
Distribution for

PostgreSQL

Documentation

13.13 (December 6, 2023)

Percona Technical Documentation Team

Percona LLC, © 2023

Table of contents

41. Percona Distribution for PostgreSQL 13 Documentation

62. Release notes

62.1 Percona Distribution for PostgreSQL release notes

72.2 Percona Distribution for PostgreSQL 13.13 (2023-12-06)

102.3 Percona Distribution for PostgreSQL 13.12 (2023-08-30)

132.4 Percona Distribution for PostgreSQL 13.11 (2023-06-29)

152.5 Percona Distribution for PostgreSQL 13.10 Update (2023-05-22)

162.6 Percona Distribution for PostgreSQL 13.10 (2023-03-27)

182.7 Percona Distribution for PostgreSQL 13.9 (2022-11-24)

202.8 Percona Distribution for PostgreSQL 13.8 (2022-09-06)

222.9 Percona Distribution for PostgreSQL 13.7 (2022-06-02)

242.10 Percona Distribution for PostgreSQL 13.6 Second Update (2022-05-05)

252.11 Percona Distribution for PostgreSQL 13.6 Update (2022-04-14)

262.12 Percona Distribution for PostgreSQL 13.6 (2022-03-22)

282.13 Percona Distribution for PostgreSQL 13.5 Second Update (2021-12-07)

292.14 Percona Distribution for PostgreSQL 13.5 Update (2021-02-12)

302.15 Percona Distribution for PostgreSQL 13.5 (2021-11-23)

322.16 Percona Distribution for PostgreSQL 13.4 Update (2021-09-30)

332.17 Percona Distribution for PostgreSQL 13.4 (2021-09-09)

352.18 Percona Distribution for PostgreSQL 13.3 Third Update (2021-07-15)

362.19 Percona Distribution for PostgreSQL 13.3 Second Update (2021-07-01)

372.20 Percona Distribution for PostgreSQL 13.3 Update (2021-06-10)

382.21 Percona Distribution for PostgreSQL 13.3 (2021-05-20)

402.22 Percona Distribution for PostgreSQL 13.2 Fourth Update (2021-06-10)

412.23 Percona Distribution for PostgreSQL 13.2 Third Update (2021-05-10)

422.24 Percona Distribution for PostgreSQL 13.2 Second Update (2021-04-27)

432.25 Percona Distribution for PostgreSQL 13.2 Update (2021-04-12)

442.26 Percona Distribution for PostgreSQL 13.2 (2021-03-04)

452.27 Percona Distribution for PostgreSQL 13.1 (2020-12-02)

462.28 Percona Distribution for PostgreSQL 13.0 (2020-10-16)

473. Installation and Upgrade

473.1 Install Percona Distribution for PostgreSQL

663.2 Run Percona Distribution for PostgreSQL in a Docker container

703.3 Migrate from PostgreSQL to Percona Distribution for PostgreSQL

743.4 Upgrading Percona Distribution for PostgreSQL from 12 to 13

Table of contents

2 of 165 Percona LLC, © 2023

823.5 Minor Upgrade of Percona Distribution for PostgreSQL

844. Extensions

844.1 pg_stat_monitor

905. Solutions

905.1 High availability

1315.2 Backup and disaster recovery

1465.3 Spatial data handling

1575.4 LDAP Authentication

1586. Telemetry on Percona Distribution for PostgreSQL

1586.1 What information is collected

1586.2 Disable telemetry

1607. Uninstalling Percona Distribution for PostgreSQL

1628. Copyright and licensing information

1628.1 Documentation licensing

1649. Trademark Policy

Table of contents

3 of 165 Percona LLC, © 2023

1. Percona Distribution for PostgreSQL 13 Documentation

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing your PostgreSQL

database system: it installs PostgreSQL and complements it by a selection of extensions that enable solving

essential practical tasks efficiently:

HAProxy - a high-availability and load-balancing solution

Patroni is an HA (High Availability) solution for PostgreSQL.

pgAudit provides detailed session or object audit logging via the standard PostgreSQL logging facility

pgAudit set_user - The set_user part of pgAudit extension provides an additional layer of logging and

control when unprivileged users must escalate themselves to superuser or object owner roles in order to

perform needed maintenance tasks.

pgBackRest is a backup and restore solution for PostgreSQL

pgBadger - a fast PostgreSQL Log Analyzer.

PgBouncer - a lightweight connection pooler for PostgreSQL

pg_gather - an SQL script to assess the health of PostgreSQL cluster by gathering performance and

configuration data from PostgreSQL databases.

pgpool2 - a middleware between PostgreSQL server and client for high availability, connection pooling

and load balancing.

pg_repack rebuilds PostgreSQL database objects

pg_stat_monitor collects and aggregates statistics for PostgreSQL and provides histogram information.

PostGIS allows storing and manipulating spacial data in PostgreSQL.

wal2json - a PostgreSQL logical decoding JSON output plugin.

A collection of additional PostgreSQL contrib extensions

Get started What’s new

Blog Posts

pgBackRest - A Great Backup Solution and a Wonderful Year of Growth

Securing PostgreSQL as an Enterprise-Grade Environment

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

•

•

•

•

•

•

•

•

•

•

•

•

•

•

See also

•

•

1. Percona Distribution for PostgreSQL 13 Documentation

4 of 165 Percona LLC, © 2023

http://www.haproxy.org/
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://github.com/jobinau/pg_gather
https://www.pgpool.net/mediawiki/index.php/Main_Page
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
http://postgis.net/
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/13/contrib.html
https://www.percona.com/blog/2019/05/10/pgbackrest-a-great-backup-solution-and-a-wonderful-year-of-growth/
https://www.percona.com/blog/2018/09/21/securing-postgresql-as-an-enterprise-grade-environment/
https://www.postgresql.org/docs/13/libpq.html

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: August 30, 2023

Created: June 4, 2021

1. Percona Distribution for PostgreSQL 13 Documentation

5 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2. Release notes

2.1 Percona Distribution for PostgreSQL release notes

Percona Distribution for PostgreSQL 13.13 (2023-12-06)

Percona Distribution for PostgreSQL 13.12 (2023-08-30)

Percona Distribution for PostgreSQL 13.11 (2023-06-29)

Percona Distribution for PostgreSQL 13.10 Update (2023-05-22)

Percona Distribution for PostgreSQL 13.10 (2023-03-27)

Percona Distribution for PostgreSQL 13.9 (2022-11-24)

Percona Distribution for PostgreSQL 13.8 (2022-09-06)

Percona Distribution for PostgreSQL 13.7 (2022-06-02)

Percona Distribution for PostgreSQL 13.6 Second Update (2022-05-05)

Percona Distribution for PostgreSQL 13.6 Update (2022-04-14)

Percona Distribution for PostgreSQL 13.6 (2022-03-22)

Percona Distribution for PostgreSQL 13.5 Second Update (2021-12-07)

Percona Distribution for PostgreSQL 13.5 Update (2021-02-12)

Percona Distribution for PostgreSQL 13.5 (2021-11-23)

Percona Distribution for PostgreSQL 13.4 Update (2021-09-30)

Percona Distribution for PostgreSQL 13.4 (2021-09-09)

Percona Distribution for PostgreSQL 13.3 Third Update (2021-07-15)

Percona Distribution for PostgreSQL 13.3 Second Update (2021-07-01)

Percona Distribution for PostgreSQL 13.3 Update (2021-06-10)

Percona Distribution for PostgreSQL 13.3 (2021-05-20)

Percona Distribution for PostgreSQL 13.2 Fourth Update (2021-06-10)

Percona Distribution for PostgreSQL 13.2 Third Update (2021-05-10)

Percona Distribution for PostgreSQL 13.2 Second Update (2021-04-27)

Percona Distribution for PostgreSQL 13.2 Update (2021-04-12)

Percona Distribution for PostgreSQL 13.2 (2021-03-04)

Percona Distribution for PostgreSQL 13.1 (2020-12-02)

Percona Distribution for PostgreSQL 13.0 (2020-10-16)

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: December 5, 2023

Created: June 4, 2021

2. Release notes

6 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.2 Percona Distribution for PostgreSQL 13.13 (2023-12-06)

Installation

Percona Distribution for PostgreSQL is a solution with the collection of tools from PostgreSQL community that

are tested to work together and serve to assist you in deploying and managing PostgreSQL. The aim of

Percona Distribution for PostgreSQL is to address the operational issues like High-Availability, Disaster

Recovery, Security, Spatial data handling, Observability, Performance and Scalability and others that

enterprises are facing.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.13.

2.2.1 Release Highlights

Docker images are now available for x86_64 architectures. Their inclusion in the distribution aims to

simplify the developers’ experience with the Distribution. Refer to the Docker guide for how to run Percona

Distribution for PostgreSQL in Docker.

Telemetry is now enabled in Percona Distribution for PostgreSQL to fill in the gaps in our understanding of

how you use it and help us improve our products. Participation in the anonymous program is optional.

You can opt-out if you prefer not to share this information. Find more information in the Telemetry on

Percona Distribution for PostgreSQL document.

The percona-postgis33 and percona-pgaudit packages on YUM-based operating systems are renamed

percona-postgis33_13 and percona-pgaudit13 respectively

•

•

•

2.2 Percona Distribution for PostgreSQL 13.13 (2023-12-06)

7 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/release-13-13.html

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

Extension Version Description

HAProxy 2.8.3 a high-availability and load-balancing solution

Patroni 3.1.0 a HA (High Availability) solution for PostgreSQL

PgAudit 1.6.2 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set_user 4.0.1 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superusers or

object owner roles to perform needed maintenance tasks.

pgBackRest 2.48 a backup and restore solution for PostgreSQL

pgBadger 12.2 a fast PostgreSQL Log Analyzer.

PgBouncer 1.21.0 a lightweight connection pooler for PostgreSQL

pg_gather v23 an SQL script for running the diagnostics of the health of

PostgreSQL cluster

pgpool2 4.4.4 a middleware between PostgreSQL server and client for high

availability, connection pooling and load balancing.

pg_repack 1.4.8 rebuilds PostgreSQL database objects

pg_stat_monitor 2.0.3 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostGIS 3.3.4 a spatial extension for PostgreSQL.

PostgreSQL

Common

256 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.5 a PostgreSQL logical decoding JSON output plugin

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.5 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.5 A Python client for ETCD

2.2.1 Release Highlights

8 of 165 Percona LLC, © 2023

http://www.haproxy.org/
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://github.com/jobinau/pg_gather
https://git.postgresql.org/gitweb/?p=pgpool2.git;a=summary
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://github.com/postgis/postgis
https://salsa.debian.org/postgresql/postgresql-common
https://salsa.debian.org/postgresql/postgresql-common
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/13/libpq.html

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: December 5, 2023

Created: June 4, 2021

2.2.1 Release Highlights

9 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.3 Percona Distribution for PostgreSQL 13.12 (2023-08-30)

Percona Distribution for PostgreSQL is a solution with the collection of tools from PostgreSQL community that

are tested to work together and serve to assist you in deploying and managing PostgreSQL. The aim of

Percona Distribution for PostgreSQL is to address the operational issues like High-Availability, Disaster

Recovery, Security, Spatial data handling, Observability, Performance and Scalability and others that

enterprises are facing.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.12.

2.3.1 Release Highlights

Percona Distribution for PostgreSQL components now include pg_gather - the open source extension to

assess the health of PostgreSQL cluster by gathering performance and configuration data from

PostgreSQL databases. This tool helps you run diagnostics of your PostgreSQL cluster and is also actively

used by Percona Support.

Percona Distribution for PostgreSQL is now available on Debian 12 (bookworm).

The support of Ubuntu 18.04 is deprecated.

Release date: August 30, 2023

Installation: Installing Percona Distribution for PostgreSQL

•

•

•

2.3 Percona Distribution for PostgreSQL 13.12 (2023-08-30)

10 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/release-13-12.html
https://github.com/jobinau/pg_gather

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

Extension Version Description

HAProxy 2.8.1 a high-availability and load-balancing solution

Patroni 3.1.0 a HA (High Availability) solution for PostgreSQL

PgAudit 1.5.2 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set_user 4.0.1 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superusers or

object owner roles to perform needed maintenance tasks.

pgBackRest 2.47 a backup and restore solution for PostgreSQL

pgBadger 12.1 a fast PostgreSQL Log Analyzer.

PgBouncer 1.20.0 a lightweight connection pooler for PostgreSQL

pg_gather v22 an SQL script for running the diagnostics of the health of

PostgreSQL cluster

pgpool2 4.4.3 a middleware between PostgreSQL server and client for high

availability, connection pooling and load balancing.

pg_repack 1.4.8 rebuilds PostgreSQL database objects

pg_stat_monitor 2.0.1 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostGIS 3.3.4 a spatial extension for PostgreSQL.

PostgreSQL

Common

252 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.5 a PostgreSQL logical decoding JSON output plugin

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.5 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.5 A Python client for ETCD

2.3.1 Release Highlights

11 of 165 Percona LLC, © 2023

http://www.haproxy.org/
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://github.com/jobinau/pg_gather
https://git.postgresql.org/gitweb/?p=pgpool2.git;a=summary
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://github.com/postgis/postgis
https://salsa.debian.org/postgresql/postgresql-common
https://salsa.debian.org/postgresql/postgresql-common
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/13/libpq.html

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: August 31, 2023

Created: June 4, 2021

2.3.1 Release Highlights

12 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.4 Percona Distribution for PostgreSQL 13.11 (2023-06-29)

Percona Distribution for PostgreSQL is a solution with the collection of tools from PostgreSQL community that

are tested to work together and serve to assist you in deploying and managing PostgreSQL. The aim of

Percona Distribution for PostgreSQL is to address the operational issues like High-Availability, Disaster

Recovery, Security, Performance and Scalability and others that enterprises are facing.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.11.

2.4.1 Release Highlights

Percona Distribution for PostgreSQL components now include PostGIS - the open source extension that

allows storing and manipulating spatial data in PostgreSQL.

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Release date: June 29, 2023

Installation: Installing Percona Distribution for PostgreSQL

•

Extension Version Description

HAProxy 2.6.13 a high-availability and load-balancing solution

Patroni 3.0.2 a HA (High Availability) solution for PostgreSQL

PgAudit 1.5.2 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set_user 4.0.1 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superusers or

object owner roles to perform needed maintenance tasks.

pgBackRest 2.44 a backup and restore solution for PostgreSQL

pgBadger 12.1 a fast PostgreSQL Log Analyzer.

PgBouncer 1.19.1 a lightweight connection pooler for PostgreSQL

pgpool2 4.4.3 a middleware between PostgreSQL server and client for high

availability, connection pooling and load balancing.

pg_repack 1.4.8 rebuilds PostgreSQL database objects

pg_stat_monitor 2.0.1 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostGIS 3.3.3 a spatial extension for PostgreSQL.

PostgreSQL

Common

250 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.5 a PostgreSQL logical decoding JSON output plugin

2.4 Percona Distribution for PostgreSQL 13.11 (2023-06-29)

13 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/release-13-11.html
http://postgis.net/
http://www.haproxy.org/
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://git.postgresql.org/gitweb/?p=pgpool2.git;a=summary
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://github.com/postgis/postgis
https://salsa.debian.org/postgresql/postgresql-common
https://salsa.debian.org/postgresql/postgresql-common
https://github.com/eulerto/wal2json

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.3 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.3 A Python client for ETCD

Last update: June 30, 2023

Created: June 4, 2021

2.4.1 Release Highlights

14 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.5 Percona Distribution for PostgreSQL 13.10 Update (2023-05-22)

Percona Distribution for PostgreSQL is a solution with the collection of tools from PostgreSQL community that

are tested to work together and serve to assist you in deploying and managing PostgreSQL. The aim of

Percona Distribution for PostgreSQL is to address the operational issues like High-Availability, Disaster

Recovery, Security, Performance and Scalability and others that enterprises are facing.

This update of Percona Distribution for PostgreSQL includes the new version of pg_stat_monitor 2.0.1 that

fixes the issues with the database failure.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Release date: May 22, 2023

Installation: Installing Percona Distribution for PostgreSQL

Last update: May 22, 2023

Created: May 17, 2023

2.5 Percona Distribution for PostgreSQL 13.10 Update (2023-05-22)

15 of 165 Percona LLC, © 2023

https://docs.percona.com/pg-stat-monitor/release-notes/2.0.1.html
https://docs.percona.com/pg-stat-monitor/release-notes/2.0.1.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.6 Percona Distribution for PostgreSQL 13.10 (2023-03-27)

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.10.

2.6.1 Release Highlights

A new major version of pg_stat_monitor 2.0.0 has been released and is now generally available with

Percona Distribution for PostgreSQL.

Added a new extension pgpool - a middleware between PostgreSQL server and client for high availability,

connection pooling and load balancing.

Percona Distribution for PostgreSQL is now available on Red Hat Enterprise Linux 9 and compatible

derivatives

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Release date: March 27, 2023

Installation: Installing Percona Distribution for PostgreSQL

•

•

•

Extension Version Description

Patroni 3.0.1 a HA (High Availability) solution for PostgreSQL

PgAudit 1.5.2 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set_user 4.0.1 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superusers or

object owner roles in order to perform needed maintenance

tasks.

pgBackRest 2.43 a backup and restore solution for PostgreSQL

pgBadger 12.0 a fast PostgreSQL Log Analyzer.

PgBouncer 1.18.0 a lightweight connection pooler for PostgreSQL

pg_repack 1.4.8 rebuilds PostgreSQL database objects

pg_stat_monitor 2.0.0 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostgreSQL

Common

247 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.5 a PostgreSQL logical decoding JSON output plugin

HAProxy 2.5.11 a high-availability and load-balancing solution

pgpool 4.4.2 a middleware between PostgreSQL server and client for high

availability, connection pooling and load balancing.

2.6 Percona Distribution for PostgreSQL 13.10 (2023-03-27)

16 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/release-13-10.html
https://docs.percona.com/pg-stat-monitor/release-notes/2.0.0.html
https://docs.percona.com/pg-stat-monitor/release-notes/2.0.0.html
https://www.pgpool.net/docs/43/en/html/index.html
https://www.pgpool.net/docs/43/en/html/index.html
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://salsa.debian.org/postgresql/postgresql-common
https://salsa.debian.org/postgresql/postgresql-common
https://github.com/eulerto/wal2json
http://www.haproxy.org/
https://git.postgresql.org/gitweb/?p=pgpool2.git;a=summary

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.3 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.3 A Python client for ETCD

Last update: April 14, 2023

Created: June 4, 2021

2.6.1 Release Highlights

17 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.7 Percona Distribution for PostgreSQL 13.9 (2022-11-24)

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.9.

Percona Distribution for PostgreSQL now includes the meta-packages that simplify its installation. The

percona-ppg-server meta-package installs PostgreSQL and the extensions, while percona-ppg-server-ha

package installs high-availability components that are recommended by Percona.

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Release date: November 24, 2022

Installation: Installing Percona Distribution for PostgreSQL

Extension Version Description

Patroni 2.1.4 a HA (High Availability) solution for PostgreSQL

Pgaudit 1.5.2 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set user 4.0.0 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superuser or

object owner roles in order to perform needed maintenance

tasks.

pgBackRest 2.41 a backup and restore solution for PostgreSQL

pgBadger 12.0 a fast PostgreSQL Log Analyzer.

pgBouncer 1.17.0 lightweight connection pooler for PostgreSQL

pg_repack 1.4.8 rebuilds PostgreSQL database objects

pg_stat_monitor 1.1.1 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostgreSQL

Common

241 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.5 a PostgreSQL logical decoding JSON output plugin.

HAProxy 2.5.9 a high-availability and load-balancing solution

2.7 Percona Distribution for PostgreSQL 13.9 (2022-11-24)

18 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/release-13-9.html
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://salsa.debian.org/postgresql/postgresql-common
https://salsa.debian.org/postgresql/postgresql-common
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
http://www.haproxy.org/

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.3 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.3 A Python client for ETCD

Last update: December 8, 2022

Created: June 4, 2021

2.7 Percona Distribution for PostgreSQL 13.9 (2022-11-24)

19 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.8 Percona Distribution for PostgreSQL 13.8 (2022-09-06)

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.8.

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Release date: September 6, 2022

Installation: Installing Percona Distribution for PostgreSQL

Extension Version Description

Patroni 2.1.4 a HA (High Availability) solution for PostgreSQL

Pgaudit 1.5.2 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set user 3.0.0 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superuser or

object owner roles in order to perform needed maintenance

tasks.

pgBackRest 2.40 a backup and restore solution for PostgreSQL

pgBadger 11.8 a fast PostgreSQL Log Analyzer.

pgBouncer 1.17.0 lightweight connection pooler for PostgreSQL

pg_repack 1.4.7 rebuilds PostgreSQL database objects

pg_stat_monitor 1.1.0 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostgreSQL

Common

241 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.4 a PostgreSQL logical decoding JSON output plugin.

HAProxy 2.5.6 a high-availability and load-balancing solution

2.8 Percona Distribution for PostgreSQL 13.8 (2022-09-06)

20 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/release-13-8.html
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://packages.debian.org/sid/percona-postgresql-common
https://packages.debian.org/sid/percona-postgresql-common
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
http://www.haproxy.org/

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.3 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.3 A Python client for ETCD

Last update: September 6, 2022

Created: June 4, 2021

2.8 Percona Distribution for PostgreSQL 13.8 (2022-09-06)

21 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.9 Percona Distribution for PostgreSQL 13.7 (2022-06-02)

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.7.

2.9.1 Release Highlights

The set of extensions supplied with Percona Distribution for PostgreSQL now includes the HAProxy - a high-

availability and load-balancing solution.

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Release date: June 2, 2022

Installation: Installing Percona Distribution for PostgreSQL

Extension Version Description

Patroni 2.1.2 a HA (High Availability) solution for PostgreSQL

Pgaudit 1.5.2 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set user 3.0.0 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superuser or

object owner roles in order to perform needed maintenance

tasks.

pgBackRest 2.38 a backup and restore solution for PostgreSQL

pgBadger 11.8 a fast PostgreSQL Log Analyzer.

pgBouncer 1.17.0 lightweight connection pooler for PostgreSQL

pg_repack 1.4.7 rebuilds PostgreSQL database objects

pg_stat_monitor 1.0.1 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostgreSQL

Common

241 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.4 a PostgreSQL logical decoding JSON output plugin.

