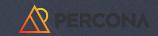


Running MongoDB in the Cloud:


How to Reduce Infrastructure Costs Using Open Source Components and Kubernetes

Takis Stathopoulos Enterprise Architect, Percona

Agenda

- 1. Why proprietary MongoDB Cloud costs are getting out of control?
- 2. The Open, Cloud Native, Option
- 3. Practical approaches to cost reduction
- 4. Summary

Why proprietary MongoDB Cloud costs are getting out of control?

DBaaS convenience fee

Cloud and region	MongoDB Atlas	laaS pay-as-you-go laaS reserved (3y				
M30 (3-node RS, 2vCPU, 8GB RAM, 40GB disk)						
AWS us-east1	\$4,730	\$2,666 \$1,204				
Azure centralus	\$5,256	\$2,450	\$1,049			
GCP us-east1	\$3,854	\$2,796	\$1,393			
	M200 (4x3-node RS, 64v0	PU, 256GB RAM, 2TB storag	je)			
AWS us-east1	\$555,822	\$355,086	\$159,674			
Azure centralus	\$626,515	\$366,672	\$162,575			
GCP us-east1	\$525,755	\$379,376	\$198,303			

A premium of 138% to 501% only for the server infrastructure part! <u>Adds-up quickly!</u> No backup, no data transfer fees, yearly, public 2023 prices.

Scaling Granularity

MongoDB Atlas, 3-node RS, AWS eu-west-1

Couple of sizes fit all!

Scaling up:

Only 10 production-grade tiers

Any upgrade costs double

Limited options available

from \$1.15 /hr	4 vCPUs	80 GB	16 GB	M40 •
from \$2.20 /hr	8 vCPUs	160 GB	32 GB	M50 °
from \$4.36 /hr	16 vCPUs	320 GB	64 GB	M60 •
from \$8.06 /hr	32 vCPUs	750 GB	128 GB	M80 •
from \$12.13 /hr	48 vCPUs	1000 GB	192 GB	M140
from \$16.10 /hr	64 vCPUs	1500 GB	256 GB	M200 •
from \$24.11 /hr	96 vCPUs	2000 GB	384 GB	M300 •
from \$24.73 /hr	64 vCPUs	3000 GB	512 GB	M400 •
from \$36.73 /hr	96 vCPUs	4096 GB	768 GB	M700

M50 \$2.20/h = **\$19,272/year**

M60 \$4.36/hr = **\$38,193.6/year**

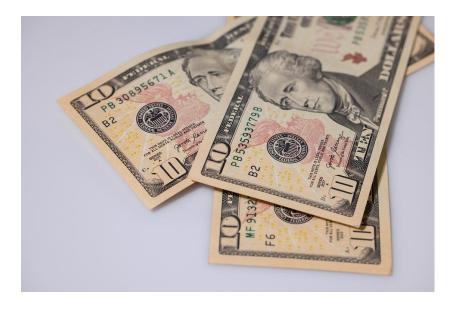
Ease of use (and scale via credit card) trap

- Cloud resources are virtually unlimited
- Pay-as-you go
- Less careful planning
- Building 20-shard 5-node each cluster? Easy!

Limited flexibility

What?

How?


	Scale Up		
	Avg. CPU Util > 75% for past 1h		
Autoscaling	Avg. Mem > 75% for past 1h		
Autoscamig	Next highest cluster tier		
	Scale down		
	Avg. Util. < 50% for the past 24h*		
Topology	No arbiter nodes		
торогоду	No single node dev clusters		
Uniform offering	AWS, Azure, GCP common denominator		
Omionii onemig	Avvo, Azure, GCP Common denominator		

Data transfer costs

- Hidden
- Hard to estimate
- Hard to verify
- Inter AZ -> Cross AZ -> Cross
 Region -> Internet

