #4705: The server could crash on snapshot size check in RocksDB

• #4791: SQL injection on slave due to non-quoting in binlogged ROLLBACK TO SAVEPOINT

• #4953: rocksdb.truncate_table3 was unstable

Other bugs fixed:

• #4811: 5.7 Merge and fixup for old DB-937 introduces possible regression

• #4885: Using ALTER ... ROW_FORMAT=TOKUDB_QUICKLZ lead to InnoDB: Assertion failure:
ha_innodb.cc:12198:m_form->s->row_type == m_create_info->row_type

• Numerous testsuite failures/crashes

Upcoming Features

• New encryption features in Percona Server for MySQL 5.7 will be ported forward to Percona Server for MySQL
8.0

• Adding back in column compression with custom data dictionaries and expanded fast index creation.

82.9. Percona Server for MySQL 8.0.12-2rc1 381

https://jira.percona.com/browse/PS-4434
https://jira.percona.com/browse/PS-4785
https://jira.percona.com/browse/PS-4788
https://jira.percona.com/browse/PS-4937
https://jira.percona.com/browse/PS-1107
https://jira.percona.com/browse/PS-1549
https://jira.percona.com/browse/PS-4937
https://jira.percona.com/browse/PS-4705
https://jira.percona.com/browse/PS-4791
https://jira.percona.com/browse/PS-4953
https://jira.percona.com/browse/PS-4811
https://jira.percona.com/browse/PS-4885
https://www.percona.com/doc/percona-server/8.0/management/data_at_rest_encryption.html
https://www.percona.com/doc/percona-server/8.0/flexibility/compressed_columns.html

CHAPTER

EIGHTYTHREE

GLOSSARY

ACID Set of properties that guarantee database transactions are processed reliably. Stands for Atomicity, Consistency,
Isolation, Durability.

Atomicity Atomicity means that database operations are applied following a “all or nothing” rule. A transaction is
either fully applied or not at all.

Consistency Consistency means that each transaction that modifies the database takes it from one consistent state to
another.

Durability Once a transaction is committed, it will remain so.

Foreign Key A referential constraint between two tables. Example: A purchase order in the purchase_orders table
must have been made by a customer that exists in the customers table.

Isolation The Isolation requirement means that no transaction can interfere with another.

InnoDB A Storage Engine for MySQL and derivatives (Percona Server, MariaDB) originally written by Innobase
Oy, since acquired by Oracle. It provides ACID compliant storage engine with foreign key support. As of
MySQL version 5.5, InnoDB became the default storage engine on all platforms.

Jenkins Jenkins is a continuous integration system that we use to help ensure the continued quality of the software
we produce. It helps us achieve the aims of:

• no failed tests in trunk on any platform,

• aid developers in ensuring merge requests build and test on all platforms,

• no known performance regressions (without a damn good explanation).

LSN Log Serial Number. A term used in relation to the InnoDB or XtraDB storage engines.

MariaDB A fork of MySQL that is maintained primarily by Monty Program AB. It aims to add features, fix bugs
while maintaining 100% backwards compatibility with MySQL.

my.cnf The file name of the default MySQL configuration file.

MyISAM A MySQL Storage Engine that was the default until MySQL 5.5.

MySQL An open source database that has spawned several distributions and forks. MySQL AB was the primary
maintainer and distributor until bought by Sun Microsystems, which was then acquired by Oracle. As Oracle
owns the MySQL trademark, the term MySQL is often used for the Oracle distribution of MySQL as distinct
from the drop-in replacements such as MariaDB and Percona Server.

NUMA Non-Uniform Memory Access (NUMA) is a computer memory design used in multiprocessing, where the
memory access time depends on the memory location relative to a processor. Under NUMA, a processor can
access its own local memory faster than non-local memory, that is, memory local to another processor or mem-
ory shared between processors. The whole system may still operate as one unit, and all memory is basically
accessible from everywhere, but at a potentially higher latency and lower performance.

382

http://www.jenkins-ci.org
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access

Percona Server Documentation, Release 8.0.18-9

Percona Server for MySQL Percona’s branch of MySQL with performance and management improvements.

Percona Server See Percona Server for MySQL

Storage Engine A Storage Engine is a piece of software that implements the details of data storage and retrieval for
a database system. This term is primarily used within the MySQL ecosystem due to it being the first widely used
relational database to have an abstraction layer around storage. It is analogous to a Virtual File System layer
in an Operating System. A VFS layer allows an operating system to read and write multiple file systems (e.g.
FAT, NTFS, XFS, ext3) and a Storage Engine layer allows a database server to access tables stored in different
engines (e.g. MyISAM, InnoDB).

XtraDB Percona’s improved version of InnoDB providing performance, features and reliability above what is shipped
by Oracle in InnoDB.

• genindex

• modindex

383

INDEX

Symbols
8.0.12-2rc1 (release notes), 380
8.0.13-3 (release notes), 378
8.0.13-4 (release notes), 377
8.0.14: (release notes), 377
8.0.15-5 (release notes), 375
8.0.15-6 (release notes), 374
8.0.16-7: (release notes), 372
8.0.17-8: (release notes), 371
8.0.18-9: (release notes), 371

A
ACID, 382
Atomicity, 382
audit_log_buffer_size (variable), 101
Audit_log_buffer_size_overflow (variable), 105
audit_log_exclude_accounts (variable), 102
audit_log_exclude_commands (variable), 102
audit_log_exclude_databases (variable), 102
audit_log_file (variable), 101
audit_log_flush (variable), 101
audit_log_format (variable), 102
audit_log_handler (variable), 104
audit_log_include_accounts (variable), 102
audit_log_include_commands (variable), 103
audit_log_include_databases (variable), 103
audit_log_policy (variable), 103
audit_log_rotate_on_size (variable), 103
audit_log_rotations (variable), 104
audit_log_strategy (variable), 101
audit_log_syslog_facility (variable), 104
audit_log_syslog_ident (variable), 104
audit_log_syslog_priority (variable), 104

B
binlog_skip_flush_commands (variable), 74
Binlog_snapshot_file (variable), 107
Binlog_snapshot_position (variable), 107

C
CLIENT_STATISTICS (table), 153
Com_lock_tables_for_backup (variable), 93

Com_show_client_statistics (variable), 158
Com_show_index_statistics (variable), 158
Com_show_table_statistics (variable), 158
Com_show_thread_statistics (variable), 158
Com_show_user_statistics (variable), 158
COMPRESSION_DICTIONARY (table), 67
COMPRESSION_DICTIONARY_TABLES (table), 67
Consistency, 382