HAProxy 2.5.6 a high-availability and load-balancing solution

2.9 Percona Distribution for PostgreSQL 13.7 (2022-06-02)

22 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/release-13-7.html
http://www.haproxy.org/
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://packages.debian.org/sid/percona-postgresql-common
https://packages.debian.org/sid/percona-postgresql-common
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
http://www.haproxy.org/

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.3 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.3 A Python client for ETCD

Debian 9

(‘stretch’)

etcd 3.3.11 A consistent, distributed key-value

store

python3-etcd 0.4.3 A Python client for ETCD

Last update: June 2, 2022

Created: June 4, 2021

2.9.1 Release Highlights

23 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.10 Percona Distribution for PostgreSQL 13.6 Second Update (2022-05-05)

Date: May 5, 2022

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This update of Percona Distribution for PostgreSQL includes the general availability release of

pg_stat_monitor 1.0.0 - the statistics collection tool for PostgreSQL.

We welcome your feedback on your experience with pg_stat_monitor on our Forum and in the public JIRA

project.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: September 30, 2021

2.10 Percona Distribution for PostgreSQL 13.6 Second Update (2022-05-05)

24 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://percona.github.io/pg_stat_monitor/REL1_0_STABLE/RELEASE_NOTES.html#100
https://forums.percona.com/c/postgresql/pg-stat-monitor/69
https://jira.percona.com/projects/DISTPG
https://jira.percona.com/projects/DISTPG
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.11 Percona Distribution for PostgreSQL 13.6 Update (2022-04-14)

Date: April 14, 2022

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This update of Percona Distribution for PostgreSQL includes pg_stat_monitor 1.0.0-rc.2 - the new version of

the statistics collection tool for PostgreSQL.

We welcome your feedback on your experience with pg_stat_monitor on our Forum and in the public JIRA

project.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: September 30, 2021

2.11 Percona Distribution for PostgreSQL 13.6 Update (2022-04-14)

25 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://percona.github.io/pg_stat_monitor/REL1_0_STABLE/RELEASE_NOTES.html#100-rc2
https://forums.percona.com/c/postgresql/pg-stat-monitor/69
https://jira.percona.com/projects/DISTPG
https://jira.percona.com/projects/DISTPG
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.12 Percona Distribution for PostgreSQL 13.6 (2022-03-22)

Date: March 22, 2022

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.6.

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Extension Version Description

Patroni 2.1.2 a HA (High Availability) solution for PostgreSQL

Pgaudit 1.5.1 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set user 3.0.0 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superuser or

object owner roles in order to perform needed maintenance

tasks.

pgBackRest 2.37 a backup and restore solution for PostgreSQL

pgBadger 11.7 a fast PostgreSQL Log Analyzer.

pgBouncer 1.16.1 lightweight connection pooler for PostgreSQL

pg_repack 1.4.7 rebuilds PostgreSQL database objects

pg_stat_monitor 1.0.0 - rc.1 collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostgreSQL

Common

237 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.4 a PostgreSQL logical decoding JSON output plugin.

2.12 Percona Distribution for PostgreSQL 13.6 (2022-03-22)

26 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://www.postgresql.org/docs/13/release-13-5.html
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://packages.debian.org/sid/percona-postgresql-common
https://packages.debian.org/sid/percona-postgresql-common
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json

Percona Distribution for PostgreSQL also includes the following packages:

llvm 12.0.1 packages for Red Hat Enterprise Linux 8 and compatible derivatives. These fix compatibility

issues with LLVM from upstream.

supplemental ETCD packages which can be used for setting up Patroni clusters. These packages are

available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

Operating

System

Package Version Description

RHEL 7 python3-python-

etcd

0.4.3 A Python client for ETCD

RHEL 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.3 A Python client for ETCD

Debian 9

(‘stretch’)

etcd 3.3.11 A consistent, distributed key-value

store

python3-etcd 0.4.3 A Python client for ETCD

Last update: June 2, 2022

Created: June 4, 2021

2.12 Percona Distribution for PostgreSQL 13.6 (2022-03-22)

27 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.13 Percona Distribution for PostgreSQL 13.5 Second Update (2021-12-07)

Date: December 7, 2021

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This update of Percona Distribution for PostgreSQL includes the latest version of pg_stat_monitor 1.0.0-RC -

the statistics collection tool for PostgreSQL.

We welcome your feedback on your experience with pg_stat_monitor in the public JIRA project.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: September 30, 2021

2.13 Percona Distribution for PostgreSQL 13.5 Second Update (2021-12-07)

28 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://github.com/percona/pg_stat_monitor
https://jira.percona.com/projects/DISTPG
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.14 Percona Distribution for PostgreSQL 13.5 Update (2021-02-12)

Date: December 2, 2021

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This update of Percona Distribution for PostgreSQL fixes the inability of a user to upgrade the postgresql-

common package during the major upgrade to version 13.5 on DEB-based systems.

2.14.1 Bugs Fixed

DISTPG-358: “Device or resource busy” error during the major upgrade of PostgreSQL on Ubuntu

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

Last update: June 2, 2022

Created: September 30, 2021

2.14 Percona Distribution for PostgreSQL 13.5 Update (2021-02-12)

29 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://jira.percona.com/browse/DISTPG-358
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.15 Percona Distribution for PostgreSQL 13.5 (2021-11-23)

Date: November 23, 2021

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.5.

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Percona Distribution for PostgreSQL also includes the following packages: - llvm 12.0.1 packages for Red Hat

Enterprise Linux 8 / CentOS 8. These fix compatibility issues with LLVM from upstream. - supplemental ETCD

packages which can be used for setting up Patroni clusters. These packages are available for the following

operating systems:

Extension Version Description

Patroni 2.1.1 a HA (High Availability) solution for PostgreSQL

Pgaudit 1.5.0 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set user 3.0.0 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superuser or

object owner roles in order to perform needed maintenance

tasks.

pgBackRest 2.36 a backup and restore solution for PostgreSQL

pgBadger 11.6 a fast PostgreSQL Log Analyzer.

pgBouncer 1.16.1 lightweight connection pooler for PostgreSQL

pg_repack 1.4.7 rebuilds PostgreSQL database objects

pg_stat_monitor 1.0.0 -

Beta2

collects and aggregates statistics for PostgreSQL and provides

histogram information.

PostgreSQL

Common

230 PostgreSQL database-cluster manager. It provides a structure

under which multiple versions of PostgreSQL may be installed

and/or multiple clusters maintained at one time.

wal2json 2.4 a PostgreSQL logical decoding JSON output plugin.

Operating

System

Package Version Description

CentOS 7 python3-python-

etcd

0.4.3 A Python client for ETCD

CentOS 8 etcd 3.3.11 A consistent, distributed key-value

store

python3-python-

etcd

0.4.3 A Python client for ETCD

Debian 9

(‘stretch’)

etcd 3.3.11 A consistent, distributed key-value

store

python3-etcd 0.4.3 A Python client for ETCD

2.15 Percona Distribution for PostgreSQL 13.5 (2021-11-23)

30 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://www.postgresql.org/docs/13/release-13-5.html
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://packages.debian.org/sid/percona-postgresql-common
https://packages.debian.org/sid/percona-postgresql-common
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: June 4, 2021

2.15 Percona Distribution for PostgreSQL 13.5 (2021-11-23)

31 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.16 Percona Distribution for PostgreSQL 13.4 Update (2021-09-30)

Date: September 30, 2021

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This update of Percona Distribution for PostgreSQL fixes the inability of a user to upgrade from previous

version of PostgreSQL from PGDG (PostgreSQL Global Development Group) to Percona Distribution for

PostgreSQL on Ubuntu

2.16.1 Bugs Fixed

DISTPG-297: Unable to install Percona PostgreSQL packages on Ubuntu where older version from PGDG is

present

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

Last update: June 2, 2022

Created: September 30, 2021

2.16 Percona Distribution for PostgreSQL 13.4 Update (2021-09-30)

32 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://jira.percona.com/browse/DISTPG-297
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.17 Percona Distribution for PostgreSQL 13.4 (2021-09-09)

Date: September 9, 2021

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.4.

The following is the list of extensions available in Percona Distribution for PostgreSQL.

Percona Distribution for PostgreSQL also includes the ETCD packages which are used for Patroni cluster

setup. These packages are available for the following operating systems:

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”
1

https://www.postgresql.org/docs/13/libpq.html

CONTACT US

For free technical help, visit the Percona Community Forum.

Extension Version Description

Patroni 2.1.0 a HA (High Availability) solution for PostgreSQL

Pgaudit 1.5.0 provides detailed session or object audit logging via the standard

logging facility provided by PostgreSQL

pgAudit set user 2.0.1 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superuser or

object owner roles in order to perform needed maintenance tasks.

pgBackRest 2.34 a backup and restore solution for PostgreSQL

pgBadger 11.5 a fast PostgreSQL Log Analyzer.

pgBouncer 1.16.0 lightweight connection pooler for PostgreSQL

pg_repack 1.4.6 rebuilds PostgreSQL database objects

pg_stat_monitor 0.9.2 -

Beta1

collects and aggregates statistics for PostgreSQL and provides

histogram information.

wal2json 2.3 a PostgreSQL logical decoding JSON output plugin.

Operating System Package Description

CentOS 7 python3-python-etcd A Python client for ETCD

CentOS 8 etcd A consistent, distributed key-value store

python3-python-etcd A Python client for ETCD

Debian 9 (‘stretch’) etcd A consistent, distributed key-value store

python3-etcd A Python client for ETCD

1.

2.17 Percona Distribution for PostgreSQL 13.4 (2021-09-09)

33 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://www.postgresql.org/docs/release/13.4/
https://patroni.readthedocs.io/en/latest/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/reorg/pg_repack
https://github.com/percona/pg_stat_monitor
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: June 4, 2021

2.17 Percona Distribution for PostgreSQL 13.4 (2021-09-09)

34 of 165 Percona LLC, © 2023

https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.18 Percona Distribution for PostgreSQL 13.3 Third Update (2021-07-15)

Date: July 15, 2021

Installation: Installing Percona Distribution for PostgreSQL

This update of Percona Distribution for PostgreSQL, includes the RPM package for python3-python-etcd for

CentOS 7. This package is a Python client for ETCD and is used by Patroni to communicate with ETCD

storage. For how to set up Patroni clusters, see Patroni documentation.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: June 10, 2021

2.18 Percona Distribution for PostgreSQL 13.3 Third Update (2021-07-15)

35 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://patroni.readthedocs.io/en/latest/README.html#running-configuring
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.19 Percona Distribution for PostgreSQL 13.3 Second Update (2021-07-01)

Date: July 1, 2021

Installation: Installing Percona Distribution for PostgreSQL

With this update of Percona Distribution for PostgreSQL, etcd package is added as a DEB package to

Percona Distribution for PostgreSQL for Debian 9 (“stretch”). This package is used to set up High Availability

clusters with Patroni. For how to set up Patroni clusters, see Patroni documentation.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: June 10, 2021

2.19 Percona Distribution for PostgreSQL 13.3 Second Update (2021-07-01)

36 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://patroni.readthedocs.io/en/latest/README.html#running-configuring
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.20 Percona Distribution for PostgreSQL 13.3 Update (2021-06-10)

Date: June 10, 2021

Installation: Installing Percona Distribution for PostgreSQL

This update of Percona Distribution for PostgreSQL includes the following fixes for Red Hat Enterprise Linux 8 /

CentOS 8:

llvm packages are added to the repository. This fixes compatibility issues with LLVM from upstream. To

use llvm packages supplied by us, disable the upstream llvm-toolset module before the installation:

systemd unit file includes the correct path to Patroni configuration file.

etcd and python3-python-etcd packages are added as RPM packages to Percona Distribution for

PostgreSQL for Red Hat Enterprise Linux / CentOS 8. These packages are used to set up High Availability

clusters with Patroni. For how to set up Patroni clusters, see Patroni documentation

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

sudo dnf module disable llvm-toolset

•

•

Last update: June 2, 2022

Created: June 10, 2021

2.20 Percona Distribution for PostgreSQL 13.3 Update (2021-06-10)

37 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://patroni.readthedocs.io/en/latest/README.html#running-configuring
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.21 Percona Distribution for PostgreSQL 13.3 (2021-05-20)

Date: May 20, 2021

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”
2

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.3.

Tech Preview Features are not yet ready for enterprise use and are not included in support via SLA (Service License

Agreement). They are included in this release so that users can provide feedback prior to the full release of the feature

in a future GA (General Availability) release (or removal of the feature if it is deemed not useful). This functionality can

change (APIs, CLIs, etc.) from tech preview to GA.

https://www.postgresql.org/docs/13/libpq.html

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Extension Version Description

pg_repack 1.4.6 rebuilds PostgreSQL database objects

Pgaudit 1.5.0 provides detailed session or object audit logging via the

standard logging facility provided by PostgreSQL

pgAudit set user 2.0.0 provides an additional layer of logging and control when

unprivileged users must escalate themselves to superuser

or object owner roles in order to perform needed

maintenance tasks.

pgBackRest 2.33 a backup and restore solution for PostgreSQL

Patroni 2.0.2 a HA (High Availability) solution for PostgreSQL

pg_stat_monitor (Tech

Preview Feature
1
)

0.9.1 collects and aggregates statistics for PostgreSQL and

provides histogram information.

pgBadger 11.5 a fast PostgreSQL Log Analyzer.

pgBouncer 1.15.0 lightweight connection pooler for PostgreSQL

wal2json 2.3 a PostgreSQL logical decoding JSON output plugin.

PostgreSQL contrib

extensions

13.3 a collection of additional extensions for PostgreSQL

1.

2.

2.21 Percona Distribution for PostgreSQL 13.3 (2021-05-20)

38 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://github.com/reorg/pg_repack
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://pgbackrest.org/
https://patroni.readthedocs.io/en/latest/
https://github.com/percona/pg_stat_monitor
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/libpq.html
https://www.postgresql.org/docs/release/13.3/
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: June 2, 2022

Created: June 4, 2021

2.21 Percona Distribution for PostgreSQL 13.3 (2021-05-20)

39 of 165 Percona LLC, © 2023

2.22 Percona Distribution for PostgreSQL 13.2 Fourth Update (2021-06-10)

Date: June 10, 2021

Installation: Installing Percona Distribution for PostgreSQL

This update of Percona Distribution for PostgreSQL includes llvm packages for Red Hat Enterprise Linux 8 /

CentOS 8. This fixes compatibility issues with LLVM from upstream. To use llvm packages supplied by us,

disable the upstream llvm-toolset module before the installation:

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

sudo dnf module disable llvm-toolset

Last update: June 2, 2022

Created: June 10, 2021

2.22 Percona Distribution for PostgreSQL 13.2 Fourth Update (2021-06-10)

40 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.23 Percona Distribution for PostgreSQL 13.2 Third Update (2021-05-10)

Date: May 10, 2021

Installation: Installing Percona Distribution for PostgreSQL

This update of Percona Distribution for PostgreSQL includes the latest version of pg_stat_monitor 0.9.0 - the

statistics collection tool for PostgreSQL. pg_stat_monitor is available as the Tech Preview Feature and is

supplied in the set of extensions within Percona Distribution for PostgreSQL.

We welcome your feedback on your experience with pg_stat_monitor in the public JIRA project.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: June 4, 2021

2.23 Percona Distribution for PostgreSQL 13.2 Third Update (2021-05-10)

41 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://github.com/percona/pg_stat_monitor
https://jira.percona.com/projects/DISTPG
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.24 Percona Distribution for PostgreSQL 13.2 Second Update (2021-04-27)

Date: April 27, 2021

Installation: Installing Percona Distribution for PostgreSQL

This update of Percona Distribution for PostgreSQL includes the set of new extensions which are now

supplied with Percona Distribution for PostgreSQL:

pgBouncer 1.15.0 - lightweight connection pooler for PostgreSQL

pgAudit set user 2.0.0 - The PostgreSQL Audit extension (pgaudit) provides detailed session and/or

object audit logging via the standard PostgreSQL logging facility. The set_user part of that extension

provides an additional layer of logging and control when unprivileged users must escalate themselves to

superuser or object owner roles in order to perform needed maintenance tasks.

pgBadger 11.5 - a fast PostgreSQL Log Analyzer.

wal2json 2.3 - a PostgreSQL logical decoding JSON output plugin.

This update of Percona Distribution for PostgreSQL also includes the updated version of `Patroni 2.0.2 - a

High Availability solution for PostgreSQL.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

•

•

Last update: June 2, 2022

Created: June 4, 2021

2.24 Percona Distribution for PostgreSQL 13.2 Second Update (2021-04-27)

42 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
https://patroni.readthedocs.io/en/latest/
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.25 Percona Distribution for PostgreSQL 13.2 Update (2021-04-12)

Date: April 12, 2021

Installation: Installing Percona Distribution for PostgreSQL

This update of Percona Distribution for PostgreSQL includes the latest version of pg_stat_monitor 0.8.1 - the

statistics collection tool for PostgreSQL. pg_stat_monitor is available as the Tech Preview Feature and is

supplied in the set of extensions within Percona Distribution for PostgreSQL.

We welcome your feedback on your experience with pg_stat_monitor in the public JIRA project.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: June 4, 2021

2.25 Percona Distribution for PostgreSQL 13.2 Update (2021-04-12)

43 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://github.com/percona/pg_stat_monitor
https://jira.percona.com/projects/DISTPG
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.26 Percona Distribution for PostgreSQL 13.2 (2021-03-04)

Date: March 4, 2021

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”
2

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.2.

Tech Preview Features are not yet ready for enterprise use and are not included in support via SLA (Service License

Agreement). They are included in this release so that users can provide feedback prior to the full release of the feature

in a future GA (General Availability) release (or removal of the feature if it is deemed not useful). This functionality can

change (APIs, CLIs, etc.) from tech preview to GA.

https://www.postgresql.org/docs/13/libpq.html

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Extension Version Description

pg_repack 1.4.6 rebuilds PostgreSQL database objects

Pgaudit 1.5.0 provides detailed session or object audit logging via

the standard logging facility provided by PostgreSQL

pgBackRest 2.32 a backup and restore solution for PostgreSQL

Patroni 2.0.1 a HA (High Availability) solution for PostgreSQL

pg_stat_monitor (Tech

Preview Feature
1
)

0.6.0 collects and aggregates statistics for PostgreSQL and

provides histogram information.

PostgreSQL contrib

extensions

13.2 a collection of additional extensions for PostgreSQL

1.

2.

Last update: June 2, 2022

Created: June 4, 2021

2.26 Percona Distribution for PostgreSQL 13.2 (2021-03-04)

44 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://github.com/reorg/pg_repack
https://www.pgaudit.org/
https://pgbackrest.org/
https://patroni.readthedocs.io/en/latest/
https://github.com/percona/pg_stat_monitor
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/libpq.html
https://www.postgresql.org/docs/release/13.2/
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.27 Percona Distribution for PostgreSQL 13.1 (2020-12-02)

Date: December 2, 2020

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”
2

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.1.

Tech Preview Features are not yet ready for enterprise use and are not included in support via SLA (Service License

Agreement). They are included in this release so that users can provide feedback prior to the full release of the feature

in a future GA (General Availability) release (or removal of the feature if it is deemed not useful). This functionality can

change (APIs, CLIs, etc.) from tech preview to GA.

https://www.postgresql.org/docs/13/libpq.html

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Extension Version Description

pg_repack 1.4.6 rebuilds PostgreSQL database objects

Pgaudit 1.5.0 provides detailed session or object audit logging via

the standard logging facility provided by PostgreSQL

pgBackRest 2.30 a backup and restore solution for PostgreSQL

Patroni 2.0.1 a HA (High Availability) solution for PostgreSQL

pg_stat_monitor (Tech

Preview Feature
1
)

0.6.0 collects and aggregates statistics for PostgreSQL and

provides histogram information.

PostgreSQL contrib

extensions

13.1 a collection of additional extensions for PostgreSQL

1.

2.

Last update: June 2, 2022

Created: June 4, 2021

2.27 Percona Distribution for PostgreSQL 13.1 (2020-12-02)

45 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://github.com/reorg/pg_repack
https://www.pgaudit.org/
https://pgbackrest.org/
https://patroni.readthedocs.io/en/latest/
https://github.com/percona/pg_stat_monitor
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/libpq.html
https://www.postgresql.org/docs/release/13.1/
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

2.28 Percona Distribution for PostgreSQL 13.0 (2020-10-16)

Date: October 16, 2020

Installation: Installing Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is a collection of tools to assist you in managing PostgreSQL. Percona

Distribution for PostgreSQL installs PostgreSQL and complements it by a selection of extensions that enable

solving essential practical tasks efficiently.

This release of Percona Distribution for PostgreSQL is based on the latest major version of PostgreSQL 13.0. It

also includes pg_stat_monitor (Tech Preview Feature
1
) - a new statistics collection extension for

PostgreSQL.

Percona Distribution for PostgreSQL is also shipped with the libpq library. It contains “a set of library functions

that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of

these queries.”
2

This release of Percona Distribution for PostgreSQL is based on PostgreSQL 13.0.

Tech Preview Features are not yet ready for enterprise use and are not included in support via SLA (Service License

Agreement). They are included in this release so that users can provide feedback prior to the full release of the feature

in a future GA (General Availability) release (or removal of the feature if it is deemed not useful). This functionality can

change (APIs, CLIs, etc.) from tech preview to GA.

https://www.postgresql.org/docs/13/libpq.html

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Extension Version Description

pg_repack 1.4.6 rebuilds PostgreSQL database objects

Pgaudit 1.4.1 provides detailed session or object audit logging via

the standard logging facility provided by PostgreSQL

pgBackRest 2.30 a backup and restore solution for PostgreSQL

Patroni 2.0.1 a HA (High Availability) solution for PostgreSQL

pg_stat_monitor (Tech

Preview Feature)

0.6.0 collects and aggregates statistics for PostgreSQL and

provides histogram information.

PostgreSQL contrib

extensions

13.0 a collection of additional extensions for PostgreSQL

1.

2.

Last update: June 2, 2022

Created: June 4, 2021

2.28 Percona Distribution for PostgreSQL 13.0 (2020-10-16)

46 of 165 Percona LLC, © 2023

https://www.percona.com/doc/postgresql/13/installing.html#
https://www.postgresql.org/docs/release/13.0/
https://github.com/percona/pg_stat_monitor
https://github.com/reorg/pg_repack
https://www.pgaudit.org/
https://pgbackrest.org/
https://patroni.readthedocs.io/en/latest/
https://github.com/percona/pg_stat_monitor
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/contrib.html
https://www.postgresql.org/docs/13/libpq.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

3. Installation and Upgrade

3.1 Install Percona Distribution for PostgreSQL

3.1.1 Install Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL is the solution with the collection of tools from PostgreSQL community

that are tested to work together and serve to assist you in deploying and managing PostgreSQL. Read more

 .