AWS: \$0.01 - \$0.09

Azure: \$0.01 - \$0.18

GCP: \$0.01 -\$0.23

Backups

EBS Snapshots

- Snapshots: \$0.05GB/month
- S3: \$0.023GB/month

Atlas AWS Snapshots

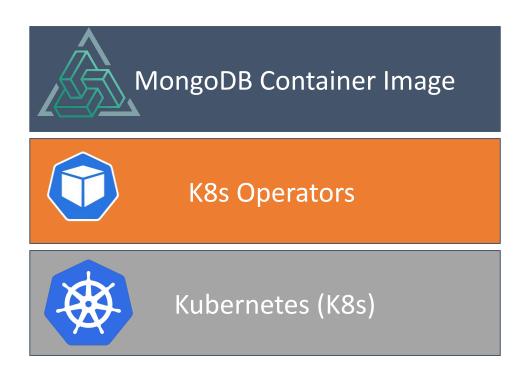
- Snapshots: \$0.19GB/month
- PITR: \$1.55 \$0.40 (!)

Symptoms of credit card scaling

- Overprovisioning config replica set nodes
- Too many shards for the dataset
- Lack of tuning and sticking to defaults
- Over Indexing
- Suboptimal shard keys
 - Unbalanced shards
 - Queries spanning all shards
- No data archival
- Default cache options

What's the best tool to resolve MongoDB performance issues quickly?

Cloud DBaaS lock-in

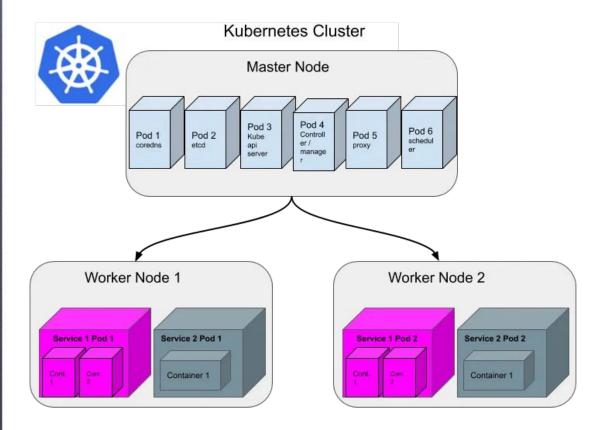


The Open, Cloud Native, Option

The Open, way

Observable, Containers, Microservices, ...

Automated, Manageable, Easy to use, ...


Scalable, Cloud Independent, Resilient, Declarative, ...

Kubernetes in a single slide

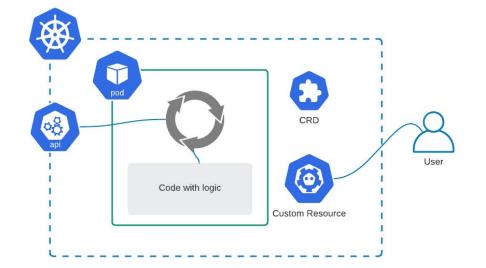
Basic objects

Cluster, Pods, Worker Nodes,
Volumes, Secrets, Deployments,
Services, ReplicaControllers,
StatefulSets, Persistent Volume
Claims ...

But is it complex?

Operators abstract and automate

Database - level concepts to K8s primitive transparently for the end - user


Operators are software extensions to Kubernetes that make use of Custom Resources Definitions (CRDs) to manage applications and their components.

Percona Everest makes

running DBs on K8s even simpler!


```
Kubernetes
                  Operator
                                   Database
primitives
   image: percona/percona-server-mongodb:4.4.6-8
           size: 3
         configsvrReplSet:
       backups:
```