D
default_table_encryption (variable), 127
Durability, 382

E
encrypt_binlog (variable), 136
encrypt_tmp_files (variable), 134
expand_fast_index_creation (variable), 90
extra_max_connections (variable), 45
extra_port (variable), 45

F
Foreign Key, 382

G
GLOBAL_TEMPORARY_TABLES (table), 178

H
have_backup_locks (variable), 93
have_snapshot_cloning (variable), 107

I
INDEX_STATISTICS (table), 154
INIT_ROCKSDB (variable), 25
INIT_TOKUDB (variable), 25
InnoDB, 382
Innodb_background_log_sync (variable), 170
innodb_background_scrub_data_compressed (variable),

145
innodb_background_scrub_data_uncompressed (vari-

able), 145
Innodb_buffer_pool_pages_LRU_flushed (variable), 172

384

Percona Server Documentation, Release 8.0.18-9

Innodb_buffer_pool_pages_made_not_young (variable),
172

Innodb_buffer_pool_pages_made_young (variable), 172
Innodb_buffer_pool_pages_old (variable), 173
Innodb_buffered_aio_submitted (variable), 40
INNODB_CHANGED_PAGES (table), 86
Innodb_checkpoint_age (variable), 171
Innodb_checkpoint_max_age (variable), 171
innodb_compressed_columns_threshold (variable), 69
innodb_compressed_columns_zip_level (variable), 69
innodb_corrupt_table_action (variable), 79
innodb_empty_free_list_algorithm (variable), 47
innodb_encrypt_online_alter_logs (variable), 129
innodb_encrypt_tables (variable), 127
innodb_encryption_threads (variable), 140
innodb_flush_method (variable), 37
innodb_force_index_records_in_range (variable), 51
innodb_ft_ignore_stopwords (variable), 72
Innodb_ibuf_free_list (variable), 170
Innodb_ibuf_segment_size (variable), 170
Innodb_lsn_current (variable), 171
Innodb_lsn_flushed (variable), 171
Innodb_lsn_last_checkpoint (variable), 171
Innodb_master_thread_active_loops (variable), 169
Innodb_master_thread_idle_loops (variable), 169
innodb_max_bitmap_file_size (variable), 87
innodb_max_changed_pages (variable), 86
Innodb_max_trx_id (variable), 173
Innodb_mem_adaptive_hash (variable), 172
Innodb_mem_dictionary (variable), 172
Innodb_mem_total (variable), 172
Innodb_oldest_view_low_limit_trx_id (variable), 173
innodb_online_encryption_rotate_key_age (variable),

140
innodb_parallel_dblwr_encrypt (variable), 142
innodb_parallel_doublewrite_path (variable), 48
innodb_print_lock_wait_timeout_info (variable), 168
Innodb_purge_trx_id (variable), 173
Innodb_purge_undo_no (variable), 173
innodb_records_in_range (variable), 51
innodb_redo_log_encrypt (variable), 137
Innodb_scan_data_size (variable), 181
Innodb_scan_deleted_recs_size (variable), 181
Innodb_scan_pages_contiguous (variable), 181
Innodb_scan_pages_disjointed (variable), 181
Innodb_scan_pages_total_seek_distance (variable), 182
innodb_sched_priority_master (variable), 49
Innodb_secondary_index_triggered_cluster_reads (vari-

able), 50
Innodb_secondary_index_triggered_cluster_reads_avoided

(variable), 50
innodb_show_locks_held (variable), 168
innodb_sys_tablespace_encrypt (variable), 131
innodb_temp_tablespace_encrypt (variable), 133

innodb_track_changed_pages (variable), 86
innodb_undo_log_encrypt (variable), 139
Isolation, 382

J
Jenkins, 382

K
keyring_vault_config (variable), 124
keyring_vault_timeout (variable), 124
kill_idle_transaction (variable), 84

L
lock-for-backup (option), 93
log_slow_filter (variable), 160
log_slow_rate_limit (variable), 161
log_slow_rate_type (variable), 161
log_slow_sp_statements (variable), 162
log_slow_verbosity (variable), 163
log_warnings_suppress (variable), 53
LSN, 382

M
MariaDB, 382
my.cnf, 382
MyISAM, 382
MySQL, 382
MYSQL_ALLOW_EMPTY_PASSWORD (variable), 25
MYSQL_DATABASE (variable), 25
MYSQL_ONETIME_PASSWORD (variable), 25
MYSQL_PASSWORD (variable), 25
MYSQL_RANDOM_ROOT_PASSWORD (variable), 25
MYSQL_ROOT_PASSWORD (variable), 25
MYSQL_ROOT_PASSWORD_FILE (variable), 25
MYSQL_USER (variable), 25

N
NUMA, 382

P
Percona Server, 383
Percona Server for MySQL, 383
PROCESSLIST (table), 176
proxy_protocol_networks (variable), 63

R
rocksdb_access_hint_on_compaction_start (variable),

304
rocksdb_advise_random_on_open (variable), 304
rocksdb_allow_concurrent_memtable_write (variable),

305
rocksdb_allow_mmap_reads (variable), 305
rocksdb_allow_mmap_writes (variable), 305