You can select from multiple easy-to-follow installation options, but we recommend using a Package

Manager for a convenient and quick way to try the software first.

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Percona provides installation packages in DEB and RPM format for 64-bit Linux distributions. Find the full list

of supported platforms and versions on the Percona Software and Platform Lifecycle page.

If you are on Debian or Ubuntu, use apt for installation.

If you are on Red Hat Enterprise Linux or compatible derivatives, use yum .

Choose your package manager below to get access to a detailed step-by-step guide.

Install via apt Install via yum

Get our image from Docker Hub and spin up a cluster on a Docker container for quick evaluation.

Check below to get access to a detailed step-by-step guide.

Run in Docker

Percona Operator for Kubernetes is a controller introduced to simplify complex deployments that require

meticulous and secure database expertise.

Check below to get access to a detailed step-by-step guide.

Get started with Percona Operator for PostgreSQL

Package manager Docker Kubernetes

Last update: December 6, 2023

Created: June 4, 2021

3. Installation and Upgrade

47 of 165 Percona LLC, © 2023

https://www.percona.com/services/policies/percona-software-support-lifecycle#pgsql
https://docs.percona.com/percona-operator-for-postgresql/2.0/quickstart.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

3.1.2 Install Percona Distribution for PostgreSQL on Debian and Ubuntu

This document describes how to install Percona Distribution for PostgreSQL from Percona repositories on

DEB-based distributions such as Debian and Ubuntu. Read more about Percona repositories .

Preconditions

Debian and other systems that use the apt package manager include the upstream PostgreSQL server

package (postgresql-13) by default. The components of Percona Distribution for PostgreSQL 13 can only be

installed together with the PostgreSQL server shipped by Percona (percona-postgresql-13). If you wish to use

Percona Distribution for PostgreSQL, uninstall the PostgreSQL package provided by your distribution

(postgresql-13) and then install the chosen components from Percona Distribution for PostgreSQL.

Install curl for Telemetry. We use it to better understand the use of our products and improve them.

Procedure

Run all the commands in the following sections as root or using the sudo command:

CONFIGURE PERCONA REPOSITORY

Install the percona-release repository management tool to subscribe to Percona repositories:

Fetch percona-release packages from Percona web:

Install the downloaded package with dpkg :

Refresh the local cache:

Enable the repository

Percona provides two repositories for Percona Distribution for PostgreSQL. We recommend enabling the

Major release repository to timely receive the latest updates.

To enable a repository, we recommend using the setup command:

1.

2.

1.

•

$ wget https://repo.percona.com/apt/percona-release_latest.$(lsb_release -sc)_all.deb

•

$ sudo dpkg -i percona-release_latest.$(lsb_release -sc)_all.deb

•

$ sudo apt update

2.

$ sudo percona-release setup ppg13

3.1.2 Install Percona Distribution for PostgreSQL on Debian and Ubuntu

48 of 165 Percona LLC, © 2023

INSTALL PACKAGES

3.1.2 Install Percona Distribution for PostgreSQL on Debian and Ubuntu

49 of 165 Percona LLC, © 2023

Install the PostgreSQL server package:

Install the components:

Install pg_repack :

Install pgAudit :

Install pgBackRest :

Install Patroni :

Install pg_stat_monitor

Install pgBouncer :

Install pgAudit-set_user :

Install pgBadger :

Install wal2json :

Install PostgreSQL contrib extensions:

Install pgpool2

Install pg_gather

Install HAProxy

Some extensions require additional setup in order to use them with Percona Distribution for PostgreSQL. For

more information, refer to Enabling extensions.

Install using meta-package Install packages individually

$ sudo apt install percona-ppg-server-13

1.

$ sudo apt install percona-postgresql-13

2.

$ sudo apt install percona-postgresql-13-repack

$ sudo apt install percona-postgresql-13-pgaudit

$ sudo apt install percona-pgbackrest

$ sudo apt install percona-patroni

$ sudo apt install percona-pgbouncer

$ sudo apt install percona-pgaudit13-set-user

$ sudo apt install percona-pgbadger

$ sudo apt install percona-postgresql-13-wal2json

$ sudo apt install percona-postgresql-contrib

$ sudo apt install percona-pgpool2

$ sudo apt install percona-pg-gather

$ sudo apt install percona-haproxy

3.1.2 Install Percona Distribution for PostgreSQL on Debian and Ubuntu

50 of 165 Percona LLC, © 2023

START THE SERVICE

The installation process automatically initializes and starts the default database. You can check the

database status using the following command:

CONNECT TO THE POSTGRESQL SERVER

By default, postgres user and postgres database are created in PostgreSQL upon its installation and

initialization. This allows you to connect to the database as the postgres user.

Open the PostgreSQL interactive terminal:

You can connect to psql as the postgres user in one go:

To exit the psql terminal, use the following command:

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

$ sudo systemctl status postgresql.service

$ sudo su postgres

$ psql

Hint

$ sudo su - postgres -c psql

$ \q

Last update: December 6, 2023

Created: November 24, 2022

3.1.2 Install Percona Distribution for PostgreSQL on Debian and Ubuntu

51 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

This document describes how to install Percona Distribution for PostgreSQL from Percona repositories on

RPM-based distributions such as Red Hat Enterprise Linux and compatible derivatives.

Platform specific notes

To install Percona Distribution for PostgreSQL, do the following:

FOR PERCONA DISTRIBUTION FOR POSTGRESQL PACKAGES

FOR PERCONA-POSTGRESQL13-DEVEL PACKAGE

You may need to install the percona-postgresql13-devel package when working with some extensions or

creating programs that interface with PostgreSQL database. This package requires dependencies that are

not part of the Distribution, but can be installed from the specific repositories:

FOR PGPOOL2 EXTENSION

To install pgpool2 on Red Hat Enterprise Linux and compatible derivatives, enable the codeready builder

repository first to resolve the dependencies conflict.

Install the epel-release package:

Disable the postgresql and llvm-toolset modules:

CentOS 7 RHEL8/Oracle Linux 8/Rocky Linux 8

$ sudo yum -y install epel-release

$ sudo yum repolist

$ sudo dnf module disable postgresql llvm-toolset

RHEL8 Rocky Linux 8 Oracle Linux 8 Rocky Linux 9 Oracle Linux 9

$ sudo yum --enablerepo=codeready-builder-for-rhel-8-rhui-rpms install perl-IPC-Run -y

$ sudo dnf install dnf-plugins-core

$ sudo dnf module enable llvm-toolset

$ sudo dnf config-manager --set-enabled powertools

$ sudo dnf config-manager --set-enabled ol8_codeready_builder install perl-IPC-Run -y

$ sudo dnf install dnf-plugins-core

$ sudo dnf module enable llvm-toolset

$ sudo dnf config-manager --set-enabled crb

$ sudo dnf install perl-IPC-Run -y

$ sudo dnf config-manager --set-enabled ol9_codeready_builder install perl-IPC-Run -y

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

52 of 165 Percona LLC, © 2023

The following are commands for Red Hat Enterprise Linux 9 and derivatives. For Red Hat Enterprise Linux 8,

replace the operating system version in the commands accordingly.

FOR POSTGIS

The following commands provide instructions how to enable required repositories and modules on Red Hat

Enterprise Linux 9 and derivatives.

RHEL 9 Rocky Linux 9 Oracle Linux 9

$ sudo dnf config-manager --set-enabled codeready-builder-for-rhel-9-x86_64-rpms

$ sudo dnf config-manager --set-enabled crb

$ sudo dnf config-manager --set-enabled ol9_codeready_builder

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

53 of 165 Percona LLC, © 2023

For Red Hat Enterprise Linux 8 and derivatives, replace the operating system version in the commands

accordingly.

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

54 of 165 Percona LLC, © 2023

Install epel repository

Enable the llvm-toolset dnf module

Enable the codeready builder repository to resolve dependencies conflict.

Install epel repository

Enable the llvm-toolset dnf module

Enable the codeready builder repository to resolve dependencies conflict.

Install epel repository

Enable the llvm-toolset dnf module

Enable the codeready builder repository to resolve dependencies conflict.

Configure the Oracle-Linux repository. Create the /etc/yum.repos.d/oracle-linux-ol9.repo file to install the

required dependencies:

Download the right GPG key for the Oracle Yum Repository:

Install epel repository

RHEL 9 Rocky Linux 9 Oracle Linux 9 RHEL UBI 9

1.

$ sudo yum install epel-release

2.

$ sudo dnf module enable llvm-toolset

3.

$ sudo dnf config-manager --set-enabled codeready-builder-for-rhel-9-x86_64-rpms

1.

$ sudo yum install epel-release

2.

$ sudo dnf module enable llvm-toolset

3.

$ sudo dnf install dnf-plugins-core

$ sudo dnf config-manager --set-enabled crb

1.

$ sudo yum install epel-release

2.

$ sudo dnf module enable llvm-toolset

3.

$ sudo dnf config-manager --set-enabled ol9_codeready_builder

1.

/etc/yum.repos.d/oracle-linux-ol9.repo

[ol9_baseos_latest]

name=Oracle Linux 9 BaseOS Latest ($basearch)

baseurl=https://yum.oracle.com/repo/OracleLinux/OL9/baseos/latest/$basearch/

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

gpgcheck=1

enabled=1

[ol9_appstream]

name=Oracle Linux 9 Application Stream ($basearch)

baseurl=https://yum.oracle.com/repo/OracleLinux/OL9/appstream/$basearch/

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

gpgcheck=1

enabled=1

[ol9_codeready_builder]

name=Oracle Linux 9 CodeReady Builder ($basearch) - Unsupported

baseurl=https://yum.oracle.com/repo/OracleLinux/OL9/codeready/builder/$basearch/

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

gpgcheck=1

enabled=1

2.

$ wget https://yum.oracle.com/RPM-GPG-KEY-oracle-ol9 -O /etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

3.

$ sudo yum install epel-release

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

55 of 165 Percona LLC, © 2023

Procedure

Run all the commands in the following sections as root or using the sudo command.

INSTALL DEPENDENCIES

Install curl for Telemetry. We use it to better understand the use of our products and improve them.

CONFIGURE THE REPOSITORY

Install the percona-release repository management tool to subscribe to Percona repositories:

Enable the repository

Percona provides two repositories for Percona Distribution for PostgreSQL. We recommend enabling the

Major release repository to timely receive the latest updates.

To enable a repository, we recommend using the setup command:

$ sudo yum -y install curl

1.

$ sudo yum install https://repo.percona.com/yum/percona-release-latest.noarch.rpm

2.

$ sudo percona-release setup ppg13

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

56 of 165 Percona LLC, © 2023

INSTALL PACKAGES

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

57 of 165 Percona LLC, © 2023

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

58 of 165 Percona LLC, © 2023

Install the PostgreSQL server package:

Install the components:

Install pg_repack :

Install pgaudit :

Install pgBackRest :

Install Patroni :

Install pg_stat_monitor :

Install pgBouncer :

Install pgAudit-set_user :

Install pgBadger :

Install wal2json :

Install PostgreSQL contrib extensions:

Install HAProxy

Install pg_gather

Install pgpool2

Check the platform specific notes

Install the extension

Some extensions require additional setup in order to use them with Percona Distribution for PostgreSQL. For

more information, refer to Enabling extensions.

Install using meta-package Install packages individually

$ sudo yum install percona-ppg-server13

1.

$ sudo yum install percona-postgresql13-server

2.

$ sudo yum install percona-pg_repack13

$ sudo yum install percona-pgaudit13

$ sudo yum install percona-pgbackrest

$ sudo yum install percona-patroni

$ sudo yum install percona-pgbouncer

$ sudo yum install percona-pgaudit13_set_user

$ sudo yum install percona-pgbadger

$ sudo yum install percona-wal2json13

$ sudo yum install percona-postgresql13-contrib

$ sudo yum install percona-haproxy

$ sudo yum install percona-pg_gather

a.

b.

$ sudo yum install percona-pgpool-II-pg13

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

59 of 165 Percona LLC, © 2023

START THE SERVICE

After the installation, the default database storage is not automatically initialized. To complete the

installation and start Percona Distribution for PostgreSQL, initialize the database using the following

command:

Start the PostgreSQL service:

CONNECT TO THE POSTGRESQL SERVER

By default, postgres user and postgres database are created in PostgreSQL upon its installation and

initialization. This allows you to connect to the database as the postgres user.

Open the PostgreSQL interactive terminal:

You can connect to psql as the postgres user in one go:

To exit the psql terminal, use the following command:

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

$ /usr/pgsql-13/bin/postgresql-13-setup initdb

$ sudo systemctl start postgresql-13

$ sudo su postgres

$ psql

Hint

$ sudo su - postgres -c psql

$ \q

Last update: December 6, 2023

Created: November 24, 2022

3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives

60 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

3.1.4 Enable Percona Distribution for PostgreSQL extensions

Some extensions require additional configuration before using them with Percona Distribution for

PostgreSQL. This sections provides configuration instructions per extension.

Patroni

Patroni is the third-party high availability solution for PostgreSQL. The High Availability in PostgreSQL with

Patroni chapter provides details about the solution overview and architecture deployment.

While setting up a high availability PostgreSQL cluster with Patroni, you will need the following components:

Patroni installed on every postresql node.

Distributed Configuration Store (DCS). Patroni supports such DCSs as ETCD, zookeeper, Kubernetes though

ETCD is the most popular one. It is available upstream as DEB packages for Debian 10, 11 and Ubuntu 18.04,

20.04, 22.04.

For CentOS 8, RPM packages for ETCD is available within Percona Distribution for PostreSQL. You can install

it using the following command:

HAProxy.

See the configuration guidelines for Debian and Ubuntu and RHEL and CentOS.

Patroni documentation

Percona Blog:

PostgreSQL HA with Patroni: Your Turn to Test Failure Scenarios

pgBadger

Enable the following options in postgresql.conf configuration file before starting the service:

For details about each option, see pdBadger documentation.

pgAudit set-user

Add the set-user to shared_preload_libraries in postgresql.conf . The recommended way is to use the

ALTER SYSTEM command. Connect to psql and use the following command:

•

•

$ sudo yum install etcd python3-python-etcd

•

See also

•

•

•

log_min_duration_statement = 0

log_line_prefix = '%t [%p]: '

log_checkpoints = on

log_connections = on

log_disconnections = on

log_lock_waits = on

log_temp_files = 0

log_autovacuum_min_duration = 0

log_error_verbosity = default

ALTER SYSTEM SET shared_preload_libraries = 'set-user';

3.1.4 Enable Percona Distribution for PostgreSQL extensions

61 of 165 Percona LLC, © 2023

https://etcd.io/
http://www.haproxy.org/
https://patroni.readthedocs.io/en/latest/SETTINGS.html#settings
https://www.percona.com/blog/2021/06/11/postgresql-ha-with-patroni-your-turn-to-test-failure-scenarios/
https://github.com/darold/pgbadger/#POSTGRESQL-CONFIGURATION
https://www.postgresql.org/docs/14/sql-altersystem.html

Start / restart the server to apply the configuration.

You can fine-tune user behavior with the custom parameters supplied with the extension.

wal2json

After the installation, enable the following option in postgresql.conf configuration file before starting the

service:

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

wal_level = logical

Last update: May 22, 2023

Created: November 24, 2022

3.1.4 Enable Percona Distribution for PostgreSQL extensions

62 of 165 Percona LLC, © 2023

https://github.com/pgaudit/set_user#configuration-options
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

3.1.5 Repositories overview

Repository contents

Percona Distribution for PostgreSQL provides individual packages for its components. It also includes two

meta-packages: percona-ppg-server and percona-ppg-server-ha .

Using a meta-package, you can install all components it contains in one go.

PERCONA-PPG-SERVER

Major release repository Minor release repository

Major Release repository (e.g. ppg-13)

includes the latest version packages.

Whenever a package is updated, the

package manager of your operating

system detects that and prompts you

to update. As long as you update all

Distribution packages at the same time,

you can ensure that the packages

you’re using have been tested and

verified by Percona.

We recommend installing Percona

Distribution for PostgreSQL from the

Major Release repository

Minor Release repository includes a particular minor release of

the database and all of the packages that were tested and

verified to work with that minor release (e.g. ppg-13.6). You

may choose to install Percona Distribution for PostgreSQL from

the Minor Release repository if you have decided to

standardize on a particular release which has passed rigorous

testing procedures and which has been verified to work with

your applications. This allows you to deploy to a new host and

ensure that you’ll be using the same version of all the

Distribution packages, even if newer releases exist in other

repositories.

The disadvantage of using a Minor Release repository is that

you are locked in this particular release. When potentially

critical fixes are released in a later minor version of the

database, you will not be prompted for an upgrade by the

package manager of your operating system. You would need

to change the configured repository in order to install the

upgrade.

percona-ppg-server-13

percona-ppg-server13

Package name on Debian/Ubuntu Package name on RHEL/derivatives

3.1.5 Repositories overview

63 of 165 Percona LLC, © 2023

The percona-ppg-server meta-package installs the PostgreSQL server with the following packages:

PERCONA-PPG-SERVER-HA

The percona-ppg-server-ha meta-package installs high-availability components that are recommended by

Percona:

Is included in repositories for RHEL 8 / CentOS 8 operating systems

Are included in repositories for Debian 12 operating system

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Package contents Description

percona-

postgresql13-server

The PostgreSQL server package.

percona-postgresql-

common

PostgreSQL database-cluster manager. It provides a structure under which

multiple versions of PostgreSQL may be installed and/or multiple clusters

maintained at one time.

percona-

postgresql13-

contrib

A collection of additional PostgreSQLcontrib extensions

percona-pg-stat-

monitor13

A Query Performance Monitoring tool for PostgreSQL.

percona-pgaudit Provides detailed session or object audit logging via the standard PostgreSQL

logging facility.

percona-pg_repack13 rebuilds PostgreSQL database objects.

percona-wal2json13 a PostgreSQL logical decoding JSON output plugin.

percona-ppg-server-ha-13

percona-ppg-server-13

Package name on Debian/Ubuntu Package name on RHEL/derivatives

Package contents Description

percona-patroni A high-availability solution for PostgreSQL.

percona-haproxy A high-availability and load-balancing solution

etcd A consistent, distributed key-value store

python3-python-etcd A Python client for ETCD.
1

etcd-client , etcd-server The client/server of the distributed key-value store.
2

1.

2.

3.1.5 Repositories overview

64 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: December 6, 2023

Created: September 14, 2022

3.1.5 Repositories overview

65 of 165 Percona LLC, © 2023

3.2 Run Percona Distribution for PostgreSQL in a Docker container

Docker images of Percona Distribution for PostgreSQL are hosted publicly on Docker Hub.

For more information about using Docker, see the Docker Docs.

Make sure that you are using the latest version of Docker. The ones provided via apt and yum may be outdated

and cause errors.

By default, Docker pulls the image from Docker Hub if it is not available locally.

The Docker image of Percona Distribution for PostgreSQL includes the following components:

3.2.1 Start the container

Start a Percona Distribution for PostgreSQL container as follows:

Docker image contents

Component name Description

percona-postgresql13 A metapackage that installs the latest version of PostgreSQL

percona-postgresql13-

server

The PostgreSQL server package.

percona-postgresql-

common

PostgreSQL database-cluster manager. It provides a structure under which

multiple versions of PostgreSQL may be installed and/or multiple clusters

maintained at one time.

percona-postgresql-

client-common

The manager for multiple PostgreSQL client versions.

percona-postgresql13-

contrib

A collection of additional PostgreSQLcontrib extensions

percona-postgresql13-

libs

Libraries for use with PostgreSQL.

percona-pg-stat-

monitor13

A Query Performance Monitoring tool for PostgreSQL.

percona-pgaudit13 Provides detailed session or object audit logging via the standard

PostgreSQL logging facility.

percona-

pgaudit13_set_user

An additional layer of logging and control when unprivileged users must

escalate themselves to superuser or object owner roles in order to perform

needed maintenance tasks.

percona-pg_repack13 rebuilds PostgreSQL database objects.

percona-wal2json13 a PostgreSQL logical decoding JSON output plugin.

1.

$ docker run --name container-name -e POSTGRES_PASSWORD=secret -d percona/percona-

distribution-postgresql:tag

3.2 Run Percona Distribution for PostgreSQL in a Docker container

66 of 165 Percona LLC, © 2023

https://hub.docker.com/r/percona/percona-distribution-postgresql/
https://docs.docker.com/

Where:

container-name is the name you assign to your container

POSTGRES_PASSWORD is the superuser password

tag is the tag specifying the version you want.

Check the full list of tags.

You can secure the password by exporting it to the environment file and using that to start the container.

Export the password to the environment file:

Start the container:

Connect to the container’s interactive terminal:

The container-name is the name of the container that you started in the previous step.

3.2.2 Connect to Percona Distribution for PostgreSQL from an application in another Docker

container

This image exposes the standard PostgreSQL port (5432), so container linking makes the instance available

to other containers. Start other containers like this in order to link it to the Percona Distribution for PostgreSQL

container:

where:

app-container-name is the name of the container where your application is running,

container name is the name of your Percona Distribution for PostgreSQL container, and

app-that-uses-postgresql is the name of your PostgreSQL client.

3.2.3 Connect to Percona Distribution for PostgreSQL from the psql command line client

The following command starts another container instance and runs the psql command line client against

your original container, allowing you to execute SQL statements against your database:

•

•

•

Tip

a.

$ echo "POSTGRES_PASSWORD=secret" > .my-pg.env

b.

$ docker run --name container-name --env-file ./.my-pg.env -d percona/percona-distribution-

postgresql:tag

2.

$ docker exec -it container-name bash

$ docker run --name app-container-name --network container:container-name -d app-that-uses-

postgresql

•

•

•

$ docker run -it --network container:db-container-name --name container-name percona/

percona-distribution-postgresql:tag psql -h address -U postgres

3.2.2 Connect to Percona Distribution for PostgreSQL from an application in another Docker container

67 of 165 Percona LLC, © 2023

https://hub.docker.com/r/percona/percona-distribution-postgresql/tags/

Where:

db-container-name is the name of your database container

container-name is the name of your container that you will use to connect to the database container using

the psql command line client

tag is the tag specifying the Docker image version you want to use.

address is the network address where your database container is running. Use 127.0.0.1, if the database

container is running on the local machine/host.