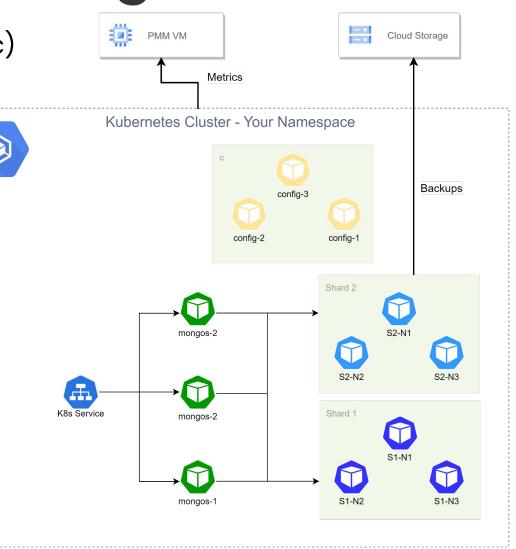

Deploying replica set Percona Operator for MongoDB

```
apiVersion: psmdb.percona.com/v1
kind: PerconaServerMongoDB
metadata:
  name: percona-live-cluster
spec:
  crVersion: 1.15.0
  image:
percona/percona-server-mongodb:6.0.4-3
  secrets:
    users: minimal-cluster
  replsets:
  - name: shard1
    size: 3
    resources:
      limits:
        cpu: "4"
        memory: "8G"
      requests:
        cpu: "4"
        memory: "8G"
    volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: 30Gi
```

```
sharding:
  enabled: true
  configsvrReplSet:
    size: 3
    resources:
      limits:
        cpu: "2"
        memory: "4G"
      requests:
        cpu: "2"
        memory: "4G"
   volumeSpec:
      persistentVolumeClaim:
        resources:
          requests:
            storage: 3Gi
 mongos:
    size: 3
```

```
$kubectl apply -f cr.yaml
```

https://docs.percona.com/percona-operator-for-mongodb/compare.html
Operators compared



Percona Operator for MongoDB

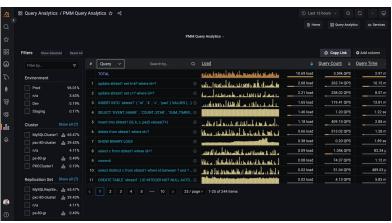
- Deploy easily: replica sets, shards, (mongo/d/s/c)
- 2. Topology management (arbiters, node affinity, scaling)
- 3. Monitoring integration
- 4. Network exposure and load balancing
- 5. Backups management with Percona Backup for MongoDB
- 6. Self-healing
- 7. Upgrade automation (minor, manual major)
- 8. Configuration adjustments

Percona Server for MongoDB

Binary compatible, drop-in replacement

for MongoDB CE. No license fees, free to use

Enterprise features, without the restrictions



Test and package for everyone!

Enterprise Features

Bring in the enterprise features companies need.

- 1. Advanced backups (Physical, PITR)
- 2. LDAP Integration
- 3. Data-at-rest encryption
- 4. KMIP integration
- 5. Auditing
- 6. PMM Monitoring

Practical approaches to cost reduction

Use open source

- Advanced backups
- 2. LDAP
- Data-at-rest encryption
- 4. KMIP integration
- 5. Auditing
- 6. Monitoring

Features

Enterprise Advanced/Atlas

K8s resources are cost-efficient

- Managed K8s is ~\$70/month at any major cloud provider
- Utilize "raw" resources at "raw" resource prices
- Embrace discounts:
 - Reserved prices (41% 1 year, 62% 3-year)
 - Spot instances

Embrace the variety of available cloud compute resources

eks.amazonaws.com/capacityType=ON_DEMAND
eks.amazonaws.com/nodegroup=critical
node.kubernetes.io/instance-type=r5.2xlarge
topology.kubernetes.io/region=eu-west-1
topology.kubernetes.io/zone=eu-west-1b

Assign resources granularly

- 1. Each shard
 - a. Data nodes
 - b. Hidden nodes
 - c. Arbiters
- 2. Config RS
- 3. Mongos
- 4. Backup pod


```
replsets:
```