Index 385

Percona Server Documentation, Release 8.0.18-9

rocksdb_allow_to_start_after_corruption (variable), 305
rocksdb_base_background_compactions (variable), 305
rocksdb_block_cache_add (variable), 342
rocksdb_block_cache_add_failures (variable), 342
rocksdb_block_cache_bytes_read (variable), 342
rocksdb_block_cache_bytes_write (variable), 342
rocksdb_block_cache_compressed_hit (variable), 343
rocksdb_block_cache_compressed_miss (variable), 343
rocksdb_block_cache_data_add (variable), 342
rocksdb_block_cache_data_bytes_insert (variable), 342
rocksdb_block_cache_data_hit (variable), 342
rocksdb_block_cache_data_miss (variable), 342
rocksdb_block_cache_filter_add (variable), 342
rocksdb_block_cache_filter_bytes_evict (variable), 342
rocksdb_block_cache_filter_bytes_insert (variable), 342
rocksdb_block_cache_filter_hit (variable), 342
rocksdb_block_cache_filter_miss (variable), 343
rocksdb_block_cache_hit (variable), 343
rocksdb_block_cache_index_add (variable), 343
rocksdb_block_cache_index_bytes_evict (variable), 343
rocksdb_block_cache_index_bytes_insert (variable), 343
rocksdb_block_cache_index_hit (variable), 343
rocksdb_block_cache_index_miss (variable), 343
rocksdb_block_cache_miss (variable), 343
rocksdb_block_cache_size (variable), 306
rocksdb_block_restart_interval (variable), 306
rocksdb_block_size (variable), 306
rocksdb_block_size_deviation (variable), 306
rocksdb_bloom_filter_prefix_checked (variable), 343
rocksdb_bloom_filter_prefix_useful (variable), 343
rocksdb_bloom_filter_useful (variable), 343
rocksdb_bulk_load (variable), 307
rocksdb_bulk_load_allow_unsorted (variable), 307
rocksdb_bulk_load_size (variable), 307
rocksdb_bytes_per_sync (variable), 307
rocksdb_bytes_read (variable), 343
rocksdb_bytes_written (variable), 343
rocksdb_cache_index_and_filter_blocks (variable), 308
rocksdb_checksums_pct (variable), 308
rocksdb_collect_sst_properties (variable), 308
rocksdb_commit_in_the_middle (variable), 308
rocksdb_compact_cf (variable), 309
rocksdb_compact_read_bytes (variable), 343
rocksdb_compact_write_bytes (variable), 343
rocksdb_compaction_key_drop_new (variable), 343
rocksdb_compaction_key_drop_obsolete (variable), 344
rocksdb_compaction_key_drop_user (variable), 344
rocksdb_compaction_readahead_size (variable), 309
rocksdb_compaction_sequential_deletes (variable), 309
rocksdb_compaction_sequential_deletes_count_sd (vari-

able), 309
rocksdb_compaction_sequential_deletes_file_size (vari-

able), 310

rocksdb_compaction_sequential_deletes_window (vari-
able), 310

rocksdb_concurrent_prepare (variable), 310
rocksdb_covered_secondary_key_lookups (variable), 342
rocksdb_create_checkpoint (variable), 310
rocksdb_create_if_missing (variable), 310
rocksdb_create_missing_column_families (variable), 311
rocksdb_create_temporary_checkpoint (variable), 311
rocksdb_datadir (variable), 311
rocksdb_db_write_buffer_size (variable), 311
rocksdb_deadlock_detect (variable), 311
rocksdb_deadlock_detect_depth (variable), 312
rocksdb_debug_optimizer_no_zero_cardinality (vari-

able), 312
rocksdb_debug_ttl_ignore_pk (variable), 312
rocksdb_debug_ttl_read_filter_ts (variable), 312
rocksdb_debug_ttl_rec_ts (variable), 312
rocksdb_debug_ttl_snapshot_ts (variable), 313
rocksdb_default_cf_options (variable), 313
rocksdb_delayed_write_rate (variable), 313
rocksdb_delete_obsolete_files_period_micros (variable),

314
rocksdb_disable_file_deletions (variable), 314
rocksdb_enable_bulk_load_api (variable), 314
rocksdb_enable_thread_tracking (variable), 315
rocksdb_enable_ttl (variable), 314
rocksdb_enable_ttl_read_filtering (variable), 315
rocksdb_enable_write_thread_adaptive_yield (variable),

315
rocksdb_error_if_exists (variable), 315
rocksdb_flush_log_at_trx_commit (variable), 315
rocksdb_flush_memtable_on_analyze (variable), 316
rocksdb_flush_write_bytes (variable), 344
rocksdb_force_compute_memtable_stats (variable), 316
rocksdb_force_compute_memtable_stats_cachetime

(variable), 316
rocksdb_force_flush_memtable_and_lzero_now (vari-

able), 316
rocksdb_force_flush_memtable_now (variable), 317
rocksdb_force_index_records_in_range (variable), 317
rocksdb_get_hit_l0 (variable), 344
rocksdb_get_hit_l1 (variable), 344
rocksdb_get_hit_l2_and_up (variable), 344
rocksdb_get_updates_since_calls (variable), 344
rocksdb_hash_index_allow_collision (variable), 317
rocksdb_ignore_unknown_options (variable), 317
rocksdb_index_type (variable), 317
rocksdb_info_log_level (variable), 318
rocksdb_is_fd_close_on_exec (variable), 318
rocksdb_iter_bytes_read (variable), 344
rocksdb_keep_log_file_num (variable), 319
rocksdb_large_prefix (variable), 318
rocksdb_lock_scanned_rows (variable), 319
rocksdb_lock_wait_timeout (variable), 319

Index 386

Percona Server Documentation, Release 8.0.18-9

rocksdb_log_file_time_to_roll (variable), 319
rocksdb_manifest_preallocation_size (variable), 319
rocksdb_manual_wal_flush (variable), 320
rocksdb_max_background_compactions (variable), 320
rocksdb_max_background_flushes (variable), 320
rocksdb_max_background_jobs (variable), 320
rocksdb_max_latest_deadlocks (variable), 321
rocksdb_max_log_file_size (variable), 321
rocksdb_max_manifest_file_size (variable), 321
rocksdb_max_open_files (variable), 321
rocksdb_max_row_locks (variable), 322
rocksdb_max_subcompactions (variable), 322
rocksdb_max_total_wal_size (variable), 322
rocksdb_memtable_hit (variable), 344
rocksdb_memtable_miss (variable), 344
rocksdb_memtable_total (variable), 342
rocksdb_memtable_unflushed (variable), 342
rocksdb_merge_buf_size (variable), 322
rocksdb_merge_combine_read_size (variable), 323
rocksdb_merge_tmp_file_removal_delay_ms (variable),