3.2.4 Enable pg_stat_monitor

To enable the pg_stat_monitor extension after launching the container, do the following:

connect to the server,

select the desired database and enable the pg_stat_monitor view for that database:

to ensure that everything is set up correctly, run:

•

•

•

•

•

•

create extension pg_stat_monitor;

•

\d pg_stat_monitor;

3.2.4 Enable pg_stat_monitor

68 of 165 Percona LLC, © 2023

Note that the pg_stat_monitor view is available only for the databases where you enabled it. If you create a

new database, make sure to create the view for it to see its statistics data.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Output

 View "public.pg_stat_monitor"

 Column | Type | Collation | Nullable | Default

---------------------+--------------------------+-----------+----------+---------

bucket | integer | | |

bucket_start_time | timestamp with time zone | | |

userid | oid | | |

dbid | oid | | |

queryid | text | | |

query | text | | |

plan_calls | bigint | | |

plan_total_time | numeric | | |

plan_min_timei | numeric | | |

plan_max_time | numeric | | |

plan_mean_time | numeric | | |

plan_stddev_time | numeric | | |

plan_rows | bigint | | |

calls | bigint | | |

total_time | numeric | | |

min_time | numeric | | |

max_time | numeric | | |

mean_time | numeric | | |

stddev_time | numeric | | |

rows | bigint | | |

shared_blks_hit | bigint | | |

shared_blks_read | bigint | | |

shared_blks_dirtied | bigint | | |

shared_blks_written | bigint | | |

local_blks_hit | bigint | | |

local_blks_read | bigint | | |

local_blks_dirtied | bigint | | |

local_blks_written | bigint | | |

temp_blks_read | bigint | | |

temp_blks_written | bigint | | |

blk_read_time | double precision | | |

blk_write_time | double precision | | |

host | bigint | | |

client_ip | inet | | |

resp_calls | text[] | | |

cpu_user_time | double precision | | |

cpu_sys_time | double precision | | |

tables_names | text[] | | |

wait_event | text | | |

wait_event_type | text | | |

Last update: December 6, 2023

Created: December 6, 2023

3.2.4 Enable pg_stat_monitor

69 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

3.3 Migrate from PostgreSQL to Percona Distribution for PostgreSQL

Percona Distribution for PostgreSQL includes the PostgreSQL database and additional extensions that have

been selected to cover the needs of the enterprise and are guaranteed to work together. Percona

Distribution for PostgreSQL is available as a software collection that is easy to deploy.

We encourage users to migrate from their PostgreSQL deployments based on community binaries to

Percona Distribution for PostgreSQL. This document provides the migration instructions.

Depending on your business requirements, you may migrate to Percona Distribution for PostgreSQL either on

the same server or onto a different server.

3.3 Migrate from PostgreSQL to Percona Distribution for PostgreSQL

70 of 165 Percona LLC, © 2023

3.3.1 Migrate on the same server

3.3.1 Migrate on the same server

71 of 165 Percona LLC, © 2023

To ensure that your data is safe during the migration, we recommend to make a backup of your data and

all configuration files (such as pg_hba.conf , postgresql.conf , postgresql.auto.conf) using the tool of your

choice. The backup process is out of scope of this document. You can use pg_dumpall or other tools of your

choice.

Stop the postgresql server

Remove community packages

Install percona-release

Enable the repository

Install Percona Distribution for PostgreSQL packages

(Optional) Restore the data from the backup.

Start the postgresql service. The installation process starts and initializes the default cluster automatically.

You can check its status with:

If postresql service is not started, start it manually:

To ensure that your data is safe during the migration, we recommend to make a backup of your data and

all configuration files (such as pg_hba.conf , postgresql.conf , postgresql.auto.conf) using the tool of your

choice. The backup process is out of scope of this document. You can use pg_dumpall or other tools of your

choice.

Stop the postgresql server

Remove community packages

Install percona-release

Enable the repository

Install Percona Distribution for PostgreSQL packages

(Optional) Restore the data from the backup.

Start the postgresql service

On Debian and Ubuntu Linux On RHEL and compatible derivatives

1.

$ sudo systemctl stop postgresql.service

2.

$ sudo apt-get --purge remove postgresql

3.

4.

$ sudo percona-release setup ppg13

5.

6.

7.

$ sudo systemctl status postgresql

$ sudo systemctl start postgresql.service

1.

$ sudo systemctl stop postgresql-13

2.

$ sudo yum remove postgresql

3.

4.

$ sudo percona-release setup ppg13

5.

6.

7.

$ sudo systemctl start postgresql-13

3.3.1 Migrate on the same server

72 of 165 Percona LLC, © 2023

https://docs.percona.com/percona-software-repositories/installing.html
https://docs.percona.com/percona-software-repositories/installing.html

3.3.2 Migrate on a different server

In this scenario, we will refer to the server with PostgreSQL Community as the “source” and to the server with

Percona Distribution for PostgreSQL as the “target”.

To migrate from PostgreSQL Community to Percona Distribution for PostgreSQL on a different server, do the

following:

On the source server:

Back up your data and all configuration files (such as pg_hba.conf , postgresql.conf , postgresql.auto.conf)

using the tool of your choice.

Stop the postgresql service

Optionally, remove PostgreSQL Community packages

On the target server:

Install percona-release

Enable the repository

Install Percona Distribution for PostgreSQL packages on the target server.

Restore the data from the backup

Start postgresql service

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

1.

2.

On Debian and Ubuntu On RHEL and derivatives

$ sudo systemctl stop postgresql.service

$ sudo systemctl stop postgresql-13

3.

1.

2.

$ sudo percona-release setup ppg13

3.

4.

5.

On Debian and Ubuntu On RHEL and compatible derivatives

$ sudo systemctl start postgresql.service

$ sudo systemctl start postgresql-13

Last update: May 22, 2023

Created: July 22, 2022

3.3.2 Migrate on a different server

73 of 165 Percona LLC, © 2023

https://docs.percona.com/percona-software-repositories/installing.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

3.4 Upgrading Percona Distribution for PostgreSQL from 12 to 13

This document describes the in-place upgrade of Percona Distribution for PostgreSQL using the pg_upgrade

tool. The in-place upgrade means installing a new version without removing the old version and keeping the

data files on the server.

pg_upgrade Documentation:

https://www.postgresql.org/docs/13/pgupgrade.html

Similar to installing, we recommend you to upgrade Percona Distribution for PostgreSQL from Percona

repositories.

A major upgrade is a risky process because of many changes between versions and issues that might occur

during or after the upgrade. Therefore, make sure to back up your data first. The backup tools are out of scope of

this document. Use the backup tool of your choice.

The general in-place upgrade flow for Percona Distribution for PostgreSQL is the following:

Install Percona Distribution for PostgreSQL 13 packages.

Stop the PostgreSQL service.

Check the upgrade without modifying the data.

Upgrade Percona Distribution for PostgreSQL.

Start PostgreSQL service.

Execute the analyze_new_cluster.sh script to generate statistics so the system is usable.

Delete old packages and configuration files.

The exact steps may differ depending on the package manager of your operating system.

See also

Important

1.

2.

3.

4.

5.

6.

7.

3.4 Upgrading Percona Distribution for PostgreSQL from 12 to 13

74 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/pgupgrade.html

3.4.1 On Debian and Ubuntu using apt

Run all commands as root or via sudo.

Important

3.4.1 On Debian and Ubuntu using apt

75 of 165 Percona LLC, © 2023

Install Percona Distribution for PostgreSQL 13 packages.

Enable Percona repository using the percona-release utility:

Install Percona Distribution for PostgreSQL 13 package:

Stop the postgresql service.

This stops both Percona Distribution for PostgreSQL 12 and 13.

Run the database upgrade.

Log in as the postgres user.

Change the current directory to the tmp directory where logs and some scripts will be recorded:

Check the ability to upgrade Percona Distribution for PostgreSQL from 12 to 13:

The --check flag here instructs pg_upgrade to only check the upgrade without changing any data.

Sample output

Upgrade the Percona Distribution for PostgreSQL

1.

•

$ sudo percona-release setup ppg-13

•

$ sudo apt install percona-postgresql-13

2.

$ sudo systemctl stop postgresql.service

3.

•

$ sudo su postgres

•

$ cd tmp/

•

$ /usr/lib/postgresql/13/bin/pg_upgrade \

--old-datadir=/var/lib/postgresql/12/main \

--new-datadir=/var/lib/postgresql/13/main \

--old-bindir=/usr/lib/postgresql/12/bin \

--new-bindir=/usr/lib/postgresql/13/bin \

--old-options '-c config_file=/etc/postgresql/12/main/postgresql.conf' \

--new-options '-c config_file=/etc/postgresql/13/main/postgresql.conf' \

--check

Performing Consistency Checks

Checking cluster versions ok

Checking database user is the install user ok

Checking database connection settings ok

Checking for prepared transactions ok

Checking for reg* data types in user tables ok

Checking for contrib/isn with bigint-passing mismatch ok

Checking for tables WITH OIDS ok

Checking for invalid "sql_identifier" user columns ok

Checking for presence of required libraries ok

Checking database user is the install user ok

Checking for prepared transactions ok

Clusters are compatible

•

3.4.1 On Debian and Ubuntu using apt

76 of 165 Percona LLC, © 2023

The --link flag creates hard links to the files on the old version cluster so you don’t need to copy data.

If you don’t wish to use the --link option, make sure that you have enough disk space to store 2 copies of files

for both old version and new version clusters.

Go back to the regular user:

The Percona Distribution for PostgreSQL 12 uses the 5432 port while the Percona Distribution for PostgreSQL 13 is

set up to use the 5433 port by default. To start the Percona Distribution for PostgreSQL 13, swap ports in the

configuration files of both versions.

Start the postgreqsl service.

Check the postgresql version.

Log in as a postgres user

Check the database version

After the upgrade, the Optimizer statistics are not transferred to the new cluster. Run the vaccumdb command

to analyze the new cluster:

Delete the old cluster’s data files:

$ /usr/lib/postgresql/13/bin/pg_upgrade \

--old-datadir=/var/lib/postgresql/12/main \

--new-datadir=/var/lib/postgresql/13/main \

--old-bindir=/usr/lib/postgresql/12/bin \

--new-bindir=/usr/lib/postgresql/13/bin \

--old-options '-c config_file=/etc/postgresql/12/main/postgresql.conf' \

--new-options '-c config_file=/etc/postgresql/13/main/postgresql.conf' \

--link

•

$ exit

•

$ sudo vim /etc/postgresql/13/main/postgresql.conf

$ port = 5433 # Change to 5432 here

$ sudo vim /etc/postgresql/12/main/postgresql.conf

$ port = 5432 # Change to 5433 here

4.

$ sudo systemctl start postgresql.service

5.

•

$ sudo su postgres

•

$ psql -c "SELECT version();"

6.

$ /usr/lib/postgresql/13/bin/vacuumdb --all --analyze-in-stages

7.

$./delete_old_cluster.sh

$ sudo rm -rf /etc/postgresql/13/main

$ #Logout

$ exit

3.4.1 On Debian and Ubuntu using apt

77 of 165 Percona LLC, © 2023

3.4.2 On Red Hat Enterprise Linux and derivatives using yum

Run all commands as root or via sudo.

Important

3.4.2 On Red Hat Enterprise Linux and derivatives using yum

78 of 165 Percona LLC, © 2023

Install Percona Distribution for PostgreSQL 13 packages

Enable Percona repository using the percona-release utility:

Install Percona Distribution for PostgreSQL 13:

Set up Percona Distribution for PostgreSQL 13 cluster

Log is as the postgres user

Set up locale settings

Initialize cluster with the new data directory

Stop the postgresql 12 service

Run the database upgrade.

Log in as the postgres user

Check the ability to upgrade Percona Distribution for PostgreSQL from 12 to 13:

The --check flag here instructs pg_upgrade to only check the upgrade without changing any data.

Sample output

1.

•

$ sudo percona-release setup ppg-13

•

$ sudo yum install percona-postgresql13-server

2.

3.

$ sudo su postgres

4.

$ export LC_ALL="en_US.UTF-8"

$ export LC_CTYPE="en_US.UTF-8"

5.

$ /usr/pgsql-13/bin/initdb -D /var/lib/pgsql/13/data

6.

$ sudo systemctl stop postgresql-12

7.

•

$ sudo su postgres

•

$ /usr/pgsql-13/bin/pg_upgrade \

--old-bindir /usr/pgsql-12/bin \

--new-bindir /usr/pgsql-13/bin \

--old-datadir /var/lib/pgsql/12/data \

--new-datadir /var/lib/pgsql/13/data \

--check

Performing Consistency Checks

Checking cluster versions ok

Checking database user is the install user ok

Checking database connection settings ok

Checking for prepared transactions ok

Checking for reg* data types in user tables ok

Checking for contrib/isn with bigint-passing mismatch ok

Checking for tables WITH OIDS ok

3.4.2 On Red Hat Enterprise Linux and derivatives using yum

79 of 165 Percona LLC, © 2023

Upgrade the Percona Distribution for PostgreSQL

The --link flag creates hard links to the files on the old version cluster so you don’t need to copy data. If you

don’t wish to use the --link option, make sure that you have enough disk space to store 2 copies of files for

both old version and new version clusters.

Start the postgresql 13 service.

Check postgresql status

After the upgrade, the Optimizer statistics are not transferred to the new cluster. Run the vaccumdb command

to analyze the new cluster:

Log in as the postgres user

Run the vaccumdb command

Delete Percona Distribution for PostgreSQL 12 configuration files

Delete Percona Distribution old data files

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Checking for invalid "sql_identifier" user columns ok

Checking for presence of required libraries ok

Checking database user is the install user ok

Checking for prepared transactions ok

Clusters are compatible

•

$ /usr/pgsql-13/bin/pg_upgrade \

--old-bindir /usr/pgsql-12/bin \

--new-bindir /usr/pgsql-13/bin \

--old-datadir /var/lib/pgsql/12/data \

--new-datadir /var/lib/pgsql/13/data \

--link

8.

$ systemctl start postgresql-13

9.

$ systemctl status postgresql-13

10.

•

$ sudo su postgres

•

$ /usr/pgsql-13/bin/vacuumdb --all --analyze-in-stages

11.

$./delete_old_cluster.sh

12.

$ rm -rf /var/lib/pgsql/12/data

3.4.2 On Red Hat Enterprise Linux and derivatives using yum

80 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: October 31, 2023

Created: June 4, 2021

3.4.2 On Red Hat Enterprise Linux and derivatives using yum

81 of 165 Percona LLC, © 2023

3.5 Minor Upgrade of Percona Distribution for PostgreSQL

Minor releases of PostgreSQL include bug fixes and feature enhancements. We recommend that you keep

your Percona Distribution for PostgreSQL updated to the latest minor version.

Though minor upgrades do not change the behavior, we recommend you to back up your data first, in order

to be on the safe side.

Minor upgrade of Percona Distribution for PostgreSQL includes the following steps:

Stopping the postgresql cluster;

Installing new version packages;

Restarting the postgresql cluster.

These steps apply if you installed Percona Distribution for PostgreSQL from the Major Release repository. In this

case, you are always upgraded to the latest available release.

If you installed Percona Distribution for PostgreSQL from the Minor Release repository, you will need to enable a

new version repository to upgrade.

For more information about Percona repositories, refer to Installing Percona Distribution for PostgreSQL.

Before the upgrade, update the percona-release utility to the latest version. This is required to install the new

version packages of Percona Distribution for PostgreSQL. Refer to Percona Software Repositories Documentation

for update instructions.

Run all commands as root or via sudo.

Stop the postgresql service.

Install new version packages. See Installing Percona Distribution for PostgreSQL.

Restart the postgresql service.

If you wish to upgrade Percona Distribution for PostgreSQL to the major version, refer to Upgrading Percona

Distribution for PostgreSQL from 12 to 13.

1.

2.

3.

Note

Important

1.

On Debian / Ubuntu On Red Hat Enterprise Linux and derivatives

$ sudo systemctl stop postgresql.service

$ sudo systemctl stop postgresql-13

2.

3.

On Debian / Ubuntu On Red Hat Enterprise Linux and derivatives

$ sudo systemctl start postgresql.service

$ sudo systemctl start postgresql-13

3.5 Minor Upgrade of Percona Distribution for PostgreSQL

82 of 165 Percona LLC, © 2023

https://www.percona.com/doc/percona-repo-config/percona-release.html#updating-percona-release-to-the-latest-version

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: December 5, 2022

Created: June 4, 2021

3.5 Minor Upgrade of Percona Distribution for PostgreSQL

83 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

4. Extensions

4.1 pg_stat_monitor

This document describes the functionality of pg_stat_monitor 2.0.0.

4.1.1 Overview

pg_stat_monitor is a Query Performance Monitoring tool for PostgreSQL. It collects various statistics data

such as query statistics, query plan, SQL comments and other performance insights. The collected data is

aggregated and presented in a single view. This allows you to view queries from performance, application

and analysis perspectives.

pg_stat_monitor groups statistics data and writes it in a storage unit called bucket. The data is added and

stored in a bucket for the defined period – the bucket lifetime. This allows you to identify performance issues

and patterns based on time.

You can specify the following:

The number of buckets. Together they form a bucket chain.

Bucket size. This is the amount of shared memory allocated for buckets. Memory is divided equally among

buckets.

Bucket lifetime.

When a bucket lifetime expires, pg_stat_monitor resets all statistics and writes the data in the next bucket in

the chain. When the last bucket’s lifetime expires, pg_stat_monitor returns to the first bucket.

The contents of the bucket will be overwritten. In order not to lose the data, make sure to read the bucket before

pg_stat_monitor starts writing new data to it.

Views

PG_STAT_MONITOR VIEW

The pg_stat_monitor view contains all the statistics collected and aggregated by the extension. This view

contains one row for each distinct combination of metrics and whether it is a top-level statement or not (up

to the maximum number of distinct statements that the module can track). For details about available

metrics, refer to the pg_stat_monitor view reference.

Note

•

•

•

Important

4. Extensions

84 of 165 Percona LLC, © 2023

https://docs.percona.com/pg-stat-monitor/reference.html
https://docs.percona.com/pg-stat-monitor/reference.html

The following are the primary keys for pg_stat_monitor:

bucket

userid

datname

queryid

client_ip

planid

application_name

A new row is created for each key in the pg_stat_monitor view.

For security reasons, only superusers and members of the pg_read_all_stats role are allowed to see the SQL

text, client_ip and queryid of queries executed by other users. Other users can see the statistics, however,

if the view has been installed in their database.

PG_STAT_MONITOR_SETTINGS VIEW (DROPPED)

Starting with version 2.0.0, the pg_stat_monitor_settings view is deprecated and removed. All

pg_stat_monitor configuration parameters are now available though the pg_settings view using the

following query:

For backward compatibility, you can create the pg_stat_monitor_settings view using the following SQL

statement:

In pg_stat_monitor version 1.1.1 and earlier, the pg_stat_monitor_settings view shows one row per

pg_stat_monitor configuration parameter. It displays configuration parameter name, value, default value,

description, minimum and maximum values, and whether a restart is required for a change in value to be

effective.

To learn more, see Changing the configuration.

4.1.2 Installation

This section describes how to install pg_stat_monitor from Percona repositories. To learn about other

installation methods, see the Installation section in the pg_stat_monitor documentation.

Preconditions:

To install pg_stat_monitor from Percona repositories, you need to subscribe to them. To do this, you must

have the percona-release repository management tool up and running.

•

•

•

•

•

•

•

SELECT name, setting, unit, context, vartype, source, min_val, max_val, enumvals, boot_val,

reset_val, pending_restart FROM pg_settings WHERE name LIKE '%pg_stat_monitor%';

CREATE VIEW pg_stat_monitor_settings

AS

SELECT *

FROM pg_settings

WHERE name like 'pg_stat_monitor.%';

4.1.2 Installation

85 of 165 Percona LLC, © 2023

https://docs.percona.com/pg-stat-monitor/install.html
https://www.percona.com/doc/percona-repo-config/installing.html
https://www.percona.com/doc/percona-repo-config/installing.html

To install pg_stat_monitor , run the following commands:

Enable the repository

Update the local cache

Install the package:

Enable the repository

Install the package:

On Debian and Ubuntu On Red Hat Enterprise Linux and CentOS

1.

$ sudo percona-release setup ppg13

2.

$ sudo apt update

3.

$ sudo apt-get install percona-pg-stat-monitor13

1.

$ sudo percona-release setup ppg13

2.

$ sudo yum install percona-pg-stat-monitor13

4.1.2 Installation

86 of 165 Percona LLC, © 2023

4.1.3 Setup

pg_stat_monitor requires additional setup in order to use it with PostgreSQL. The setup steps are the

following:

Add pg_stat_monitor in the shared_preload_libraries configuration parameter.

The recommended way to modify PostgreSQL configuration file is using the ALTER SYSTEM command. Connect

to psql and use the following command:

The parameter value is written to the postgresql.auto.conf file which is read in addition with postgresql.conf

file.

To use pg_stat_monitor together with pg_stat_statements , specify both modules separated by commas for the

ALTER SYSTEM SET command.

The order of modules is important: pg_stat_monitor must be specified after pg_stat_statements :

Start or restart the postgresql instance to enable pg_stat_monitor . Use the following command for restart:

Create the extension. Connect to psql and use the following command:

By default, the extension is created against the postgres database. You need to create the extension on every

database where you want to collect statistics.

To check the version of the extension, run the following command in the psql session:

4.1.4 Usage

For example, to view the IP address of the client application that made the query, run the following

command:

1.

ALTER SYSTEM SET shared_preload_libraries = 'pg_stat_monitor';

Note

ALTER SYSTEM SET shared_preload_libraries = ‘pg_stat_statements, pg_stat_monitor’

2.

On Debian and Ubuntu On Red Hat Enterprise Linux and derivatives

$ sudo systemctl restart postgresql.service

$ sudo systemctl restart postgresql-13

3.

CREATE EXTENSION pg_stat_monitor;

Tip

SELECT pg_stat_monitor_version();

SELECT DISTINCT userid::regrole, pg_stat_monitor.datname, substr(query,0, 50) AS query,

calls, bucket, bucket_start_time, queryid, client_ip

FROM pg_stat_monitor, pg_database

WHERE pg_database.oid = oid;

4.1.3 Setup

87 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/sql-altersystem.html

Find more usage examples in the pg_stat_monitor user guide.