- name: shard1

size: 3

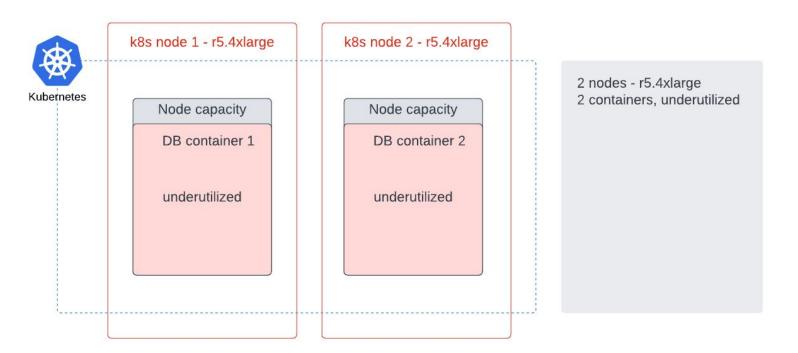
resources:

limits:

cpu: "12.5"

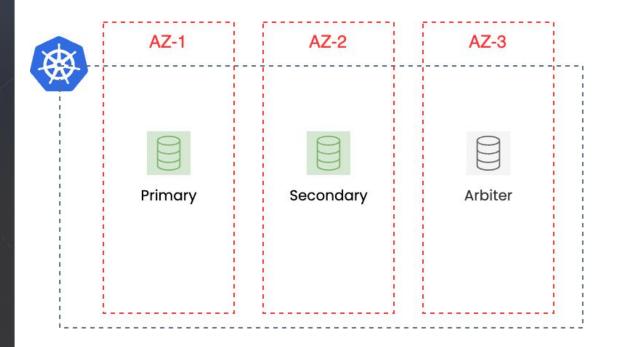
memory: "19G"

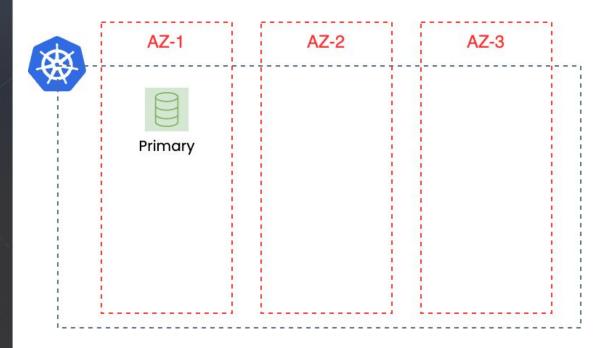
requests:


cpu: "12.5"

memory: "19G"

Embrace K8s Autoscaling flexibility


- 1. VPA
- 2. HPA/KEDA
- Cluster Autoscaler


Choose the right HA-level and topology


```
spec:
 allowUnsafeConfigurations: false
 replsets:
    - name: shard1
      size: 3
      affinity:
        antiAffinityTopologyKey:
         "kubernetes.io/zone"
     arbiter:
       enabled: true
       size: 1
```

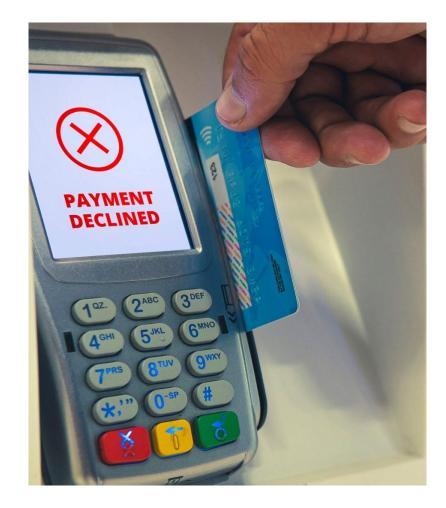

Cost effective Development Environments


```
spec:
  allowUnsafeConfigurations: true
  replsets:
    - name: shard1
      size: 1
      affinity:
        antiAffinityTopologyKey:
         "kubernetes.io/host"
     arbiter:
       enabled: false
```

Use multiple storage classes


```
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
   name: bronze
parameters:
   type: gp2
   fsType: xfs
```

```
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
   name: silver
parameters:
   type: gp3
   iops: 6000
   fsType: xfs
```


```
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
   name: gold
parameters:
   type: io2
   iopsPerGB: 40
   allowAutoIOPSPerGBIncrease:
"true"
   fsType: xfs
```