323
rocksdb_new_table_reader_for_compaction_inputs (vari-

able), 323
rocksdb_no_block_cache (variable), 323
rocksdb_no_create_column_family (variable), 324
rocksdb_no_file_closes (variable), 344
rocksdb_no_file_errors (variable), 344
rocksdb_no_file_opens (variable), 344
rocksdb_num_iterators (variable), 344
rocksdb_number_block_not_compressed (variable), 344
rocksdb_number_db_next (variable), 344
rocksdb_number_db_next_found (variable), 344
rocksdb_number_db_prev (variable), 345
rocksdb_number_db_prev_found (variable), 345
rocksdb_number_db_seek (variable), 345
rocksdb_number_db_seek_found (variable), 345
rocksdb_number_deletes_filtered (variable), 345
rocksdb_number_keys_read (variable), 345
rocksdb_number_keys_updated (variable), 345
rocksdb_number_keys_written (variable), 345
rocksdb_number_merge_failures (variable), 345
rocksdb_number_multiget_bytes_read (variable), 345
rocksdb_number_multiget_get (variable), 345
rocksdb_number_multiget_keys_read (variable), 345
rocksdb_number_reseeks_iteration (variable), 345
rocksdb_number_sst_entry_delete (variable), 345
rocksdb_number_sst_entry_merge (variable), 345
rocksdb_number_sst_entry_other (variable), 345
rocksdb_number_sst_entry_put (variable), 345
rocksdb_number_sst_entry_singledelete (variable), 345
rocksdb_number_stat_computes (variable), 346
rocksdb_number_superversion_acquires (variable), 346
rocksdb_number_superversion_cleanups (variable), 346
rocksdb_number_superversion_releases (variable), 346

rocksdb_override_cf_options (variable), 324
rocksdb_paranoid_checks (variable), 324
rocksdb_pause_background_work (variable), 324
rocksdb_perf_context_level (variable), 325
rocksdb_persistent_cache_path (variable), 325
rocksdb_persistent_cache_size_mb (variable), 325
rocksdb_pin_l0_filter_and_index_blocks_in_cache (vari-

able), 325
rocksdb_print_snapshot_conflict_queries (variable), 326
rocksdb_queries_point (variable), 342
rocksdb_queries_range (variable), 342
rocksdb_rate_limit_delay_millis (variable), 346
rocksdb_rate_limiter_bytes_per_sec (variable), 326
rocksdb_read_free_rpl_tables (variable), 326
rocksdb_records_in_range (variable), 326
rocksdb_reset_stats (variable), 326
rocksdb_row_lock_deadlocks (variable), 346
rocksdb_row_lock_wait_timeouts (variable), 346
rocksdb_rows_deleted (variable), 341
rocksdb_rows_expired (variable), 341
rocksdb_rows_inserted (variable), 341
rocksdb_rows_read (variable), 341
rocksdb_rows_updated (variable), 341
rocksdb_rpl_skip_tx_api (variable), 327
rocksdb_seconds_between_stat_computes (variable), 327
rocksdb_signal_drop_index_thread (variable), 327
rocksdb_sim_cache_size (variable), 327
rocksdb_skip_bloom_filter_on_read (variable), 327
rocksdb_skip_fill_cache (variable), 328
rocksdb_snapshot_conflict_errors (variable), 346
rocksdb_sst_mgr_rate_bytes_per_sec (variable), 328
rocksdb_stall_l0_file_count_limit_slowdowns (variable),

346
rocksdb_stall_l0_file_count_limit_stops (variable), 346
rocksdb_stall_locked_l0_file_count_limit_slowdowns

(variable), 346
rocksdb_stall_locked_l0_file_count_limit_stops (vari-

able), 346
rocksdb_stall_memtable_limit_slowdowns (variable),

346
rocksdb_stall_memtable_limit_stops (variable), 346
rocksdb_stall_micros (variable), 347
rocksdb_stall_pending_compaction_limit_slowdowns

(variable), 346
rocksdb_stall_pending_compaction_limit_stops (vari-

able), 346
rocksdb_stall_total_slowdowns (variable), 347
rocksdb_stall_total_stops (variable), 346
rocksdb_stats_dump_period_sec (variable), 328
rocksdb_store_row_debug_checksums (variable), 328
rocksdb_strict_collation_check (variable), 328
rocksdb_strict_collation_exceptions (variable), 329
rocksdb_system_rows_deleted (variable), 341
rocksdb_system_rows_inserted (variable), 341

Index 387

Percona Server Documentation, Release 8.0.18-9

rocksdb_system_rows_read (variable), 341
rocksdb_system_rows_updated (variable), 341
rocksdb_table_cache_numshardbits (variable), 329
rocksdb_table_stats_sampling_pct (variable), 329
rocksdb_tmpdir (variable), 329
rocksdb_trace_sst_api (variable), 329
rocksdb_two_write_queues (variable), 330
rocksdb_unsafe_for_binlog (variable), 330
rocksdb_update_cf_options (variable), 330
rocksdb_use_adaptive_mutex (variable), 330
rocksdb_use_direct_io_for_flush_and_compaction (vari-

able), 330
rocksdb_use_direct_reads (variable), 331
rocksdb_use_fsync (variable), 331
rocksdb_validate_tables (variable), 331
rocksdb_verify_row_debug_checksums (variable), 331
rocksdb_wal_bytes (variable), 347
rocksdb_wal_bytes_per_sync (variable), 332
rocksdb_wal_dir (variable), 332
rocksdb_wal_group_syncs (variable), 347
rocksdb_wal_recovery_mode (variable), 332
rocksdb_wal_size_limit_mb (variable), 332
rocksdb_wal_synced (variable), 347
rocksdb_wal_ttl_seconds (variable), 333
rocksdb_whole_key_filtering (variable), 333
rocksdb_write_batch_max_bytes (variable), 333
rocksdb_write_disable_wal (variable), 333
rocksdb_write_ignore_missing_column_families (vari-

able), 333
rocksdb_write_other (variable), 347
rocksdb_write_self (variable), 347
rocksdb_write_timedout (variable), 347
rocksdb_write_wal (variable), 347

S
slow_query_log_always_write_time (variable), 164
slow_query_log_use_global_control (variable), 163
Storage Engine, 383

T
TABLE_STATISTICS (table), 155
TEMPORARY_TABLES (table), 178
thread_pool_high_prio_mode (variable), 43
thread_pool_high_prio_tickets (variable), 43
thread_pool_idle_timeout (variable), 43
thread_pool_max_threads (variable), 44
thread_pool_oversubscribe (variable), 44
thread_pool_size (variable), 44
thread_pool_stall_limit (variable), 44
THREAD_STATISTICS (table), 155
thread_statistics (variable), 152
Threadpool_idle_threads (variable), 46
Threadpool_threads (variable), 46
tokudb_alter_print_error (variable), 200

tokudb_analyze_delete_fraction (variable), 201
tokudb_analyze_in_background (variable), 265
tokudb_analyze_mode (variable), 265
tokudb_analyze_throttle (variable), 266
tokudb_analyze_time (variable), 266
tokudb_auto_analyze (variable), 266
TOKUDB_BACKGROUND_JOB_STATUS (table), 267
tokudb_backup_allowed_prefix (variable), 201
tokudb_backup_dir (variable), 201
tokudb_backup_exclude (variable), 202
tokudb_backup_last_error (variable), 202
tokudb_backup_last_error_string (variable), 202
tokudb_backup_plugin_version (variable), 202
tokudb_backup_throttle (variable), 203
tokudb_backup_version (variable), 203
Tokudb_BASEMENT_DESERIALIZATION_FIXED_KEY