4.1.5 Changing the configuration

Run the following query to list available configuration parameters.

Output

You can change a parameter by setting a new value in the configuration file. Some parameters require

server restart to apply a new value. For others, configuration reload is enough. Refer to the configuration

parameters of the pg_stat_monitor documentation for the parameters’ description, how you can change

their values and if the server restart is required to apply them.

As an example, let’s set the bucket lifetime from default 60 seconds to 30 seconds. Use the ALTER SYSTEM

command:

 userid | datname | query | calls | client_ip

----------+----------+---+-------

+-----------

 postgres | postgres | select bucket, bucket_start_time, query,calls fro | 1 | 127.0.0.1

 postgres | postgres | SELECT c.relchecks, c.relkind, c.relhasindex, c.r | 1 | 127.0.0.1

 postgres | postgres | SELECT userid, total_time, min_time, max_time, | 1 | 127.0.0.1

SELECT name, short_desc FROM pg_settings WHERE name LIKE '%pg_stat_monitor%';

 name

| short_desc

+--

 pg_stat_monitor.pgsm_bucket_time | Sets the time in seconds per bucket.

 pg_stat_monitor.pgsm_enable_overflow | Enable/Disable pg_stat_monitor to grow beyond

shared memory into swap space.

 pg_stat_monitor.pgsm_enable_pgsm_query_id | Enable/disable PGSM specific query id

calculation which is very useful in comparing same query across databases and clusters..

 pg_stat_monitor.pgsm_enable_query_plan | Enable/Disable query plan monitoring.

 pg_stat_monitor.pgsm_extract_comments | Enable/Disable extracting comments from

queries.

 pg_stat_monitor.pgsm_histogram_buckets | Sets the maximum number of histogram buckets.

 pg_stat_monitor.pgsm_histogram_max | Sets the time in millisecond.

 pg_stat_monitor.pgsm_histogram_min | Sets the time in millisecond.

 pg_stat_monitor.pgsm_max | Sets the maximum size of shared memory in (MB)

used for statement's metadata tracked by pg_stat_monitor.

 pg_stat_monitor.pgsm_max_buckets | Sets the maximum number of buckets.

 pg_stat_monitor.pgsm_normalized_query | Selects whether save query in normalized

format.

 pg_stat_monitor.pgsm_overflow_target | Sets the overflow target for pg_stat_monitor.

(Deprecated, use pgsm_enable_overflow)

 pg_stat_monitor.pgsm_query_max_len | Sets the maximum length of query.

 pg_stat_monitor.pgsm_query_shared_buffer | Sets the maximum size of shared memory in (MB)

used for query tracked by pg_stat_monitor.

 pg_stat_monitor.pgsm_track | Selects which statements are tracked by

pg_stat_monitor.

 pg_stat_monitor.pgsm_track_planning | Selects whether planning statistics are

tracked.

 pg_stat_monitor.pgsm_track_utility | Selects whether utility commands are tracked.

ALTER SYSTEM set pg_stat_monitor.pgsm_bucket_time = 30;

4.1.5 Changing the configuration

88 of 165 Percona LLC, © 2023

https://docs.percona.com/pg-stat-monitor/user_guide.html
https://docs.percona.com/pg-stat-monitor/user_guide.html
https://docs.percona.com/pg-stat-monitor/configuration.html
https://docs.percona.com/pg-stat-monitor/configuration.html

Restart the server to apply the change:

Verify the updated parameter:

pg_stat_monitor Documentation

Percona Blog:

pg_stat_monitor: A New Way Of Looking At PostgreSQL Metrics

Improve PostgreSQL Query Performance Insights with pg_stat_monitor

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

On Debian and Ubuntu On Red Hat Enterprise Linux and derivatives

$ sudo systemctl restart postgresql.service

$ sudo systemctl restart postgresql-13

SELECT name, setting

FROM pg_settings

WHERE name = 'pg_stat_monitor.pgsm_bucket_time';

 name | setting

 ----------------------------------+---------

 pg_stat_monitor.pgsm_bucket_time | 30

See also

•

•

Last update: May 2, 2023

Created: June 4, 2021

4.1.5 Changing the configuration

89 of 165 Percona LLC, © 2023

https://docs.percona.com/pg-stat-monitor/index.html
https://docs.percona.com/pg-stat-monitor/index.html
https://www.percona.com/blog/2021/01/19/pg_stat_monitor-a-new-way-of-looking-at-postgresql-metrics/
https://www.percona.com/blog/improve-postgresql-query-performance-insights-with-pg_stat_monitor/
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5. Solutions

5.1 High availability

5.1.1 High Availability in PostgreSQL with Patroni

PostgreSQL has been widely adopted as a modern, high-performance transactional database. A highly

available PostgreSQL cluster can withstand failures caused by network outages, resource saturation,

hardware failures, operating system crashes or unexpected reboots. Such cluster is often a critical

component of the enterprise application landscape, where four nines of availability is a minimum

requirement.

There are several methods to achieve high availability in PostgreSQL. This solution document provides

Patroni - the open-source extension to facilitate and manage the deployment of high availability in

PostgreSQL.

There are several native methods for achieving high availability with PostgreSQL:

shared disk failover,

file system replication,

trigger-based replication,

statement-based replication,

logical replication,

Write-Ahead Log (WAL) shipping, and

streaming replication

Streaming replication

Streaming replication is part of Write-Ahead Log shipping, where changes to the WALs are immediately made

available to standby replicas. With this approach, a standby instance is always up-to-date with changes from the

primary node and can assume the role of primary in case of a failover.

WHY NATIVE STREAMING REPLICATION IS NOT ENOUGH

Although the native streaming replication in PostgreSQL supports failing over to the primary node, it lacks some key

features expected from a truly highly-available solution. These include:

No consensus-based promotion of a “leader” node during a failover

No decent capability for monitoring cluster status

No automated way to bring back the failed primary node to the cluster

A manual or scheduled switchover is not easy to manage

To address these shortcomings, there are a multitude of third-party, open-source extensions for PostgreSQL. The

challenge for a database administrator here is to select the right utility for the current scenario.

Percona Distribution for PostgreSQL solves this challenge by providing the Patroni extension for achieving PostgreSQL

high availability.

High availability methods

•

•

•

•

•

•

•

•

•

•

•

5. Solutions

90 of 165 Percona LLC, © 2023

https://en.wikipedia.org/wiki/High_availability#Percentage_calculation
https://patroni.readthedocs.io/en/latest/

Patroni

Patroni is a template for you to create your own customized, high-availability solution using Python and - for

maximum accessibility - a distributed configuration store like ZooKeeper, etcd, Consul or Kubernetes.

KEY BENEFITS OF PATRONI:

Continuous monitoring and automatic failover

Manual/scheduled switchover with a single command

Built-in automation for bringing back a failed node to cluster again.

REST APIs for entire cluster configuration and further tooling.

Provides infrastructure for transparent application failover

Distributed consensus for every action and configuration.

Integration with Linux watchdog for avoiding split-brain syndrome.

Architecture layout

The following diagram shows the architecture of a three-node PostgreSQL cluster with a single-leader node.

•

•

•

•

•

•

•

5.1.1 High Availability in PostgreSQL with Patroni

91 of 165 Percona LLC, © 2023

https://patroni.readthedocs.io/en/latest/

COMPONENTS

The components in this architecture are:

PostgreSQL nodes

Patroni - a template for configuring a highly available PostgreSQL cluster.

ETCD - a Distributed Configuration store that stores the state of the PostgreSQL cluster.

HAProxy - the load balancer for the cluster and is the single point of entry to client applications.

pgBackRest - the backup and restore solution for PostgreSQL

Percona Monitoring and Management (PMM) - the solution to monitor the health of your cluster

HOW COMPONENTS WORK TOGETHER

Each PostgreSQL instance in the cluster maintains consistency with other members through streaming

replication. Each instance hosts Patroni - a cluster manager that monitors the cluster health. Patroni relies

on the operational ETCD cluster to store the cluster configuration and sensitive data about the cluster health

there.

Patroni periodically sends heartbeat requests with the cluster status to ETCD. ETCD writes this information to

disk and sends the response back to Patroni. If the current primary fails to renew its status as leader within

the specified timeout, Patroni updates the state change in ETCD, which uses this information to elect the

new primary and keep the cluster up and running.

The connections to the cluster do not happen directly to the database nodes but are routed via a

connection proxy like HAProxy. This proxy determines the active node by querying the Patroni REST API.

Next steps

Deploy on Debian or Ubuntu Deploy on RHEL or derivatives

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

•

•

•

•

Last update: November 1, 2023

Created: December 1, 2021

5.1.1 High Availability in PostgreSQL with Patroni

92 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

This guide provides instructions on how to set up a highly available PostgreSQL cluster with Patroni on

Debian or Ubuntu.

Considerations

This is the example deployment suitable to be used for testing purposes in non-production environments.

In this setup ETCD resides on the same hosts as Patroni. In production, consider deploying ETCD cluster on

dedicated hosts or at least have separate disks for ETCD and PostgreSQL. This is because ETCD writes every

request from the cluster to disk which can be CPU intensive and affects disk performance. See hardware

recommendations for details.

For this setup, we will use the nodes running on Ubuntu 22.04 as the base operating system:

Ideally, in a production (or even non-production) setup, the PostgreSQL nodes will be within a private subnet

without any public connectivity to the Internet, and the HAProxy will be in a different subnet that allows client

traffic coming only from a selected IP range. To keep things simple, we have implemented this architecture in a

private environment, and each node can access the other by its internal, private IP.

Initial setup

SET UP HOSTNAMES IN THE /ETC/HOSTS FILE

It’s not necessary to have name resolution, but it makes the whole setup more readable and less error

prone. Here, instead of configuring a DNS, we use a local name resolution by updating the file /etc/hosts . By

1.

2.

3.

Node name Application IP address

node1 Patroni, PostgreSQL, ETCD 10.104.0.1

node2 Patroni, PostgreSQL, ETCD 10.104.0.2

node3 Patroni, PostgreSQL, ETCD 10.104.0.3

HAProxy-demo HAProxy 10.104.0.6

Note

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

93 of 165 Percona LLC, © 2023

https://etcd.io/docs/v3.6/op-guide/hardware/
https://etcd.io/docs/v3.6/op-guide/hardware/

resolving their hostnames to their IP addresses, we make the nodes aware of each other’s names and allow

their seamless communication.

Run the following command on each node. Change the node name to node1 , node2 and node3 respectively:

Modify the /etc/hosts file of each PostgreSQL node to include the hostnames and IP addresses of the

remaining nodes. Add the following at the end of the /etc/hosts file on all nodes:

1.

$ sudo hostnamectl set-hostname node-1

2.

The HAProxy instance should have the name resolution for all the three nodes in its /etc/hosts file. Add the

following lines at the end of the file:

node1 node2 node3 HAproxy-demo

Cluster IP and names

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

Cluster IP and names

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

Cluster IP and names

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

Cluster IP and names

10.104.0.6 HAProxy-demo

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

94 of 165 Percona LLC, © 2023

INSTALL THE SOFTWARE

Run the following commands on node1 , node2 and node3`:

Install Percona Distribution for PostgreSQL

Install percona-release .

Enable the repository:

Install Percona Distribution for PostgreSQL packages.

Install some Python and auxiliary packages to help with Patroni and ETCD

Install ETCD, Patroni, pgBackRest packages:

Stop and disable all installed services:

Even though Patroni can use an existing Postgres installation, remove the data directory to force it to initialize

a new Postgres cluster instance.

Configure ETCD distributed store

The distributed configuration store provides a reliable way to store data that needs to be accessed by large

scale distributed systems. The most popular implementation of the distributed configuration store is ETCD.

ETCD is deployed as a cluster for fault-tolerance and requires an odd number of members (n/2+1) to agree

on updates to the cluster state. An ETCD cluster helps establish a consensus among nodes during a failover

and manages the configuration for the three PostgreSQL instances.

The etcd cluster is first started in one node and then the subsequent nodes are added to the first node

using the add command. The configuration is stored in the /etc/default/etcd file.

CONFIGURE NODE1

Back up the configuration file

Export environment variables to simplify the config file creation

Node name:

1.

•

•

$ sudo percona-release setup ppg13

•

2.

$ sudo apt install python3-pip python3-dev binutils

3.

$ sudo apt install percona-patroni \

etcd etcd-server etcd-client \

percona-pgbackrest

4.

$ sudo systemctl stop {etcd,patroni,postgresql}

$ systemctl disable {etcd,patroni,postgresql}

5.

$ sudo systemctl stop postgresql

$ sudo rm -rf /var/lib/postgresql/13/main

1.

$ sudo mv /etc/default/etcd /etc/default/etcd.orig

2.

•

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

95 of 165 Percona LLC, © 2023

https://www.percona.com/doc/percona-repo-config/installing.html
https://www.percona.com/doc/percona-repo-config/installing.html

Node IP:

Initial cluster token for the ETCD cluster during bootstrap:

ETCD data directory:

Modify the /etc/default/etcd configuration file as follows:.

Start the etcd service to apply the changes on node1 .

Check the etcd cluster members on node1 :

Sample output:

Add the node2 to the cluster. Run the following command on node1 :

The output resembles the following one:

$ export NODE_NAME=`hostname -f`

•

$ export NODE_IP=`hostname -i | awk '{print $1}'`

•

$ export ETCD_TOKEN='PostgreSQL_HA_Cluster_1'

•

$ export ETCD_DATA_DIR='/var/lib/etcd/postgresql'

3.

ETCD_NAME=${NODE_NAME}

ETCD_INITIAL_CLUSTER="${NODE_NAME}=http://${NODE_IP}:2380"

ETCD_INITIAL_CLUSTER_STATE="new"

ETCD_INITIAL_CLUSTER_TOKEN="${ETCD_TOKEN}"

ETCD_INITIAL_ADVERTISE_PEER_URLS="http://${NODE_IP}:2380"

ETCD_DATA_DIR="${ETCD_DATA_DIR}"

ETCD_LISTEN_PEER_URLS="http://${NODE_IP}:2380"

ETCD_LISTEN_CLIENT_URLS="http://${NODE_IP}:2379,http://localhost:2379"

ETCD_ADVERTISE_CLIENT_URLS="http://${NODE_IP}:2379"

…

4.

$ sudo systemctl enable --now etcd

$ sudo systemctl start etcd

$ sudo systemctl status etcd

5.

$ sudo etcdctl member list

21d50d7f768f153a: name=default peerURLs=http://10.104.0.1:2380 clientURLs=http://

10.104.0.1:2379 isLeader=true

6.

$ sudo etcdctl member add node2 http://10.104.0.2:2380

Added member named node2 with ID 10042578c504d052 to cluster

ETCD_NAME="node2"

ETCD_INITIAL_CLUSTER="node2=http://10.104.0.2:2380,node1=http://10.104.0.1:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

96 of 165 Percona LLC, © 2023

CONFIGURE NODE2

Back up the configuration file and export environment variables as described in steps 1-2 of the node1

configuration

Edit the /etc/default/etcd configuration file on node2 . Use the result of the add command on node1 to

change the configuration file as follows:

Start the etcd service to apply the changes on node2 :

CONFIGURE NODE3

Add node3 to the cluster. Run the following command on node1

On node3 , back up the configuration file and export environment variables as described in steps 1-2 of the

node1 configuration

Modify the /etc/default/etcd configuration file and add the output of the add command:

Start the etcd service on node3 :

Check the etcd cluster members.

1.

2.

ETCD_NAME=${NODE_NAME}

ETCD_INITIAL_CLUSTER="node-1=http://10.0.100.1:2380,node-2=http://10.0.100.2:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

ETCD_INITIAL_CLUSTER_TOKEN="${ETCD_TOKEN}"

ETCD_INITIAL_ADVERTISE_PEER_URLS="http://${NODE_IP}:2380"

ETCD_DATA_DIR="${ETCD_DATA_DIR}"

ETCD_LISTEN_PEER_URLS="http://${NODE_IP}:2380"

ETCD_LISTEN_CLIENT_URLS="http://${NODE_IP}:2379,http://localhost:2379"

ETCD_ADVERTISE_CLIENT_URLS="http://${NODE_IP}:2379"

3.

$ sudo systemctl enable --now etcd

$ sudo systemctl start etcd

$ sudo systemctl status etcd

1.

$ sudo etcdctl member add node3 http://10.104.0.3:2380

2.

3.

ETCD_NAME=${NODE_NAME}

ETCD_INITIAL_CLUSTER="node1=http://10.104.0.1:2380,node2=http://10.104.0.2:2380,node3=http://

10.104.0.3:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

ETCD_INITIAL_CLUSTER_TOKEN="${ETCD_TOKEN}"

ETCD_INITIAL_ADVERTISE_PEER_URLS="http://${NODE_IP}:2380"

ETCD_DATA_DIR="${ETCD_DATA_DIR}"

ETCD_LISTEN_PEER_URLS="http://${NODE_IP}:2380"

ETCD_LISTEN_CLIENT_URLS="http://${NODE_IP}:2379,http://localhost:2379"

ETCD_ADVERTISE_CLIENT_URLS="http://${NODE_IP}:2379"

…

4.

$ sudo systemctl enable --now etcd

$ sudo systemctl start etcd

$ sudo systemctl status etcd

5.

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

97 of 165 Percona LLC, © 2023

The output resembles the following:

$ sudo etcdctl member list

2d346bd3ae7f07c4: name=node2 peerURLs=http://10.104.0.2:2380 clientURLs=http://10.104.0.2:2379

isLeader=false

8bacb519ebdee8db: name=node3 peerURLs=http://10.104.0.3:2380 clientURLs=http://10.104.0.3:2379

isLeader=false

c5f52ea2ade25e1b: name=node1 peerURLs=http://10.104.0.1:2380 clientURLs=http://10.104.0.1:2379

isLeader=true

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

98 of 165 Percona LLC, © 2023

Configure Patroni

Run the following commands on all nodes. You can do this in parallel:

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

99 of 165 Percona LLC, © 2023

Export and create environment variables to simplify the config file creation:

Node name:

Node IP:

Create variables to store the PATH:

NOTE: Check the path to the data and bin folders on your operating system and change it for the variables

accordingly.

Patroni information:

Create the /etc/patroni/patroni.yml configuration file and add the following configuration for node1 :

1.

•

$ export NODE_NAME=`hostname -f`

•

$ export NODE_IP=`hostname -i | awk '{print $1}'`

•

DATA_DIR="/var/lib/postgresql/13/main"

PG_BIN_DIR="/usr/lib/postgresql/13/bin"

•

NAMESPACE="percona_lab"

SCOPE="cluster_1

2.

/etc/patroni/patroni.yml

namespace: ${NAMESPACE}

scope: ${SCOPE}

name: ${NODE_NAME}

restapi:

 listen: 0.0.0.0:8008

 connect_address: ${NODE_IP}:8008

etcd:

 host: ${NODE_IP}:2379

bootstrap:

 # this section will be written into Etcd:/<namespace>/<scope>/config after initializing new

cluster

 dcs:

 ttl: 30

 loop_wait: 10

 retry_timeout: 10

 maximum_lag_on_failover: 1048576

 slots:

 percona_cluster_1:

 type: physical

 postgresql:

 use_pg_rewind: true

 use_slots: true

 parameters:

 wal_level: replica

 hot_standby: "on"

 wal_keep_segments: 10

 max_wal_senders: 5

 max_replication_slots: 10

 wal_log_hints: "on"

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

100 of 165 Percona LLC, © 2023

Let’s take a moment to understand the contents of the patroni.yml file.

The first section provides the details of the node and its connection ports. After that, we have the etcd service and

its port details.

Following these, there is a bootstrap section that contains the PostgreSQL configurations and the steps to run once

the database is initialized. The pg_hba.conf entries specify all the other nodes that can connect to this node and

their authentication mechanism.

 logging_collector: 'on'

 # some desired options for 'initdb'

 initdb: # Note: It needs to be a list (some options need values, others are switches)

 - encoding: UTF8

 - data-checksums

 pg_hba: # Add following lines to pg_hba.conf after running 'initdb'

 - host replication replicator 127.0.0.1/32 trust

 - host replication replicator 0.0.0.0/0 md5

 - host all all 0.0.0.0/0 md5

 - host all all ::0/0 md5

 # Some additional users which needs to be created after initializing new cluster

 users:

 admin:

 password: qaz123

 options:

 - createrole

 - createdb

 percona:

 password: qaz123

 options:

 - createrole

 - createdb

postgresql:

 cluster_name: cluster_1

 listen: 0.0.0.0:5432

 connect_address: ${NODE_IP}:5432

 data_dir: ${DATADIR}

 bin_dir: ${PG_BIN_DIR}

 pgpass: /tmp/pgpass

 authentication:

 replication:

 username: replicator

 password: replPasswd

 superuser:

 username: postgres

 password: qaz123

 parameters:

 unix_socket_directories: "/var/run/postgresql/"

 create_replica_methods:

 - basebackup

 basebackup:

 checkpoint: 'fast'

tags:

 nofailover: false

 noloadbalance: false

 clonefrom: false

 nosync: false

Patroni configuration file

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

101 of 165 Percona LLC, © 2023

Check that the systemd unit file patroni.service is created in /etc/systemd/system . If it is created, skip this

step.

If it’s not created, create it manually and specify the following contents within:

Make systemd aware of the new service:

Now it’s time to start Patroni. You need the following commands on all nodes but not in parallel. Start with the

node1 first, wait for the service to come to live, and then proceed with the other nodes one-by-one, always

waiting for them to sync with the primary node:

When Patroni starts, it initializes PostgreSQL (because the service is not currently running and the data

directory is empty) following the directives in the bootstrap section of the configuration file.

Check the service to see if there are errors:

A common error is Patroni complaining about the lack of proper entries in the pg_hba.conf file. If you see such

errors, you must manually add or fix the entries in that file and then restart the service.

Changing the patroni.yml file and restarting the service will not have any effect here because the bootstrap

section specifies the configuration to apply when PostgreSQL is first started in the node. It will not repeat the

process even if the Patroni configuration file is modified and the service is restarted.

3.