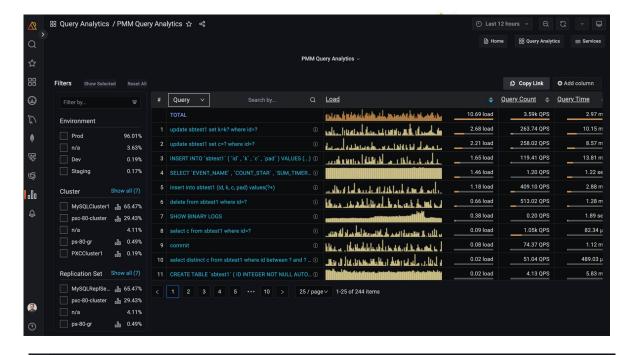
```
replsets:
   - name: shard1
    size: 3
    volumeSpec:
        persistentVolumeClaim:
        storageClassName: gold
        resources:
        requests:
        storage: 300G
```

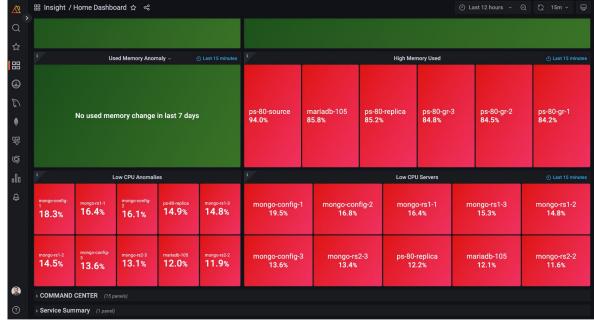

Stop solving issues with credit card

- Indexes:
 - Check usage stats
 - Consider partial indexes
 - Remove unused indexes
- Sharding key:
 - Plan it
 - Adjust it
- Data archival
 - Capped collection
 - TTL indexes

Understanding is a key

- Understand the workload
- Review outstanding queries
- Look for underutilization, too


```
helm repo add percona
https://percona.github.io/percona-helm-charts/
helm install pmm \
--set secret.create=false \
--set secret.name=pmm-secret \
percona/pmm
```


```
pmm:
    enabled: true
    image: percona/pmm-client:2.37.0
    serverHost: monitoring-service
```


Understanding is key

- Understand the workload
- Review outstanding queries
- Look for underutilization, too

Summary

What's the potential?

It depends.

CASE STUDY

minsait

An Indra company

Minsait Migrates Tier 1 Telecoms Customers to MongoDB on Google Cloud with Percona

Cloud Migration Challenges

Minsait is the digital transformation specialist company and part of the Indra Group. The firm is one of Spain's leading IT services and transformation companies and operates across 100 countries worldwide. Minsait has experience across cloud, security, payments and combined physical and digital channels, so it can provide the most innovative technology to drive businesses and support innovation in public sector organizations alike, generating a positive impact on society.

For the Minsait team, helping customers migrate to the cloud is a key component in their digital transformation initiatives. For a tier-one telecoms company, this meant a move to Google Cloud. The customer had a MongoDB deployment in their data center, and the team at Minsait had to consider how to migrate this implementation into the cloud as well.

For Minsait, the key goals of this project were to manage costs and maintain control over the deployment. For the Product Director on the project, getting the right advice was essential.

Key takeaways

- Cloud DBaaS such as MongoDB Atlas comes with a huge premium fee In some cases 5x cloud resources cost.
- 2. Hidden costs and suboptimal MongoDB configuration make the situation worse
 - Cloud DBaaS fees are difficult to predict and understand.
- 3. Kubernetes and Percona MongoDB Operator can handle any MongoDB workload
 - The solution has been proven in production for many years.
- 4. Running MongoDB on K8s, or Percona Everest has a significant cost saving potential
 - It makes it possible to utilize cheap "raw" cloud resources without giving up convenience and automation

Learn more

Run MongoDB in your terms

Thank you!