(variable), 285
Tokudb_BASEMENT_DESERIALIZATION_VARIABLE_KEY

(variable), 285
Tokudb_BASEMENTS_DECOMPRESSED_FOR_WRITE

(variable), 282
Tokudb_BASEMENTS_DECOMPRESSED_PREFETCH

(variable), 282
Tokudb_BASEMENTS_DECOMPRESSED_PRELOCKED_RANGE

(variable), 282
Tokudb_BASEMENTS_DECOMPRESSED_TARGET_QUERY

(variable), 282
Tokudb_BASEMENTS_FETCHED_FOR_WRITE (vari-

able), 283
Tokudb_BASEMENTS_FETCHED_FOR_WRITE_BYTES

(variable), 283
Tokudb_BASEMENTS_FETCHED_FOR_WRITE_SECONDS

(variable), 283
Tokudb_BASEMENTS_FETCHED_PREFETCH (vari-

able), 283
Tokudb_BASEMENTS_FETCHED_PREFETCH_BYTES

(variable), 283
Tokudb_BASEMENTS_FETCHED_PREFETCH_SECONDS

(variable), 283
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE

(variable), 283
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_BYTES

(variable), 283
Tokudb_BASEMENTS_FETCHED_PRELOCKED_RANGE_SECONDS

(variable), 283
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY

(variable), 283
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_BYTES

(variable), 283
Tokudb_BASEMENTS_FETCHED_TARGET_QUERY_SECONDS

(variable), 283
tokudb_block_size (variable), 203
Tokudb_BROADCASE_MESSAGES_INJECTED_AT_ROOT

(variable), 282

Index 388

Percona Server Documentation, Release 8.0.18-9

Tokudb_BUFFERS_DECOMPRESSED_FOR_WRITE
(variable), 282

Tokudb_BUFFERS_DECOMPRESSED_PREFETCH
(variable), 282

Tokudb_BUFFERS_DECOMPRESSED_PRELOCKED_RANGE
(variable), 282

Tokudb_BUFFERS_DECOMPRESSED_TARGET_QUERY
(variable), 282

Tokudb_BUFFERS_FETCHED_FOR_WRITE (vari-
able), 284

Tokudb_BUFFERS_FETCHED_FOR_WRITE_BYTES
(variable), 284

Tokudb_BUFFERS_FETCHED_FOR_WRITE_SECONDS
(variable), 284

Tokudb_BUFFERS_FETCHED_PREFETCH (variable),
284

Tokudb_BUFFERS_FETCHED_PREFETCH_BYTES
(variable), 284

Tokudb_BUFFERS_FETCHED_PREFETCH_SECONDS
(variable), 284

Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE
(variable), 284

Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_BYTES
(variable), 284

Tokudb_BUFFERS_FETCHED_PRELOCKED_RANGE_SECONDS
(variable), 284

Tokudb_BUFFERS_FETCHED_TARGET_QUERY
(variable), 283

Tokudb_BUFFERS_FETCHED_TARGET_QUERY_BYTES
(variable), 283

Tokudb_BUFFERS_FETCHED_TARGET_QUERY_SECONDS
(variable), 283

tokudb_bulk_fetch (variable), 203
tokudb_cache_size (variable), 204
Tokudb_CACHETABLE_CLEANER_EXECUTIONS

(variable), 276
Tokudb_CACHETABLE_CLEANER_ITERATIONS

(variable), 277
Tokudb_CACHETABLE_CLEANER_PERIOD (vari-

able), 276
Tokudb_CACHETABLE_EVICTIONS (variable), 276
Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_COUNT

(variable), 277
Tokudb_CACHETABLE_LONG_WAIT_PRESSURE_TIME

(variable), 277
Tokudb_CACHETABLE_MISS (variable), 276
Tokudb_CACHETABLE_MISS_TIME (variable), 276
Tokudb_CACHETABLE_POOL_CACHETABLE_MAX_QUEUE_SIZE

(variable), 277
Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADS

(variable), 277
Tokudb_CACHETABLE_POOL_CACHETABLE_NUM_THREADS_ACTIVE

(variable), 277
Tokudb_CACHETABLE_POOL_CACHETABLE_QUEUE_SIZE

(variable), 277
Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_EXECUTION_TIME

(variable), 277
Tokudb_CACHETABLE_POOL_CACHETABLE_TOTAL_ITEMS_PROCESSED

(variable), 277
Tokudb_CACHETABLE_POOL_CHECKPOINT_MAX_QUEUE_SIZE

(variable), 278
Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADS

(variable), 278
Tokudb_CACHETABLE_POOL_CHECKPOINT_NUM_THREADS_ACTIVE

(variable), 278
Tokudb_CACHETABLE_POOL_CHECKPOINT_QUEUE_SIZE

(variable), 278
Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_EXECUTION_TIME

(variable), 278
Tokudb_CACHETABLE_POOL_CHECKPOINT_TOTAL_ITEMS_PROCESSED

(variable), 278
Tokudb_CACHETABLE_POOL_CLIENT_MAX_QUEUE_SIZE

(variable), 277
Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS

(variable), 277
Tokudb_CACHETABLE_POOL_CLIENT_NUM_THREADS_ACTIVE

(variable), 277
Tokudb_CACHETABLE_POOL_CLIENT_QUEUE_SIZE

(variable), 277
Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_EXECUTION_TIME

(variable), 277
Tokudb_CACHETABLE_POOL_CLIENT_TOTAL_ITEMS_PROCESSED

(variable), 277
tokudb_cachetable_pool_threads (variable), 204
Tokudb_CACHETABLE_PREFETCHES (variable), 276
Tokudb_CACHETABLE_SIZE_CACHEPRESSURE

(variable), 276
Tokudb_CACHETABLE_SIZE_CLONED (variable),

276
Tokudb_CACHETABLE_SIZE_CURRENT (variable),

276
Tokudb_CACHETABLE_SIZE_LEAF (variable), 276
Tokudb_CACHETABLE_SIZE_LIMIT (variable), 276
Tokudb_CACHETABLE_SIZE_NONLEAF (variable),