/etc/systemd/system/patroni.service

[Unit]

Description=Runners to orchestrate a high-availability PostgreSQL

After=syslog.target network.target

[Service]

Type=simple

User=postgres

Group=postgres

Start the patroni process

ExecStart=/bin/patroni /etc/patroni/patroni.yml

Send HUP to reload from patroni.yml

ExecReload=/bin/kill -s HUP $MAINPID

only kill the patroni process, not its children, so it will gracefully stop postgres

KillMode=process

Give a reasonable amount of time for the server to start up/shut down

TimeoutSec=30

Do not restart the service if it crashes, we want to manually inspect database on failure

Restart=no

[Install]

WantedBy=multi-user.target

4.

$ sudo systemctl daemon-reload

5.

$ sudo systemctl enable --now patroni

$ sudo systemctl restart patroni

6.

$ sudo journalctl -fu patroni

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

102 of 165 Percona LLC, © 2023

Check the cluster:

The output on node1 resembles the following:

On the remaining nodes:

If Patroni has started properly, you should be able to locally connect to a PostgreSQL node using the

following command:

The command output resembles the following:

Configure HAProxy

HAproxy is the load balancer and the single point of entry to your PostgreSQL cluster for client applications. A

client application accesses the HAPpoxy URL and sends its read/write requests there. Behind-the-scene,

HAProxy routes write requests to the primary node and read requests - to the secondaries in a round-robin

fashion so that no secondary instance is unnecessarily loaded. To make this happen, provide different ports

in the HAProxy configuration file. In this deployment, writes are routed to port 5000 and reads - to port 5001

7.

$ patronictl -c /etc/patroni/patroni.yml list $SCOPE

+ Cluster: cluster_1 --+---------+---------+----+-----------+

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------------+---------+---------+----+-----------+

| node-1 | 10.0.100.1 | Leader | running | 1 | |

+--------+-------------+---------+---------+----+-----------+

+ Cluster: cluster_1 --+---------+---------+----+-----------+

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------------+---------+---------+----+-----------+

| node-1 | 10.0.100.1 | Leader | running | 1 | |

| node-2 | 10.0.100.2 | Replica | running | 1 | 0 |

+--------+-------------+---------+---------+----+-----------+

$ sudo psql -U postgres

psql (13.12)

Type "help" for help.

postgres=#

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

103 of 165 Percona LLC, © 2023

This way, a client application doesn’t know what node in the underlying cluster is the current primary.

HAProxy sends connections to a healthy node (as long as there is at least one healthy node available) and

ensures that client application requests are never rejected.

Install HAProxy on the HAProxy-demo node:

The HAProxy configuration file path is: /etc/haproxy/haproxy.cfg . Specify the following configuration in this file.

HAProxy will use the REST APIs hosted by Patroni to check the health status of each PostgreSQL node and route

the requests appropriately.

Restart HAProxy:

Check the HAProxy logs to see if there are any errors:

1.

$ sudo apt install percona-haproxy

2.

global

 maxconn 100

defaults

 log global

 mode tcp

 retries 2

 timeout client 30m

 timeout connect 4s

 timeout server 30m

 timeout check 5s

listen stats

 mode http

 bind *:7000

 stats enable

 stats uri /

listen primary

 bind *:5000

 option httpchk /primary

 http-check expect status 200

 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions

 server node1 node1:5432 maxconn 100 check port 8008

 server node2 node2:5432 maxconn 100 check port 8008

 server node3 node3:5432 maxconn 100 check port 8008

listen standbys

 balance roundrobin

 bind *:5001

 option httpchk /replica

 http-check expect status 200

 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions

 server node1 node1:5432 maxconn 100 check port 8008

 server node2 node2:5432 maxconn 100 check port 8008

 server node3 node3:5432 maxconn 100 check port 8008

3.

$ sudo systemctl restart haproxy

4.

$ sudo journalctl -u haproxy.service -n 100 -f

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

104 of 165 Percona LLC, © 2023

Next steps

Configure pgBackRest

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: November 1, 2023

Created: December 1, 2021

5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu

105 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

This guide provides instructions on how to set up a highly available PostgreSQL cluster with Patroni on Red

Hat Enterprise Linux or compatible derivatives.

Preconditions

For this setup, we will use the nodes running on RHEL 8 as the base operating system and having the

following IP addresses:

Ideally, in a production (or even non-production) setup, the PostgreSQL and ETCD nodes will be within a private

subnet without any public connectivity to the Internet, and the HAProxy will be in a different subnet that allows

client traffic coming only from a selected IP range. To keep things simple, we have implemented this architecture

in a private environment, and each node can access the other by its internal, private IP.

Initial setup

SET UP HOSTNAMES IN THE /ETC/HOSTS FILE

It’s not necessary to have name resolution, but it makes the whole setup more readable and less error

prone. Here, instead of configuring a DNS, we use a local name resolution by updating the file /etc/hosts . By

Hostname Internal IP address

node1 10.104.0.1

node2 10.104.0.2

node3 10.104.0.3

HAProxy-demo 10.104.0.6

Note

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

106 of 165 Percona LLC, © 2023

resolving their hostnames to their IP addresses, we make the nodes aware of each other’s names and allow

their seamless communication.

Run the following command on each node. Change the node name to node1 , node2 and node3 respectively:

Modify the /etc/hosts file of each PostgreSQL node to include the hostnames and IP addresses of the

remaining nodes. Add the following at the end of the /etc/hosts file on all nodes:

INSTALL THE SOFTWARE

Install Percona Distribution for PostgreSQL on node1 , node2 and node3 from Percona repository:

Install percona-release .

Enable the repository:

Install Percona Distribution for PostgreSQL packages.

Don’t initialize the cluster and start the postgresql service. The cluster initialization and setup are handled by Patroni

during the bootsrapping stage.

Install some Python and auxiliary packages to help with Patroni and ETCD

1.

$ sudo hostnamectl set-hostname node-1

2.

The HAProxy instance should have the name resolution for all the three nodes in its /etc/hosts file. Add the

following lines at the end of the file:

node1 node2 node3 HAproxy-demo

Cluster IP and names

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

Cluster IP and names

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

Cluster IP and names

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

Cluster IP and names

10.104.0.6 HAProxy-demo

10.104.0.1 node1

10.104.0.2 node2

10.104.0.3 node3

1.

•

•

$ sudo percona-release setup ppg13

•

Important

2.

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

107 of 165 Percona LLC, © 2023

https://www.percona.com/doc/percona-repo-config/installing.html
https://www.percona.com/doc/percona-repo-config/installing.html

Install ETCD, Patroni, pgBackRest packages:

Stop and disable all installed services:

Configure ETCD distributed store

The distributed configuration store helps establish a consensus among nodes during a failover and will

manage the configuration for the three PostgreSQL instances. Although Patroni can work with other

distributed consensus stores (i.e., Zookeeper, Consul, etc.), the most commonly used one is etcd .

In this setup we’ll install and configure ETCD on each database node.

CONFIGURE NODE1

Backup the etcd.conf file:

Export environment variables to simplify the config file creation

Node name:

Node IP:

Initial cluster token for the ETCD cluster during bootstrap:

ETCD data directory:

Modify the /etc/etcd/etcd.conf configuration file:

$ sudo yum install python3-pip python3-dev binutils

3.

$ sudo yum install percona-patroni \

etcd python3-python-etcd\

percona-pgbackrest

4.

$ sudo systemctl stop {etcd,patroni,postgresql}

$ systemctl disable {etcd,patroni,postgresql}

1.

$ sudo mv /etc/etcd/etcd.conf /etc/etcd/etcd.conf.orig

2.

•

$ export NODE_NAME=`hostname -f`

•

$ export NODE_IP=`hostname -i | awk '{print $1}'`

•

$ export ETCD_TOKEN='PostgreSQL_HA_Cluster_1'

•

$ export ETCD_DATA_DIR='/var/lib/etcd/postgresql'

3.

ETCD_NAME=${NODE_NAME}

ETCD_INITIAL_CLUSTER="${NODE_NAME}=http://${NODE_IP}:2380"

ETCD_INITIAL_CLUSTER_STATE="new"

ETCD_INITIAL_CLUSTER_TOKEN="${ETCD_TOKEN}"

ETCD_INITIAL_ADVERTISE_PEER_URLS="http://${NODE_IP}:2380"

ETCD_DATA_DIR="${ETCD_DATA_DIR}"

ETCD_LISTEN_PEER_URLS="http://${NODE_IP}:2380"

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

108 of 165 Percona LLC, © 2023

Start the etcd to apply the changes on node1 :

Check the etcd cluster members on node1 :

The output resembles the following:

Configure ETCD on node2 and node3:

This is important to note that even though the procedures are the same, only changing the hosts, each node

needs to be individually fully configured before proceeding to the next node.

We need to add the node to the cluster executing below command on Node1 :

The output will be something similar to below one:

CONFIGURE NODE2

Back up the configuration file and export environment variables as described in steps 1-2 of the node1

configuration

Edit the /etc/etcd/etcd.conf configuration file on node2 and add the output from the add command:

Start the etcd to apply the changes on node2 :

ETCD_LISTEN_CLIENT_URLS="http://${NODE_IP}:2379,http://localhost:2379"

ETCD_ADVERTISE_CLIENT_URLS="http://${NODE_IP}:2379"

…

4.

$ sudo systemctl enable --now etcd

$ sudo systemctl start etcd

$ sudo systemctl status etcd

5.

$ sudo etcdctl member list

21d50d7f768f153a: name=default peerURLs=http://10.104.0.1:2380 clientURLs=http://

10.104.0.1:2379 isLeader=true

6.

Execute on Node1

$ sudo etcdctl member add node2 http://10.104.0.2:2380

Added member named node2 with ID 10042578c504d052 to cluster

ETCD_NAME="node2"

ETCD_INITIAL_CLUSTER="node2=http://10.104.0.2:2380,node1=http://10.104.0.1:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

1.

2.

[Member]

ETCD_NAME=${NODE_NAME}

ETCD_INITIAL_CLUSTER="node-1=http://10.0.100.1:2380,node-2=http://10.0.100.2:2380"

ETCD_INITIAL_CLUSTER_STATE="existing" ETCD_INITIAL_CLUSTER_TOKEN="${ETCD_TOKEN}"

ETCD_INITIAL_ADVERTISE_PEER_URLS="http://${NODE_IP}:2380"

ETCD_DATA_DIR="${ETCD_DATA_DIR}"

ETCD_LISTEN_PEER_URLS="http://${NODE_IP}:2380"

ETCD_LISTEN_CLIENT_URLS="http://${NODE_IP}:2379,http://localhost:2379"

ETCD_ADVERTISE_CLIENT_URLS="http://${NODE_IP}:2379"

3.

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

109 of 165 Percona LLC, © 2023

CONFIGURE NODE3

Add node3 to the cluster. Run the following command on node1 :

On node3 , back up the configuration file and export environment variables as described in steps 1-2 of the

node1 configuration

Modify the /etc/etcd/etcd.conf configuration file on node3 and add the output from the add command as

follows:

Start the etcd service on node3 :

Check the etcd cluster members.

Install Percona Distribution for PostgreSQL packages.

Don’t initialize the cluster and start the postgresql service. The cluster initialization and setup are handled by

Patroni during the bootsrapping stage.

$ sudo systemctl enable --now etcd

$ sudo systemctl start etcd

$ sudo systemctl status etcd

1.

$ sudo etcdctl member add node3 http://10.104.0.3:2380

2.

3.

ETCD_NAME=${NODE_NAME}

ETCD_INITIAL_CLUSTER="node1=http://10.104.0.1:2380,node2=http://10.104.0.2:2380,node3=http://

10.104.0.3:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

ETCD_INITIAL_CLUSTER_TOKEN="${ETCD_TOKEN}"

ETCD_INITIAL_ADVERTISE_PEER_URLS="http://${NODE_IP}:2380"

ETCD_DATA_DIR="${ETCD_DATA_DIR}"

ETCD_LISTEN_PEER_URLS="http://${NODE_IP}:2380"

ETCD_LISTEN_CLIENT_URLS="http://${NODE_IP}:2379,http://localhost:2379"

ETCD_ADVERTISE_CLIENT_URLS="http://${NODE_IP}:2379"

…

4.

$ sudo systemctl enable --now etcd

$ sudo systemctl start etcd

$ sudo systemctl status etcd

5.

$ sudo etcdctl member list

6.

Important

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

110 of 165 Percona LLC, © 2023

Configure Patroni

Run the following commands on all nodes. You can do this in parallel:

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

111 of 165 Percona LLC, © 2023

Export and create environment variables to simplify the config file creation:

Node name:

Node IP:

Create variables to store the PATH:

NOTE: Check the path to the data and bin folders on your operating system and change it for the variables

accordingly.

Patroni information:

Create the directories required by Patroni

Create the directory to store the configuration file and make it owned by the postgres user.

We won’t use the default RHEL to store PostgreSQL data, but will create a data directory for PostgreSQL. We

also need to change its ownership to the postgres user and restrict the access to it

Create the /etc/patroni/patroni.yml configuration file with the following configuration:

1.

•

$ export NODE_NAME=`hostname -f`

•

$ export NODE_IP=`hostname -i | awk '{print $1}'`

•

DATA_DIR="/var/lib/pgsql/data/"

PG_BIN_DIR="/usr/pgsql-12/bin"

•

NAMESPACE="percona_lab"

SCOPE="cluster_1

2.

•

$ sudo mkdir -p /etc/patroni/

$ sudo chown -R postgres:postgres /etc/patroni/

•

$ sudo mkdir /data/pgsql -p

$ sudo chown -R postgres:postgres /data/pgsql

$ sudo chmod 700 /data/pgsql

3.

/etc/patroni/patroni.yml

namespace: ${NAMESPACE}

scope: ${SCOPE}

name: ${NODE_NAME}

restapi:

 listen: 0.0.0.0:8008

 connect_address: ${NODE_IP}:8008

etcd:

 host: ${NODE_IP}:2379

bootstrap:

 # this section will be written into Etcd:/<namespace>/<scope>/config after initializing new

cluster

 dcs:

 ttl: 30

 loop_wait: 10

 retry_timeout: 10

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

112 of 165 Percona LLC, © 2023

 maximum_lag_on_failover: 1048576

 slots:

 percona_cluster_1:

 type: physical

 postgresql:

 use_pg_rewind: true

 use_slots: true

 parameters:

 wal_level: replica

 hot_standby: "on"

 wal_keep_segments: 10

 max_wal_senders: 5

 max_replication_slots: 10

 wal_log_hints: "on"

 logging_collector: 'on'

 # some desired options for 'initdb'

 initdb: # Note: It needs to be a list (some options need values, others are switches)

 - encoding: UTF8

 - data-checksums

 pg_hba: # Add following lines to pg_hba.conf after running 'initdb'

 - host replication replicator 127.0.0.1/32 trust

 - host replication replicator 0.0.0.0/0 md5

 - host all all 0.0.0.0/0 md5

 - host all all ::0/0 md5

 # Some additional users which needs to be created after initializing new cluster

 users:

 admin:

 password: qaz123

 options:

 - createrole

 - createdb

 percona:

 password: qaz123

 options:

 - createrole

 - createdb

postgresql:

 cluster_name: cluster_1

 listen: 0.0.0.0:5432

 connect_address: ${NODE_IP}:5432

 data_dir: ${DATADIR}

 bin_dir: ${PG_BIN_DIR}

 pgpass: /tmp/pgpass

 authentication:

 replication:

 username: replicator

 password: replPasswd

 superuser:

 username: postgres

 password: qaz123

 parameters:

 unix_socket_directories: "/var/run/postgresql/"

 create_replica_methods:

 - basebackup

 basebackup:

 checkpoint: 'fast'

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

113 of 165 Percona LLC, © 2023

Check that the systemd unit file patroni.service is created in /etc/systemd/system . If it is created, skip this

step.

If it’s not created, create it manually and specify the following contents within:

Make systemd aware of the new service:

Now it’s time to start Patroni. You need the following commands on all nodes but not in parallel. Start with the

node1 first, wait for the service to come to live, and then proceed with the other nodes one-by-one, always

waiting for them to sync with the primary node:

When Patroni starts, it initializes PostgreSQL (because the service is not currently running and the data

directory is empty) following the directives in the bootstrap section of the configuration file.

Check the service to see if there are errors:

tags:

 nofailover: false

 noloadbalance: false

 clonefrom: false

 nosync: false

4.

/etc/systemd/system/patroni.service

[Unit]

Description=Runners to orchestrate a high-availability PostgreSQL

After=syslog.target network.target

[Service]

Type=simple

User=postgres

Group=postgres

Start the patroni process

ExecStart=/bin/patroni /etc/patroni/patroni.yml

Send HUP to reload from patroni.yml

ExecReload=/bin/kill -s HUP $MAINPID

only kill the patroni process, not its children, so it will gracefully stop postgres

KillMode=process

Give a reasonable amount of time for the server to start up/shut down

TimeoutSec=30

Do not restart the service if it crashes, we want to manually inspect database on failure

Restart=no

[Install]

WantedBy=multi-user.target

5.

$ sudo systemctl daemon-reload

6.

$ sudo systemctl enable --now patroni

$ sudo systemctl restart patroni

7.

$ sudo journalctl -fu patroni

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

114 of 165 Percona LLC, © 2023

A common error is Patroni complaining about the lack of proper entries in the pg_hba.conf file. If you see such

errors, you must manually add or fix the entries in that file and then restart the service.

Changing the patroni.yml file and restarting the service will not have any effect here because the bootstrap

section specifies the configuration to apply when PostgreSQL is first started in the node. It will not repeat the

process even if the Patroni configuration file is modified and the service is restarted.

If Patroni has started properly, you should be able to locally connect to a PostgreSQL node using the following

command:

When all nodes are up and running, you can check the cluster status using the following command:

The output on node1 resembles the following:

On the remaining nodes:

Configure HAProxy

HAProxy node will accept client connection requests and route those to the active node of the PostgreSQL

cluster. This way, a client application doesn’t have to know what node in the underlying cluster is the current

primary. All it needs to do is to access a single HAProxy URL and send its read/write requests there. Behind-

the-scene, HAProxy routes the connection to a healthy node (as long as there is at least one healthy node

available) and ensures that client application requests are never rejected.

HAProxy is capable of routing write requests to the primary node and read requests - to the secondaries in a

round-robin fashion so that no secondary instance is unnecessarily loaded. To make this happen, provide

$ sudo psql -U postgres

psql (13.12)

Type "help" for help.

postgres=#

8.

$ sudo patronictl -c /etc/patroni/patroni.yml list

+ Cluster: cluster_1 --+---------+---------+----+-----------+

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------------+---------+---------+----+-----------+

| node-1 | 10.0.100.1 | Leader | running | 1 | |

+--------+-------------+---------+---------+----+-----------+

+ Cluster: cluster_1 --+---------+---------+----+-----------+

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------------+---------+---------+----+-----------+

| node-1 | 10.0.100.1 | Leader | running | 1 | |

| node-2 | 10.0.100.2 | Replica | running | 1 | 0 |

+--------+-------------+---------+---------+----+-----------+

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

115 of 165 Percona LLC, © 2023

different ports in the HAProxy configuration file. In this deployment, writes are routed to port 5000 and reads

- to port 5001.

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

116 of 165 Percona LLC, © 2023

Install HAProxy on the HAProxy-demo node:

The HAProxy configuration file path is: /etc/haproxy/haproxy.cfg . Specify the following configuration in this file.

HAProxy will use the REST APIs hosted by Patroni to check the health status of each PostgreSQL node and route

the requests appropriately.

Enable a SELinux boolean to allow HAProxy to bind to non standard ports:

Restart HAProxy:

Check the HAProxy logs to see if there are any errors:

1.

$ sudo yum install percona-haproxy

2.

global

 maxconn 100

defaults

 log global

 mode tcp

 retries 2

 timeout client 30m

 timeout connect 4s

 timeout server 30m

 timeout check 5s

listen stats

 mode http

 bind *:7000

 stats enable

 stats uri /

listen primary

 bind *:5000

 option httpchk /primary

 http-check expect status 200

 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions

 server node1 node1:5432 maxconn 100 check port 8008

 server node2 node2:5432 maxconn 100 check port 8008

 server node3 node3:5432 maxconn 100 check port 8008

listen standbys

 balance roundrobin

 bind *:5001

 option httpchk /replica

 http-check expect status 200

 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions

 server node1 node1:5432 maxconn 100 check port 8008

 server node2 node2:5432 maxconn 100 check port 8008

 server node3 node3:5432 maxconn 100 check port 8008

3.

$ sudo setsebool -P haproxy_connect_any on

4.

$ sudo systemctl restart haproxy

5.

$ sudo journalctl -u haproxy.service -n 100 -f

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

117 of 165 Percona LLC, © 2023

Next steps

Configure pgBackRest

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: November 1, 2023

Created: December 1, 2021

5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives

118 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5.1.4 pgBackRest setup

pgBackRest is the backup tool used to perform Postgres database backup, restoration, and point-in-time

recovery. It is a server-client application, where the server runs on a dedicated host and a client runs on

every PostgreSQL node.

You also need a backup storage to store the backups. It can either be a remote storage such as AWS S3, S3-

compatible storages or Azure blob storage, or a filesystem-based one.

Configure backup server

INSTALL PGBACKREST

Enable the repository with percona-release

Install pgBackRest package

CREATE THE CONFIGURATION FILE

Create environment variables to simplify the config file creation:

Create the pgBackRest repository

A repository is where pgBackRest stores backups. In this example, the backups will be saved to /var/lib/

pgbackrest

The default pgBackRest configuration file location is /etc/pgbackrest/pgbackrest.conf . If it does not exist,

then /etc/pgbackrest.conf is used next. Edit the pgbackrest.conf file to include the following configuration:

1.

$ sudo percona-release setup ppg-11

2.

Debian/Ubuntu RHEL/derivatives

$ sudo apt install percona-pgbackrest

$ sudo yum install percona-pgbackrest

1.

export SRV_NAME="bkp-srv"

export NODE1_NAME="node-1"

export NODE2_NAME="node-2"

export NODE3_NAME="node-3"

2.

$ sudo mkdir -p /var/lib/pgbackrest

$ sudo chmod 750 /var/lib/pgbackrest

$ sudo chown postgres:postgres /var/lib/pgbackrest

3.