276
Tokudb_CACHETABLE_SIZE_ROLLBACK (variable),

276
Tokudb_CACHETABLE_SIZE_WRITING (variable),

276
Tokudb_CACHETABLE_WAIT_PRESSURE_COUNT

(variable), 277
Tokudb_CACHETABLE_WAIT_PRESSURE_TIME

(variable), 277
tokudb_cardinality_scale_percent (variable), 267
tokudb_check_jemalloc (variable), 204
Tokudb_CHECKPOINT_BEGIN_TIME (variable), 275
Tokudb_CHECKPOINT_CLIENT_WAIT_ON_CS (vari-

able), 275

Index 389

Percona Server Documentation, Release 8.0.18-9

Tokudb_CHECKPOINT_CLIENT_WAIT_ON_MO
(variable), 275

Tokudb_CHECKPOINT_DURATION (variable), 275
Tokudb_CHECKPOINT_DURATION_LAST (variable),

275
Tokudb_CHECKPOINT_END_TIME (variable), 275
Tokudb_CHECKPOINT_FAILED (variable), 275
Tokudb_CHECKPOINT_FOOTPRINT (variable), 274
Tokudb_CHECKPOINT_LAST_BEGAN (variable), 274
Tokudb_CHECKPOINT_LAST_COMPLETE_BEGAN

(variable), 274
Tokudb_CHECKPOINT_LAST_COMPLETE_ENDED

(variable), 274
Tokudb_CHECKPOINT_LAST_LSN (variable), 275
tokudb_checkpoint_lock (variable), 205
Tokudb_CHECKPOINT_LONG_BEGIN_COUNT

(variable), 275
Tokudb_CHECKPOINT_LONG_BEGIN_TIME (vari-

able), 275
Tokudb_CHECKPOINT_LONG_END_COUNT (vari-

able), 276
Tokudb_CHECKPOINT_LONG_END_TIME (variable),

275
tokudb_checkpoint_on_flush_logs (variable), 205
Tokudb_CHECKPOINT_PERIOD (variable), 274
tokudb_checkpoint_pool_threads (variable), 205
Tokudb_CHECKPOINT_TAKEN (variable), 275
Tokudb_CHECKPOINT_WAITERS_MAX (variable),

275
Tokudb_CHECKPOINT_WAITERS_NOW (variable),

275
tokudb_checkpointing_period (variable), 205
tokudb_cleaner_iterations (variable), 206
tokudb_cleaner_period (variable), 206
tokudb_client_pool_threads (variable), 206
tokudb_commit_sync (variable), 206
tokudb_compress_buffers_before_eviction (variable),

207
tokudb_create_index_online (variable), 207
Tokudb_CURSOR_SKIP_DELETED_LEAF_ENTRY

(variable), 286
tokudb_data_dir (variable), 208
Tokudb_DB_CLOSES (variable), 273
Tokudb_DB_OPEN_CURRENT (variable), 273
Tokudb_DB_OPEN_MAX (variable), 274
Tokudb_DB_OPENS (variable), 273
tokudb_debug (variable), 208
Tokudb_DESCRIPTOR_SET (variable), 279
Tokudb_DICTIONARY_BROADCAST_UPDATES

(variable), 279
Tokudb_DICTIONARY_UPDATES (variable), 279
tokudb_dir_cmd (variable), 262
tokudb_dir_cmd_last_error (variable), 263
tokudb_dir_cmd_last_error_string (variable), 263

tokudb_dir_per_db (variable), 208
tokudb_directio (variable), 209
tokudb_disable_hot_alter (variable), 209
tokudb_disable_prefetching (variable), 209
tokudb_disable_slow_alter (variable), 209
tokudb_empty_scan (variable), 210
tokudb_enable_fast_update (variable), 210
tokudb_enable_fast_upsert (variable), 210
tokudb_enable_partial_eviction (variable), 211
tokudb_fanout (variable), 211
Tokudb_FILESYSTEM_FSYNC_NUM (variable), 290
Tokudb_FILESYSTEM_FSYNC_TIME (variable), 290
Tokudb_FILESYSTEM_LONG_FSYNC_NUM (vari-

able), 290
Tokudb_FILESYSTEM_LONG_FSYNC_TIME (vari-

able), 290
Tokudb_FILESYSTEM_THREADS_BLOCKED_BY_FULL_DISK

(variable), 290
Tokudb_FLUSHER_BALANCE_LEAF (variable), 288
Tokudb_FLUSHER_CLEANER_EMPTY_NODES

(variable), 286
Tokudb_FLUSHER_CLEANER_H1_NODES (variable),

286
Tokudb_FLUSHER_CLEANER_HGT1_NODES (vari-

able), 286
Tokudb_FLUSHER_CLEANER_MAX_BUFFER_SIZE

(variable), 286
Tokudb_FLUSHER_CLEANER_MAX_BUFFER_WORKDONE

(variable), 286
Tokudb_FLUSHER_CLEANER_MIN_BUFFER_SIZE

(variable), 286
Tokudb_FLUSHER_CLEANER_MIN_BUFFER_WORKDONE

(variable), 286
Tokudb_FLUSHER_CLEANER_NODES_DIRTIED

(variable), 286
Tokudb_FLUSHER_CLEANER_NUM_DIRTIED_FOR_LEAF_MERGE

(variable), 287
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_COMPLETED

(variable), 287
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_RUNNING

(variable), 287
Tokudb_FLUSHER_CLEANER_NUM_LEAF_MERGES_STARTED

(variable), 287
Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_SIZE

(variable), 286
Tokudb_FLUSHER_CLEANER_TOTAL_BUFFER_WORKDONE

(variable), 286
Tokudb_FLUSHER_CLEANER_TOTAL_NODES (vari-

able), 286
Tokudb_FLUSHER_FLUSH_CASCADES (variable),

287
Tokudb_FLUSHER_FLUSH_CASCADES_1 (variable),

287
Tokudb_FLUSHER_FLUSH_CASCADES_2 (variable),

Index 390

Percona Server Documentation, Release 8.0.18-9

287
Tokudb_FLUSHER_FLUSH_CASCADES_3 (variable),

287
Tokudb_FLUSHER_FLUSH_CASCADES_4 (variable),

287
Tokudb_FLUSHER_FLUSH_CASCADES_5 (variable),

287
Tokudb_FLUSHER_FLUSH_CASCADES_GT_5 (vari-

able), 288
Tokudb_FLUSHER_FLUSH_IN_MEMORY (variable),

287
Tokudb_FLUSHER_FLUSH_NEEDED_IO (variable),

287
Tokudb_FLUSHER_FLUSH_TOTAL (variable), 287
Tokudb_FLUSHER_MERGE_LEAF (variable), 288
Tokudb_FLUSHER_MERGE_NONLEAF (variable),