[global]

Server repo details

repo1-path=/var/lib/pgbackrest

Retention

- repo1-retention-archive-type

- If set to full pgBackRest will keep archive logs for the number of full backups defined

by repo-retention-archive

repo1-retention-archive-type=full

5.1.4 pgBackRest setup

119 of 165 Percona LLC, © 2023

https://www.percona.com/doc/percona-repo-config/index.html

repo1-retention-archive

- Number of backups worth of continuous WAL to retain

- NOTE: WAL segments required to make a backup consistent are always retained until the

backup is expired regardless of how this option is configured

- If this value is not set and repo-retention-full-type is count (default), then the

archive to expire will default to the repo-retention-full

repo1-retention-archive=2

repo1-retention-full

- Full backup retention count/time.

- When a full backup expires, all differential and incremental backups associated with the

full backup will also expire.

- When the option is not defined a warning will be issued.

- If indefinite retention is desired then set the option to the max value.

repo1-retention-full=4

Server general options

process-max=12

log-level-console=info

#log-level-file=debug

log-level-file=info

start-fast=y

delta=y

backup-standby=y

########## Server TLS options ##########

tls-server-address=*

tls-server-cert-file=/pg_ha/certs/${SRV_NAME}.crt

tls-server-key-file=/pg_ha/certs/${SRV_NAME}.key

tls-server-ca-file=/pg_ha/certs/ca.crt

Auth entry

tls-server-auth=${NODE1_NAME}=cluster_1

tls-server-auth=${NODE2_NAME}=cluster_1

tls-server-auth=${NODE3_NAME}=cluster_1

Clusters and nodes

[cluster_1]

pg1-host=${NODE1_NAME}

pg1-host-port=8432

pg1-port=5432

pg1-path=/var/lib/postgresql/11/

pg1-host-type=tls

pg1-host-cert-file=/pg_ha/certs/${SRV_NAME}.crt

pg1-host-key-file=/pg_ha/certs/${SRV_NAME}.key

pg1-host-ca-file=/pg_ha/certs/ca.crt

pg1-socket-path=/var/run/postgresql

pg2-host=${NODE2_NAME}

pg2-host-port=8432

pg2-port=5432

pg2-path=/var/lib/postgresql/11/

pg2-host-type=tls

pg2-host-cert-file=/pg_ha/certs/${SRV_NAME}.crt

pg2-host-key-file=/pg_ha/certs/${SRV_NAME}.key

pg2-host-ca-file=/pg_ha/certs/ca.crt

pg2-socket-path=/var/run/postgresql

pg3-host=${NODE3_NAME}

pg3-host-port=8432

pg3-port=5432

5.1.4 pgBackRest setup

120 of 165 Percona LLC, © 2023

Create the systemd unit file at the path /etc/systemd/system/pgbackrest.service

CREATE THE CERTIFICATE FILES

Create the folder where to store the certificates. For example, /pg_ha/certs

Define the variable for the certificates path:

Create the certificates and keys

Create the certificate for the backup server

Create the certificates for each node: node1 , node2 , node3

Sign the certificates with the root-ca key

pg3-path=/var/lib/postgresql/11/

pg3-host-type=tls

pg3-host-cert-file=/pg_ha/certs/${SRV_NAME}.crt

pg3-host-key-file=/pg_ha/certs/${SRV_NAME}.key

pg3-host-ca-file=/pg_ha/certs/ca.crt

pg3-socket-path=/var/run/postgresql

4.

/etc/systemd/system/pgbackrest.service

[Unit]

Description=pgBackRest Server

After=network.target

StartLimitIntervalSec=0

[Service]

Type=simple

User=postgres

Restart=always

RestartSec=1

ExecStart=/usr/bin/pgbackrest server

#ExecStartPost=/bin/sleep 3

#ExecStartPost=/bin/bash -c "[! -z $MAINPID]"

ExecReload=/bin/kill -HUP $MAINPID

[Install]

WantedBy=multi-user.target

1.

2.

export CA_PATH="/pg_ha/certs"

3.

$ sudo -iu postgres openssl req -new -x509 -days 365 -nodes -out ${CA_PATH}/ca.crt -keyout $

{CA_PATH}/ca.key -subj "/CN=root-ca"

4.

$ sudo -iu postgres openssl req -new -nodes -out ${CA_PATH}/${SRV_NAME}.csr -keyout $

{CA_PATH}/${SRV_NAME}.key -subj "/CN=${SRV_NAME}"

5.

$ sudo -iu postgres openssl req -new -nodes -out ${CA_PATH}/${NODE1_NAME}.csr -keyout $

{CA_PATH}/${NODE1_NAME}.key -subj "/CN=${NODE1_NAME}"

$ sudo -iu postgres openssl req -new -nodes -out ${CA_PATH}/${NODE2_NAME}.csr -keyout $

{CA_PATH}/${NODE2_NAME}.key -subj "/CN=${NODE2_NAME}"

$ sudo -iu postgres openssl req -new -nodes -out ${CA_PATH}/${NODE3_NAME}.csr -keyout $

{CA_PATH}/${NODE3_NAME}.key -subj "/CN=${NODE3_NAME}"

6.

5.1.4 pgBackRest setup

121 of 165 Percona LLC, © 2023

Remove temporary files

Reload, enable, and start the service

$ sudo -iu postgres openssl x509 -req -in ${CA_PATH}/${SRV_NAME}.csr -days 365 -CA ${CA_PATH}/

ca.crt -CAkey ${CA_PATH}/ca.key -CAcreateserial -out ${CA_PATH}/${SRV_NAME}.crt

$ sudo -iu postgres openssl x509 -req -in ${CA_PATH}/${NODE1_NAME}.csr -days 365 -CA $

{CA_PATH}/ca.crt -CAkey ${CA_PATH}/ca.key -CAcreateserial -out ${CA_PATH}/${NODE1_NAME}.crt

$ sudo -iu postgres openssl x509 -req -in ${CA_PATH}/${NODE2_NAME}.csr -days 365 -CA $

{CA_PATH}/ca.crt -CAkey ${CA_PATH}/ca.key -CAcreateserial -out ${CA_PATH}/${NODE2_NAME}.crt

$ sudo -iu postgres openssl x509 -req -in ${CA_PATH}/${NODE3_NAME}.csr -days 365 -CA $

{CA_PATH}/ca.crt -CAkey ${CA_PATH}/ca.key -CAcreateserial -out ${CA_PATH}/${NODE3_NAME}.crt

7.

$ rm ${CA_PATH}/*.csr

8.

$ sudo systemctl daemon-reload

$ sudo systemctl enable --now pgbackrest

5.1.4 pgBackRest setup

122 of 165 Percona LLC, © 2023

Configure database servers

Run the following command on node1 , node2 and node3 .

5.1.4 pgBackRest setup

123 of 165 Percona LLC, © 2023

Create the certificates folder. For example, /pg_ha/certs

Export environment variables to simplify config file creation

Create the configuration file. The default path is /etc/pgbackrest.conf

Create the systemd unit file at the path /etc/systemd/system/pgbackrest.service

Reload, enable, and start the service

1.

$ sudo mkdir -p /pg_ha/certs

2.

export NODE_NAME=`hostname -f`

3.

/etc/pgbackrest.conf

[global]

repo1-host=bkp-srv

repo1-host-user=postgres

repo1-host-type=tls

repo1-host-cert-file=/pg_ha/certs/${NODE_NAME}.crt

repo1-host-key-file=/pg_ha/certs/${NODE_NAME}.key

repo1-host-ca-file=/pg_ha/certs/ca.crt

general options

process-max=16

log-level-console=info

log-level-file=debug

tls server options

tls-server-address=*

tls-server-cert-file=/pg_ha/certs/${NODE_NAME}.crt

tls-server-key-file=/pg_ha/certs/${NODE_NAME}.key

tls-server-ca-file=/pg_ha/certs/ca.crt

tls-server-auth=bkp-srv=cluster_1

[cluster_1]

pg1-path=/var/lib/postgresql/11

4.

/etc/systemd/system/pgbackrest.service

[Unit]

Description=pgBackRest Server

After=network.target

StartLimitIntervalSec=0

[Service]

Type=simple

User=postgres

Restart=always

RestartSec=1

ExecStart=/usr/bin/pgbackrest server

#ExecStartPost=/bin/sleep 3

#ExecStartPost=/bin/bash -c "[! -z $MAINPID]"

ExecReload=/bin/kill -HUP $MAINPID

[Install]

WantedBy=multi-user.target

5.

5.1.4 pgBackRest setup

124 of 165 Percona LLC, © 2023

Change Patroni configuration to use pgBackRest. Run this command on one node only, for example, on node1 .

Edit the /etc/patroni/patroni.yml file :

$ sudo systemctl daemon-reload

$ sudo systemctl enable --now pgbackrest

6.

/etc/patroni/patroni.yml

loop_wait: 10

maximum_lag_on_failover: 1048576

postgresql:

 parameters:

 archive_command: pgbackrest --stanza=cluster_1 archive-push "/var/lib/postgresql/15/main/

pg_wal/%f"

 archive_mode: true

 archive_timeout: 1800s

 hot_standby: true

 logging_collector: 'on'

 max_replication_slots: 10

 max_wal_senders: 5

 wal_keep_size: 4096

 wal_level: logical

 wal_log_hints: true

 recovery_conf:

 recovery_target_timeline: latest

 restore_command: pgbackrest --config=/etc/pgbackrest.conf --stanza=cluster_1 archive-get

%f "%p"

 use_pg_rewind: true

 use_slots: true

retry_timeout: 10

slots:

 percona_cluster_1:

 type: physical

ttl: 30

5.1.4 pgBackRest setup

125 of 165 Percona LLC, © 2023

Create backups

Run the following commands on the backup server

Create the stanza. A stanza is the configuration for a PostgreSQL database cluster that defines where it is

located, how it will be backed up, archiving options, etc.

Create a full backup

Create an incremental backup

Check backup info

Expire (remove) a backup. Be careful with removal, because removing a full backup also removes dependent

incremental backups

Test PostgreSQL cluster

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

1.

$ sudo -iu postgres pgbackrest --stanza=cluster_1 stanza-create

2.

$ sudo -iu postgres pgbackrest --stanza=cluster_1 --type=full backup

3.

$ sudo -iu postgres pgbackrest --stanza=cluster_1 --type=incr backup

4.

$ sudo -iu postgres pgbackrest --stanza=cluster_1 info

5.

$ sudo -iu postgres pgbackrest --stanza=cluster_1 expire --set=20230617-021338F

Last update: November 1, 2023

Created: November 1, 2023

5.1.4 pgBackRest setup

126 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5.1.5 Testing the Patroni PostgreSQL Cluster

This document covers the following scenarios to test the PostgreSQL cluster:

replication,

connectivity,

failover, and

manual switchover.

TESTING REPLICATION

Connect to the cluster and establish the psql session from a client machine that can connect to the HAProxy

node. Use the HAProxy-demo node’s public IP address:

Run the following commands to create a table and insert a few rows:

To ensure that the replication is working, we can log in to each PostgreSQL node and run a simple SQL

statement against the locally running instance:

The results on each node should be the following:

TESTING FAILOVER

In a proper setup, client applications won’t have issues connecting to the cluster, even if one or even two of

the nodes go down. We will test the cluster for failover in the following scenarios:

Scenario 1. Intentionally stop the PostgreSQL on the primary node and verify access to PostgreSQL.

Run the following command on any node to check the current cluster status:

•

•

•

•

1.

$ psql -U postgres -h 134.209.111.138 -p 5000

2.

CREATE TABLE customer(name text,age integer);

INSERT INTO CUSTOMER VALUES('john',30);

INSERT INTO CUSTOMER VALUES('dawson',35);

3.

$ sudo psql -U postgres -c "SELECT * FROM CUSTOMER;"

 name | age

--------+-----

 john | 30

 dawson | 35

(2 rows)

1.

$ sudo patronictl -c /etc/patroni/patroni.yml list

+ Cluster: stampede1 (7011110722654005156) -----------+

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------+---------+---------+----+-----------+

| node1 | node1 | Leader | running | 1 | |

| node2 | node2 | Replica | running | 1 | 0 |

| node3 | node3 | Replica | running | 1 | 0 |

+--------+-------+---------+---------+----+-----------+

5.1.5 Testing the Patroni PostgreSQL Cluster

127 of 165 Percona LLC, © 2023

node1 is the current leader. Stop Patroni in node1 to see how it changes the cluster:

Once the service stops in node1 , check the logs in node2 and node3 using the following command:

The logs in node3 show that the requests to node1 are failing, the watchdog is coming into action, and node3

is promoting itself as the leader:

Verify that you can still access the cluster through the HAProxy instance and read data:

Restart the Patroni service in node1

Check the current cluster status:

2.

$ sudo systemctl stop patroni

3.

$ sudo journalctl -u patroni.service -n 100 -f

Output

Sep 23 14:18:13 node03 patroni[10042]: 2021-09-23 14:18:13,905 INFO: no action. I am a secondary

(node3) and following a leader (node1)

Sep 23 14:18:20 node03 patroni[10042]: 2021-09-23 14:18:20,011 INFO: Got response from node2

http://node2:8008/patroni: {"state": "running", "postprimary_start_time": "2021-09-23

12:50:29.460027+00:00", "role": "replica", "server_version": 130003, "cluster_unlocked": true,

"xlog": {"received_location": 67219152, "replayed_location": 67219152, "replayed_timestamp":

"2021-09-23 13:19:50.329387+00:00", "paused": false}, "timeline": 1, "database_system_identifier":

"7011110722654005156", "patroni": {"version": "2.1.0", "scope": "stampede1"}}

Sep 23 14:18:20 node03 patroni[10042]: 2021-09-23 14:18:20,031 WARNING: Request failed to node1:

GET http://node1:8008/patroni (HTTPConnectionPool(host='node1', port=8008): Max retries exceeded

with url: /patroni (Caused by ProtocolError('Connection aborted.', ConnectionResetError(104,

'Connection reset by peer'))))

Sep 23 14:18:20 node03 patroni[10042]: 2021-09-23 14:18:20,038 INFO: Software Watchdog activated

with 25 second timeout, timing slack 15 seconds

Sep 23 14:18:20 node03 patroni[10042]: 2021-09-23 14:18:20,043 INFO: promoted self to leader by

acquiring session lock

Sep 23 14:18:20 node03 patroni[13641]: server promoting

Sep 23 14:18:20 node03 patroni[10042]: 2021-09-23 14:18:20,049 INFO: cleared rewind state after

becoming the leader

Sep 23 14:18:21 node03 patroni[10042]: 2021-09-23 14:18:21,101 INFO: no action. I am (node3) the

leader with the lock

Sep 23 14:18:21 node03 patroni[10042]: 2021-09-23 14:18:21,117 INFO: no action. I am (node3) the

leader with the lock

Sep 23 14:18:31 node03 patroni[10042]: 2021-09-23 14:18:31,114 INFO: no action. I am (node3) the

leader with the lock

...

4.

$ psql -U postgres -h 10.104.0.6 -p 5000 -c "SELECT * FROM CUSTOMER;"

 name | age

--------+-----

 john | 30

 dawson | 35

(2 rows)

5.

$ sudo systemctl start patroni

6.

$ sudo patronictl -c /etc/patroni/patroni.yml list

+ Cluster: stampede1 (7011110722654005156) -----------+

5.1.5 Testing the Patroni PostgreSQL Cluster

128 of 165 Percona LLC, © 2023

As we see, node3 remains the leader and the rest are replicas.

Scenario 2. Abrupt machine shutdown or power outage

To emulate the power outage, let’s kill the service in node3 and see what happens in node1 and node2 .

Identify the process ID of Patroni and then kill it with a -9 switch.

Check the logs on node2 :

node2 realizes that the leader is dead, and promotes itself as the leader.

Try accessing the cluster using the HAProxy endpoint at any point in time between these operations. The

cluster is still accepting connections.

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------+---------+---------+----+-----------+

| node1 | node1 | Replica | running | 2 | 0 |

| node2 | node2 | Replica | running | 2 | 0 |

| node3 | node3 | Leader | running | 2 | |

+--------+-------+---------+---------+----+-----------+

1.

$ ps aux | grep -i patroni

postgres 10042 0.1 2.1 647132 43948 ? Ssl 12:50 0:09 /usr/bin/python3 /usr/bin/

patroni /etc/patroni/patroni.yml

$ sudo kill -9 10042

2.

$ sudo journalctl -u patroni.service -n 100 -f

Output

Sep 23 14:40:41 node02 patroni[10577]: 2021-09-23 14:40:41,656 INFO: no action. I am a secondary

(node2) and following a leader (node3)

…

Sep 23 14:41:01 node02 patroni[10577]: 2021-09-23 14:41:01,373 INFO: Got response from node1

http://node1:8008/patroni: {"state": "running", "postprimary_start_time": "2021-09-23

14:25:30.076762+00:00", "role": "replica", "server_version": 130003, "cluster_unlocked": true,

"xlog": {"received_location": 67221352, "replayed_location": 67221352, "replayed_timestamp": null,

"paused": false}, "timeline": 2, "database_system_identifier": "7011110722654005156", "patroni":

{"version": "2.1.0", "scope": "stampede1"}}

Sep 23 14:41:03 node02 patroni[10577]: 2021-09-23 14:41:03,364 WARNING: Request failed to node3:

GET http://node3:8008/patroni (HTTPConnectionPool(host='node3', port=8008): Max retries exceeded

with url: /patroni (Caused by ConnectTimeoutError(<urllib3.connection.HTTPConnection object at

0x7f57e06dffa0>, 'Connection to node3 timed out. (connect timeout=2)')))

Sep 23 14:41:03 node02 patroni[10577]: 2021-09-23 14:41:03,373 INFO: Software Watchdog activated

with 25 second timeout, timing slack 15 seconds

Sep 23 14:41:03 node02 patroni[10577]: 2021-09-23 14:41:03,385 INFO: promoted self to leader by

acquiring session lock

Sep 23 14:41:03 node02 patroni[15478]: server promoting

Sep 23 14:41:03 node02 patroni[10577]: 2021-09-23 14:41:03,397 INFO: cleared rewind state after

becoming the leader

Sep 23 14:41:04 node02 patroni[10577]: 2021-09-23 14:41:04,450 INFO: no action. I am (node2) the

leader with the lock

Sep 23 14:41:04 node02 patroni[10577]: 2021-09-23 14:41:04,475 INFO: no action. I am (node2) the

leader with the lock

…

…

3.

5.1.5 Testing the Patroni PostgreSQL Cluster

129 of 165 Percona LLC, © 2023

MANUAL SWITCHOVER

Typically, a manual switchover is needed for planned downtime to perform maintenance activity on the

leader node. Patroni provides the switchover command to manually switch over from the leader node.

Run the following command on node2 (the current leader node):

Patroni asks the name of the current primary node and then the node that should take over as the

switched-over primary. You can also specify the time at which the switchover should happen. To trigger the

process immediately, specify the value now:

Restart the Patroni service in node2 (after the “planned maintenance”). The node rejoins the cluster as a

secondary.

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

$ sudo patronictl -c /etc/patroni/patroni.yml switchover

primary [node2]: node2

Candidate ['node1', 'node3'] []: node1

When should the switchover take place (e.g. 2021-09-23T15:56) [now]: now

Current cluster topology

+ Cluster: stampede1 (7011110722654005156) -----------+

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------+---------+---------+----+-----------+

| node1 | node1 | Replica | running | 3 | 0 |

| node2 | node2 | Leader | running | 3 | |

| node3 | node3 | Replica | stopped | | unknown |

+--------+-------+---------+---------+----+-----------+

Are you sure you want to switchover cluster stampede1, demoting current primary node2? [y/

N]: y

2021-09-23 14:56:40.54009 Successfully switched over to "node1"

+ Cluster: stampede1 (7011110722654005156) -----------+

| Member | Host | Role | State | TL | Lag in MB |

+--------+-------+---------+---------+----+-----------+

| node1 | node1 | Leader | running | 3 | |

| node2 | node2 | Replica | stopped | | unknown |

| node3 | node3 | Replica | stopped | | unknown |

+--------+-------+---------+---------+----+-----------+

Last update: December 5, 2022

Created: December 1, 2021

5.1.5 Testing the Patroni PostgreSQL Cluster

130 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5.2 Backup and disaster recovery

5.2.1 Backup and disaster recovery in Percona Distribution for PostgreSQL

Overview

Architecture

Deployment

Testing

Overview

A Disaster Recovery (DR) solution ensures that a system can be quickly restored to a normal operational

state if something unexpected happens. When operating a database, you would back up the data as

frequently as possible and have a mechanism to restore that data when needed. Disaster Recovery is often

mistaken for high availability (HA), but they are two different concepts altogether:

High availability ensures guaranteed service levels at all times. This solution involves configuring one or

more standby systems to an active database, and the ability to switch seamlessly to that standby when

the primary database becomes unavailable, for example, during a power outage or a server crash. To

learn more about high-availability solutions with Percona Distribution for PostgreSQL, refer to High

Availability in PostgreSQL with Patroni.

Disaster Recovery protects the database instance against accidental or malicious data loss or data

corruption. Disaster recovery can be achieved by using either the options provided by PostgreSQL, or

external extensions.

Summary

•

•

•

•

•

•

5.2 Backup and disaster recovery

131 of 165 Percona LLC, © 2023

PostgreSQL offers multiple options for setting up database disaster recovery.

pg_dump or the pg_dumpall utilities

This is the basic backup approach. These tools can generate the backup of one or more PostgreSQL databases

(either just the structure, or both the structure and data), then restore them through the pg_restore command.

File-based backup and restore

This method involves backing up the PostgreSQL data directory to a different location, and restoring it when

needed.

PostgreSQL pg_basebackup

This backup tool is provided by PostgreSQL. It is used to back up data when the database instance is running.

pgasebackup makes a binary copy of the database cluster files, while making sure the system is put in and out of

backup mode automatically.

To achieve a production grade PostgreSQL disaster recovery solution, you need something that can take full

or incremental database backups from a running instance, and restore from those backups at any point in

time. Percona Distribution for PostgreSQL is supplied with pgBackRest: a reliable, open-source backup and

recovery solution for PostgreSQL.

This document focuses on the Disaster recovery solution in Percona Distribution for PostgreSQL. The

Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL tutorial provides

guidelines of how to set up and test this solution.

PGBACKREST

pgBackRest is an easy-to-use, open-source solution that can reliably back up even the largest of

PostgreSQL databases. pgBackRest supports the following backup types:

full backup - a complete copy of your entire data set.

differential backup - includes all data that has changed since the last full backup. While this means the

backup time is slightly higher, it enables a faster restore.

incremental backup - only backs up the files that have changed since the last full or differential backup,

resulting in a quick backup time. To restore to a point in time, however, you will need to restore each

incremental backup in the order they were taken.