288
Tokudb_FLUSHER_SPLIT_LEAF (variable), 288
Tokudb_FLUSHER_SPLIT_NONLEAF (variable), 288
tokudb_fs_reserve_percent (variable), 211
tokudb_fsync_log_period (variable), 211
tokudb_hide_default_row_format (variable), 212
Tokudb_HOT_MAX_ROOT_FLUSH_COUNT (vari-

able), 288
Tokudb_HOT_NUM_ABORTED (variable), 288
Tokudb_HOT_NUM_COMPLETED (variable), 288
Tokudb_HOT_NUM_STARTED (variable), 288
tokudb_killed_time (variable), 212
tokudb_last_lock_timeout (variable), 212
Tokudb_LEAF_COMPRESSION_TO_MEMORY_SECONDS

(variable), 284
Tokudb_LEAF_DECOMPRESSION_TO_MEMORY_SECONDS

(variable), 284
Tokudb_LEAF_DESERIALIZATION_TO_MEMORY_SECONDS

(variable), 284
Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_IN (vari-

able), 274
Tokudb_LEAF_ENTRY_APPLY_GC_BYTES_OUT

(variable), 274
Tokudb_LEAF_ENTRY_EXPANDED (variable), 274
Tokudb_LEAF_ENTRY_MAX_COMMITTED_XR

(variable), 274
Tokudb_LEAF_ENTRY_MAX_MEMSIZE (variable),

274
Tokudb_LEAF_ENTRY_MAX_PROVISIONAL_XR

(variable), 274
Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_IN

(variable), 274
Tokudb_LEAF_ENTRY_NORMAL_GC_BYTES_OUT

(variable), 274
Tokudb_LEAF_NODE_COMPRESSION_RATIO (vari-

able), 281
Tokudb_LEAF_NODE_FULL_EVICTIONS (variable),

281

Tokudb_LEAF_NODE_FULL_EVICTIONS_BYTES
(variable), 281

Tokudb_LEAF_NODE_PARTIAL_EVICTIONS (vari-
able), 281

Tokudb_LEAF_NODE_PARTIAL_EVICTIONS_BYTES
(variable), 281

Tokudb_LEAF_NODES_CREATED (variable), 281
Tokudb_LEAF_NODES_DESTROYED (variable), 281
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT

(variable), 280
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_BYTES

(variable), 280
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_SECONDS

(variable), 280
Tokudb_LEAF_NODES_FLUSHED_CHECKPOINT_UNCOMPRESSED_BYTES

(variable), 280
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT

(variable), 280
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_BYTES

(variable), 280
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_SECONDS

(variable), 280
Tokudb_LEAF_NODES_FLUSHED_NOT_CHECKPOINT_UNCOMPRESSED_BYTES

(variable), 280
Tokudb_LEAF_SERIALIZATION_TO_MEMORY_SECONDS

(variable), 284
tokudb_load_save_space (variable), 212
tokudb_loader_memory_size (variable), 213
Tokudb_LOADER_NUM_CREATED (variable), 289
Tokudb_LOADER_NUM_CURRENT (variable), 289
Tokudb_LOADER_NUM_MAX (variable), 289
tokudb_lock_timeout (variable), 213
tokudb_lock_timeout_debug (variable), 214
Tokudb_LOCKTREE_ESCALATION_NUM (variable),

278
Tokudb_LOCKTREE_ESCALATION_SECONDS (vari-

able), 278
Tokudb_LOCKTREE_LATEST_POST_ESCALATION_MEMORY_SIZE

(variable), 278
Tokudb_LOCKTREE_LONG_WAIT_COUNT (vari-

able), 279
Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_COUNT

(variable), 279
Tokudb_LOCKTREE_LONG_WAIT_ESCALATION_TIME

(variable), 279
Tokudb_LOCKTREE_LONG_WAIT_TIME (variable),

279
Tokudb_LOCKTREE_MEMORY_SIZE (variable), 278
Tokudb_LOCKTREE_MEMORY_SIZE_LIMIT (vari-

able), 278
Tokudb_LOCKTREE_OPEN_CURRENT (variable),

278
Tokudb_LOCKTREE_PENDING_LOCK_REQUESTS

(variable), 278

Index 391

Percona Server Documentation, Release 8.0.18-9

Tokudb_LOCKTREE_STO_ELIGIBLE_NUM (vari-
able), 278

Tokudb_LOCKTREE_STO_ENDED_NUM (variable),
278

Tokudb_LOCKTREE_STO_ENDED_SECONDS (vari-
able), 278

Tokudb_LOCKTREE_TIMEOUT_COUNT (variable),
279

Tokudb_LOCKTREE_WAIT_COUNT (variable), 279
Tokudb_LOCKTREE_WAIT_ESCALATION_COUNT

(variable), 279
Tokudb_LOCKTREE_WAIT_ESCALATION_TIME

(variable), 279
Tokudb_LOCKTREE_WAIT_TIME (variable), 279
tokudb_log_dir (variable), 214
Tokudb_LOGGER_NEXT_LSN (variable), 288
Tokudb_LOGGER_WAIT_LONG (variable), 289
Tokudb_LOGGER_WRITES (variable), 289
Tokudb_LOGGER_WRITES_BYTES (variable), 289
Tokudb_LOGGER_WRITES_SECONDS (variable), 289
Tokudb_LOGGER_WRITES_UNCOMPRESSED_BYTES

(variable), 289
tokudb_max_lock_memory (variable), 215
Tokudb_MEM_ESTIMATED_MAXIMUM_MEMORY_FOOTPRINT

(variable), 290
Tokudb_MEMORY_FREE_COUNT (variable), 289
Tokudb_MEMORY_FREED (variable), 289
Tokudb_MEMORY_LAST_FAILED_SIZE (variable),

290
Tokudb_MEMORY_MALLOC_COUNT (variable), 289
Tokudb_MEMORY_MALLOC_FAIL (variable), 289
Tokudb_MEMORY_MALLOCATOR_VERSION (vari-

able), 290
Tokudb_MEMORY_MAX_REQUESTED_SIZE (vari-

able), 289
Tokudb_MEMORY_MMAP_THRESHOLD (variable),

290
Tokudb_MEMORY_REALLOC_COUNT (variable),

289
Tokudb_MEMORY_REALLOC_FAIL (variable), 289
Tokudb_MEMORY_REQUESTED (variable), 289
Tokudb_MEMORY_USED (variable), 289
Tokudb_MESSAGES_FLUSHED_FROM_H1_TO_LEAVES_BYTES

(variable), 281
Tokudb_MESSAGES_IGNORED_BY_LEAF_DUE_TO_MSN

(variable), 279
Tokudb_MESSAGES_IN_TREES_ESTIMATE_BYTES

(variable), 282
Tokudb_MESSAGES_INJECTED_AT_ROOT (vari-

able), 282
Tokudb_MESSAGES_INJECTED_AT_ROOT_BYTES

(variable), 281
Tokudb_NONLEAF_COMPRESSION_TO_MEMORY_SECONDS

(variable), 284

Tokudb_NONLEAF_DECOMPRESSION_TO_MEMORY_SECONDS
(variable), 284

Tokudb_NONLEAF_DESERIALIZATION_TO_MEMORY_SECONDS
(variable), 284

Tokudb_NONLEAF_NODE_COMPRESSION_RATIO
(variable), 281

Tokudb_NONLEAF_NODE_FULL_EVICTIONS (vari-
able), 281

Tokudb_NONLEAF_NODE_FULL_EVICTIONS_BYTES
(variable), 281

Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS
(variable), 281

Tokudb_NONLEAF_NODE_PARTIAL_EVICTIONS_BYTES
(variable), 281

Tokudb_NONLEAF_NODES_CREATED (variable),
281

Tokudb_NONLEAF_NODES_DESTROYED (variable),
281

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT
(variable), 280

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_BYTES
(variable), 280

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_SECONDS
(variable), 280

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_CHECKPOINT_UNCOMPRESSED_BY
(variable), 280

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT
(variable), 280

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_BYTES
(variable), 280

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_SECONDS
(variable), 280

Tokudb_NONLEAF_NODES_FLUSHED_TO_DISK_NOT_CHECKPOINT_UNCOMPRESSE
(variable), 280

Tokudb_NONLEAF_SERIALIZATION_TO_MEMORY_SECONDS
(variable), 284

tokudb_optimize_index_fraction (variable), 215
tokudb_optimize_index_name (variable), 215
tokudb_optimize_throttle (variable), 215
Tokudb_OVERALL_NODE_COMPRESSION_RATIO

(variable), 281
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH (vari-

able), 282
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_BYTES

(variable), 282
Tokudb_PIVOTS_FETCHED_FOR_PREFETCH_SECONDS

(variable), 282
Tokudb_PIVOTS_FETCHED_FOR_QUERY (variable),

282
Tokudb_PIVOTS_FETCHED_FOR_QUERY_BYTES

(variable), 282
Tokudb_PIVOTS_FETCHED_FOR_QUERY_SECONDS

(variable), 282
Tokudb_PIVOTS_FETCHED_FOR_WRITE (variable),

Index 392

Percona Server Documentation, Release 8.0.18-9

282
Tokudb_PIVOTS_FETCHED_FOR_WRITE_BYTES

(variable), 283
Tokudb_PIVOTS_FETCHED_FOR_WRITE_SECONDS

(variable), 283
tokudb_pk_insert_mode (variable), 216
tokudb_prelock_empty (variable), 216
Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_FAIL_POS

(variable), 285
Tokudb_PRO_RIGHTMOST_LEAF_SHORTCUT_SUCCESS

(variable), 285
Tokudb_PROMOTION_H1_ROOTS_INJECTED_INTO

(variable), 285
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_0

(variable), 285
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_1

(variable), 285
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_2

(variable), 285
Tokudb_PROMOTION_INJECTIONS_AT_DEPTH_3

(variable), 285
Tokudb_PROMOTION_INJECTIONS_LOWER_THAN_DEPTH_3

(variable), 285
Tokudb_PROMOTION_LEAF_ROOTS_INJECTED_INTO

(variable), 285
Tokudb_PROMOTION_ROOTS_SPLIT (variable), 284
Tokudb_PROMOTION_STOPPED_AFTER_LOCKING_CHILD

(variable), 285
Tokudb_PROMOTION_STOPPED_AT_HEIGHT_1

(variable), 285
Tokudb_PROMOTION_STOPPED_CHILD_LOCKED_OR_NOT_IN_MEMORY

(variable), 285
Tokudb_PROMOTION_STOPPED_CHILD_NOT_FULLY_IN_MEMORY

(variable), 285
Tokudb_PROMOTION_STOPPED_NONEMPTY_BUFFER

(variable), 285
tokudb_read_block_size (variable), 216
tokudb_read_buf_size (variable), 217
tokudb_read_status_frequency (variable), 217
Tokudb_RIGHTMOST_LEAF_SHORTCUT_FAIL_REACTIVE

(variable), 286
tokudb_row_format (variable), 217
tokudb_rpl_check_readonly (variable), 218
tokudb_rpl_lookup_rows (variable), 218
tokudb_rpl_lookup_rows_delay (variable), 218
tokudb_rpl_unique_checks (variable), 219
tokudb_rpl_unique_checks_delay (variable), 219
Tokudb_SEARCH_TRIES_GT_HEIGHT (variable), 280
Tokudb_SEARCH_TRIES_GT_HEIGHTPLUS3 (vari-

able), 280
tokudb_strip_frm_data (variable), 219
tokudb_support_xa (variable), 219
tokudb_tmp_dir (variable), 220
Tokudb_TOTAL_SEARCH_RETRIES (variable), 279

Tokudb_TXN_ABORTS (variable), 288
Tokudb_TXN_BEGIN (variable), 288
Tokudb_TXN_BEGIN_READ_ONLY (variable), 288
Tokudb_TXN_COMMITS (variable), 288
tokudb_version (variable), 220
tokudb_write_status_frequency (variable), 220

U
USER_STATISTICS (table), 156
userstat (variable), 152
utility_user (variable), 113
utility_user_password (variable), 113
utility_user_privileges (variable), 114
utility_user_schema_access (variable), 113

X
XtraDB, 383
XTRADB_INTERNAL_HASH_TABLES (table), 174
XTRADB_READ_VIEW (table), 174

Index 393

	I Introduction
	II Installation
	III Scalability Improvements
	IV Performance Improvements
	V Flexibility Improvements
	VI Reliability Improvements
	VII Management Improvements
	VIII Security Improvements
	IX Diagnostics Improvements
	X TokuDB
	XI Percona MyRocks
	XII Reference