PostgreSQL disaster recovery options

•

Advantages Disadvantages

Easy to use 1. Backup of only one database at a time.

2. No incremental backups.

3. No point-in-time recovery since the backup is a snapshot in time.

4. Performance degradation when the database size is large.

•

Advantages Disadvantages

Consistent snapshot of the data

directory or the whole data disk volume

1. Requires stopping PostgreSQL in order to copy the files.

This is not practical for most production setups.

2. No backup of individual databases or tables.

•

Advantages Disadvantages

1. Supports backups when the database is running.

2. Supports point-in-time recovery

1. No incremental backups.

2. No backup of individual databases or tables.

•

•

•

5.2.1 Backup and disaster recovery in Percona Distribution for PostgreSQL

132 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/app-pgdump.html
https://www.postgresql.org/docs/13/app-pg-dumpall.html
https://www.postgresql.org/docs/13/app-pgrestore.html
https://www.postgresql.org/docs/13/app-pgbasebackup.html
https://pgbackrest.org/

When it comes to restoring, pgBackRest can do a full or a delta restore. A full restore needs an empty

PostgreSQL target directory. A delta restore is intelligent enough to recognize already-existing files in the

PostgreSQL data directory, and update only the ones the backup contains.

pgBackRest supports remote repository hosting and can even use cloud-based services like AWS S3, Google

Cloud Services Cloud Storage, Azure Blob Storage for saving backup files. It supports parallel backup

through multi-core processing and compression. By default, backup integrity is verified through checksums,

and saved files can be encrypted for enhanced security.

pgBackRest can restore a database to a specific point in time in the past. This is the case where a database

is not inaccessible but perhaps contains corrupted data. Using the point-in-time recovery, a database

administrator can restore the database to the last known good state.

Finally, pgBackRest also supports restoring PostgreSQL databases to a different PostgreSQL instance or a

separate data directory.

Setup overview

This section describes the architecture of the backup and disaster recovery solution. For the configuration

steps, refer to the Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL.

SYSTEM ARCHITECTURE

As the configuration example, we will use a three server architecture where pgBackRest resides on a

dedicated remote host. The servers communicate with each other via passwordless SSH.

Passwordless SSH may not be an ideal solution for your environment. In this case, consider using other methods,

for example, TLS with client certificates.

The following diagram illustrates the architecture layout:

Important

5.2.1 Backup and disaster recovery in Percona Distribution for PostgreSQL

133 of 165 Percona LLC, © 2023

https://pgbackrest.org/user-guide-rhel.html#repo-host/config

Components:

The architecture consists of three server instances:

pg-primary hosts the primary PostgreSQL server. Note that “primary” here means the main database

instance and does not refer to the primary node of a PostgreSQL replication cluster or a HA setup.

pg-repo is the remote backup repository and hosts pgBackRest . It’s important to host the backup

repository on a physically separate instance, to be accessed when the target goes down.

pg-secondary is the secondary PostgreSQL node. Don’t confuse it with a hot standby. “Secondary” in this

context means a PostgreSQL instance that’s idle. We will restore the database backup to this instance

when the primary PostgreSQL instance goes down.

For simplicity, we use a single-node PostgreSQL instance as the primary database server. In a production

scenario, you will use some form of high-availability solution to protect the primary instance. When you are using

a high-availability setup, we recommend configuring pgBackRest to back up the hot standby server so the

primary node is not unnecessarily loaded.

DEPLOYMENT

Refer to the Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL tutorial.

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

•

•

•

Note

Last update: April 26, 2022

Created: January 21, 2022

5.2.1 Backup and disaster recovery in Percona Distribution for PostgreSQL

134 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

This document provides instructions of how to set up and test the backup and disaster recovery solution in

Percona Distribution for PostgreSQL with pgBackRest . For technical overview and architecture description of

this solution, refer to Backup and disaster recovery in Percona Distribution for PostgreSQL.

Deployment

As the example configuration, we will use the nodes with the following IP addresses:

SET UP HOSTNAMES

In our architecture, the pgBackRest repository is located on a remote host. To allow communication among

the nodes, passwordless SSH is required. To achieve this, properly setting up hostnames in the /etc/hosts

files is very important.

Define the hostname for every server in the /etc/hostname file. The following are the examples of how

the /etc/hostname file in three nodes looks like:

For the nodes to communicate seamlessly across the network, resolve their hostnames to their IP addresses in

the /etc/hosts file. (Alternatively, you can make appropriate entries in your internal DNS servers)

The /etc/hosts file for the pg-primary node looks like this:

The /etc/hosts file in the pg-repo node looks like this:

Node name Internal IP address

pg-primary 10.104.0.3

pg-repo 10.104.0.5

pg-secondary 10.104.0.4

1.

cat /etc/hostname

pg-primary

cat /etc/hostname

pg-repo

cat /etc/hostname

pg-secondary

2.

```

127.0.1.1 pg-primary pg-primary

127.0.0.1 localhost

10.104.0.5 pg-repo

```

```

127.0.1.1 pg-repo pg-repo

127.0.0.1 localhost

10.104.0.3 pg-primary

10.104.0.4 pg-secondary

```

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

135 of 165 Percona LLC, © 2023

The /etc/hosts file in the pg-secondary node is shown below:

```

127.0.1.1 pg-secondary pg-secondary

127.0.0.1 localhost

10.104.0.3 pg-primary

10.104.0.5 pg-repo

```

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

136 of 165 Percona LLC, © 2023

SET UP PASSWORDLESS SSH

Before setting up passwordless SSH, ensure that the postgres user in all three instances has a password.

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

137 of 165 Percona LLC, © 2023

To set or change the password, run the following command as a root user:

Type the new password and confirm it.

After setting up the password, edit the /etc/ssh/sshd_config file and ensure the PasswordAuthentication

variable is set as yes .

In the pg-repo node, restart the sshd service. Without the restart, the SSH server will not allow you to connect

to it using a password while adding the keys.

In the pg-primary node, generate an SSH key pair and add the public key to the pg-repo node.

Run the commands as the postgres user.

Generate SSH keys:

Copy the public key to the pg-repo node:

To verify everything has worked as expected, run the following command from the pg-primary node.

You should be able to connect to the pg-repo terminal without a password.

1.

$ passwd postgres

2.

3.

PasswordAuthentication yes

4.

$ sudo service sshd restart

5.

Important

•

$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa

Your public key has been saved in /root/.ssh/id_rsa.pub

The key fingerprint is:

...

•

$ ssh-copy-id -i ~/.ssh/id_rsa.pub postgres@pg-repo

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/root/.ssh/id_rsa.pub"

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that

are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is

to install the new keys

postgres@pg-repo's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'postgres@pg-repo'"

and check to make sure that only the key(s) you wanted were added.

6.

$ ssh postgres@pg-repo

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

138 of 165 Percona LLC, © 2023

Repeat the SSH connection from pg-repo to pg-primary to ensure that passwordless SSH is working.

Set up bidirectional passwordless SSH between pg-repo and pg-secondary using the same method. This will

allow pg-repo to recover the backups to pg-secondary .

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL

Install Percona Distribution for PostgreSQL in the primary and the secondary nodes from Percona repository.

Install percona-release .

Enable the repository:

Install Percona Distribution for PostgreSQL packages

CONFIGURE POSTGRESQL ON THE PRIMARY NODE FOR CONTINUOUS BACKUP

At this step, configure the PostgreSQL instance on the pg-primary node for continuous archiving of the WAL

files.

On Debian and Ubuntu, the path to the configuration file is /etc/postgresql/13/main/postgresql.conf .

On RHEL and CentOS, the path to the configuration file is /var/lib/pgsql/13/data/ .

Edit the postgresql.conf configuration file to include the following changes:

Once the changes are saved, restart PostgreSQL.

INSTALL PGBACKREST

Install pgBackRest in all three instances from Percona repository. Use the following command:

7.

8.

1.

2.

$ sudo percona-release setup ppg13

3.

On Debian and Ubuntu On RedHat Enterprise Linux and derivatives

$ sudo apt install percona-postgresql-13 -y

$ sudo yum install percona-postgresql13-server

Note

1.

archive_command = 'pgbackrest --stanza=prod_backup archive-push %p'

archive_mode = on

listen_addresses = '*'

log_line_prefix = ''

max_wal_senders = 3

wal_level = replica

2.

$ sudo systemctl restart postgresql

On Debian / Ubuntu On RHEL / CentOS

$ sudo apt-get install percona-pgbackrest

$ sudo yum install percona-pgbackrest

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

139 of 165 Percona LLC, © 2023

https://www.percona.com/doc/percona-repo-config/installing.html
https://www.percona.com/doc/percona-repo-config/installing.html

CREATE THE PGBACKREST CONFIGURATION FILE

Run the following commands on all three nodes to set up the required configuration file for pgBackRest .

Configure a location and permissions for the pgBackRest log rotation:

Configure the location and permissions for the pgBackRest configuration file:

UPDATE PGBACKREST CONFIGURATION FILE IN THE PRIMARY NODE

Configure pgBackRest on the pg-primary node by setting up a stanza. A stanza is a set of configuration

parameters that tells pgBackRest where to backup its files. Edit the /etc/pgbackrest/pgbackrest.conf file in

the pg-primary node to include the following lines:

You can see the pg1-path attribute for the prod_backup stanza has been set to the PostgreSQL data folder.

UPDATE PGBACKREST CONFIGURATION FILE IN THE REMOTE BACKUP REPOSITORY NODE

Add a stanza for the pgBackRest in the pg-repo node. Edit the /etc/pgbackrest/pgbackrest.conf configuration

file to include the following lines:

1.

$ sudo mkdir -p -m 770 /var/log/pgbackrest

$ sudo chown postgres:postgres /var/log/pgbackrest

2.

$ sudo mkdir -p /etc/pgbackrest

$ sudo mkdir -p /etc/pgbackrest/conf.d

$ sudo touch /etc/pgbackrest/pgbackrest.conf

$ sudo chmod 640 /etc/pgbackrest/pgbackrest.conf

$ sudo chown postgres:postgres /etc/pgbackrest/pgbackrest.conf

$ sudo mkdir -p /home/pgbackrest

$ sudo chmod postgres:postgres /home/pgbackrest

[global]

repo1-host=pg-repo

repo1-host-user=postgres

process-max=2

log-level-console=info

log-level-file=debug

[prod_backup]

pg1-path=/var/lib/postgresql/13/main

[global]

repo1-path=/home/pgbackrest/pg_backup

repo1-retention-full=2

process-max=2

log-level-console=info

log-level-file=debug

start-fast=y

stop-auto=y

[prod_backup]

pg1-path=/var/lib/postgresql/13/main

pg1-host=pg-primary

pg1-host-user=postgres

pg1-port = 5432

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

140 of 165 Percona LLC, © 2023

INITIALIZE PGBACKREST STANZA IN THE REMOTE BACKUP REPOSITORY NODE

After the configuration files are set up, it’s now time to initialize the pgBackRest stanza. Run the following

command in the remote backup repository node (pg-repo).

Once the stanza is created successfully, you can try out the different use cases for disaster recovery.

Testing Backup and Restore with pgBackRest

This section covers a few use cases where pgBackRest can back up and restore databases either in the

same instance or a different node.

USE CASE 1: CREATE A BACKUP WITH PGBACKREST

To start our testing, let’s create a table in the postgres database in the pg-primary node and add some data.

Take a full backup of the database instance. Run the following commands from the pg-repo node:

If you want an incremental backup, you can omit the type attribute. By default, pgBackRest always takes an

incremental backup except the first backup of the cluster which is always a full backup.

If you need a differential backup, use diff for the type field:

$ sudo -u postgres pgbackrest --stanza=prod_backup stanza-create

2021-11-07 11:08:18.157 P00 INFO: stanza-create command begin 2.36: --exec-

id=155883-2277a3e7 --log-level-console=info --log-level-file=off --pg1-host=pg-primary --

pg1-host-user=postgres --pg1-path=/var/lib/postgresql/13/main --pg1-port=5432 --repo1-path=/

home/pgbackrest/pg_backup --stanza=prod_backup

2021-11-07 11:08:19.453 P00 INFO: stanza-create for stanza 'prod_backup' on repo1

2021-11-07 11:08:19.566 P00 INFO: stanza-create command end: completed successfully

(1412ms)

1.

CREATE TABLE CUSTOMER (id integer, name text);

INSERT INTO CUSTOMER VALUES (1,'john');

INSERT INTO CUSTOMER VALUES (2,'martha');

INSERT INTO CUSTOMER VALUES (3,'mary');

2.

$ pgbackrest -u postgres --stanza=prod_backup backup --type=full

$ pgbackrest -u postgres --stanza=prod_backup backup --type=diff

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

141 of 165 Percona LLC, © 2023

USE CASE 2: RESTORE A POSTGRESQL INSTANCE FROM A FULL BACKUP

For testing purposes, let’s “damage” the PostgreSQL instance.

Run the following command in the pg-primary node to delete the main data directory.

To restore the backup, run the following commands.

Stop the postgresql instance

Restore the backup:

Start the postgresql instance

After the command executes successfully, you can access PostgreSQL from the psql command line tool and

check if the table and data rows have been restored.

USE CASE 3: POINT-IN-TIME RECOVERY

If your target PostgreSQL instance has an already existing data directory, the full restore option will fail. You

will get an error message stating there are existing data files. In this case, you can use the --delta option to

restore only the corrupted files.

For example, let’s say one of your developers mistakenly deleted a few rows from a table. You can use

pgBackRest to revert your database to a previous point in time to recover the lost rows.

1.

$ rm -rf /var/lib/postgresql/13/main/*

2.

•

$ sudo systemctl stop postgresql

•

$ pgbackrest -u postgres --stanza=prod_backup restore

•

$ sudo systemctl start postgresql

3.

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

142 of 165 Percona LLC, © 2023

To test this use case, do the following:

Take a timestamp when the database is stable and error-free. Run the following command from the

psql prompt.

Note down the above timestamp since we will use this time in the restore command. Note that in a real life

scenario, finding the correct point in time when the database was error-free may require extensive

investigation. It is also important to note that all changes after the selected point will be lost after the roll back.

Delete one of the customer records added before.

To recover the data, run a command with the noted timestamp as an argument. Run the commands below to

recover the database up to that time.

Stop the postgresql instance

Restore the backup

Start the postgresql instance

Check the database table to see if the record has been restored.

USE CASE 4: RESTORING TO A SEPARATE POSTGRESQL INSTANCE

Sometimes a PostgreSQL server may encounter hardware issues and become completely inaccessible. In

such cases, we will need to recover the database to a separate instance where pgBackRest is not initially

configured. To restore the instance to a separate host, you have to first install both PostgreSQL and

pgBackRest in this host.

In our test setup, we already have PostgreSQL and pgBackRest installed in the third node, pg-secondary .

Change the pgBackRest configuration file in the pg-secondary node as shown below.

1.

SELECT CURRENT_TIMESTAMP;

 current_timestamp

 2021-11-07 11:55:47.952405+00

(1 row)

2.

DELETE FROM CUSTOMER WHERE ID=3;

3.

•

$ sudo systemctl stop postgresql

•

$ pgbackrest -u postgres --stanza=prod_backup --delta \

--type=time "--target= 2021-11-07 11:55:47.952405+00" \

--target-action=promote restore

•

$ sudo systemctl start postgresql

4.

SELECT * FROM customer;

 id | name

----+--------

 1 | john

 2 | martha

 3 | mary

(3 rows)

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

143 of 165 Percona LLC, © 2023

There should be bidirectional passwordless SSH communication between pg-repo and pg-secondary . Refer

to the Set up passwordless SSH section for the steps, if you haven’t configured it.

Stop the PostgreSQL instance

Restore the database backup from pg-repo to pg-secondary .

After the restore completes successfully, restart PostgreSQL:

Check the database contents from the local psql shell.

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

[global]

repo1-host=pg-repo

repo1-host-user=postgres

process-max=2

log-level-console=info

log-level-file=debug

[prod_backup]

pg1-path=/var/lib/postgresql/13/main

$ sudo systemctl stop postgresql

$ pgbackrest -u postgres --stanza=prod_backup --delta restore

2021-11-07 13:34:08.897 P00 INFO: restore command begin 2.36: --delta --exec-id=109728-

d81c7b0b --log-level-console=info --log-level-file=debug --pg1-path=/var/lib/postgresql/13/

main --process-max=2 --repo1-host=pg-repo --repo1-host-user=postgres --stanza=prod_backup

2021-11-07 13:34:09.784 P00 INFO: repo1: restore backup set

20211107-111534F_20211107-131807I, recovery will start at 2021-11-07 13:18:07

2021-11-07 13:34:09.786 P00 INFO: remove invalid files/links/paths from '/var/lib/

postgresql/13/main'

2021-11-07 13:34:11.803 P00 INFO: write updated /var/lib/postgresql/13/main/

postgresql.auto.conf

2021-11-07 13:34:11.819 P00 INFO: restore global/pg_control (performed last to ensure

aborted restores cannot be started)

2021-11-07 13:34:11.819 P00 INFO: restore size = 23.2MB, file total = 937

2021-11-07 13:34:11.820 P00 INFO: restore command end: completed successfully (2924ms)

$ sudo systemctl start postgresql

SELECT * FROM customer;

 id | name

----+--------

 1 | john

 2 | martha

 3 | mary

(3 rows)

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

144 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: December 5, 2022

Created: January 21, 2022

5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL

145 of 165 Percona LLC, © 2023

5.3 Spatial data handling

5.3.1 Spatial data manipulation

Organizations dealing with spatial data need to store it somewhere and manipulate it. PostGIS is the open-

source extension for PostgreSQL that allows doing just that. It adds support for storing the spatial data types

such as:

Geographical data like points, lines, polygons, GPS coordinates that can be mapped on a sphere.

Geometrical data. This is also points, lines and polygons but they apply to a 2D surface.

To operate with spatial data inside SQL queries, PostGIS supports spatial functions like distance, area, union,

intersection. It uses the spatial indexes like R-Tree and Quadtree for efficient processing of database

operations. Read more about supported spatial functions and indexes in PostGIS documentation.

By deploying PostGIS with Percona Distribution for PostgreSQL, you receive the open source spatial database

that you can use in various areas without vendor lock-in.

When to use PostGIS

You can use PostGIS in the following cases:

To store and manage spatial data, create and store spatial shapes, calculate areas and distances

To build the software that visualizes spatial data on a map,

To work with raster data, such as satellite imagery or digital elevation models.

To integrate spatial and non-spatial data such as demographic or economic data in a database

When not to use PostGIS

Despite its power and flexibility, PostGIS may not suit your needs if:

You need to store only a couple of map locations. Consider using the built-in geometric functions and

operations of PostgreSQL

You need real-time data analysis. While PostGIS can handle real-time spatial data, it may not be the best

option for real-time data analysis on large volumes of data.

You need complex 3D analysis or visualization.

You need to acquire spatial data. Use other tools for this purpose and import spatial data into PostGIS to

manipulate it.

Next steps:

Deployment

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Version added: 13.11

•

•

•

•

•

•

•

•

•

•

5.3 Spatial data handling

146 of 165 Percona LLC, © 2023

https://postgis.net/
https://postgis.net/docs/reference.html#SRS_Functions
https://en.wikipedia.org/wiki/R-tree
https://en.wikipedia.org/wiki/Quadtree
https://postgis.net/workshops/postgis-intro/introduction.html
https://www.postgresql.org/docs/current/functions-geometry.html
https://www.postgresql.org/docs/current/functions-geometry.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: June 30, 2023

Created: June 29, 2023

5.3.1 Spatial data manipulation

147 of 165 Percona LLC, © 2023

5.3.2 Deploy spatial data with PostgreSQL

The following document provides guidelines how to install PostGIS and how to run the basic queries.

Considerations

We assume that you have the basic knowledge of spatial data, GIS (Geographical Information System) and of

shapefiles.

For uploading the spatial data and querying the database, we use the same data set as is used in PostGIS

tutorial.

1.

2.

5.3.2 Deploy spatial data with PostgreSQL

148 of 165 Percona LLC, © 2023

https://s3.amazonaws.com/s3.cleverelephant.ca/postgis-workshop-2020.zip
http://postgis.net/workshops/postgis-intro/
http://postgis.net/workshops/postgis-intro/

Install PostGIS

Enable Percona repository

As other components of Percona Distribution for PostgreSQL, PostGIS is available from Percona repositories.

Use the percona-release repository management tool to enable the repository.

Install PostGIS packages

The command in the previous step installs the set of PostGIS extensions. To check what extensions are

available, run the following query from the psql terminal:

To enable the postgis_sfcgal-3 extension on Ubuntu 18.04, you need to manually install the required dependency:

Check the Platform specific notes and enable required repositories and modules for the dependencies

relevant to your operating system.

Enable Percona repository

As other components of Percona Distribution for PostgreSQL, PostGIS is available from Percona repositories.

Use the percona-release repository management tool to enable the repository.

Install the extension

This installs the set of PostGIS extensions. To check what extensions are available, run the following query

from the psql terminal:

On Debian and Ubuntu On RHEL and derivatives

1.

$ sudo percona-release setup ppg13

2.

$ sudo apt install percona-postgis

3.

SELECT name, default_version,installed_version

FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE address%';

Note

$ sudo apt-get install libsfcgal1

1.

2.

$ sudo percona-release setup ppg13

3.

$ sudo yum install percona-postgis33_13 percona-postgis33_13-client

SELECT name, default_version,installed_version

FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address%';

5.3.2 Deploy spatial data with PostgreSQL

149 of 165 Percona LLC, © 2023

https://docs.percona.com/percona-software-repositories/installing.html
https://docs.percona.com/percona-software-repositories/installing.html
https://docs.percona.com/percona-software-repositories/installing.html
https://docs.percona.com/percona-software-repositories/installing.html

Enable PostGIS extension

Create a database and a schema for this database to store your data. A schema is a container that logically

segments objects (tables, functions, views, and so on) for better management. Run the following commands

from the psql terminal:

To make PostGIS functions and operations work, you need to enable the postgis extension. Make sure you are

connected to the database you created earlier and run the following command:

Check that the extension is enabled:

The output should resemble the following:

1.

CREATE database nyc;

\c nyc;

CREATE SCHEMA gis;

2.

CREATE EXTENSION postgis;

3.

SELECT postgis_full_version();

postgis_full_version

 POSTGIS="3.3.3" [EXTENSION] PGSQL="140" GEOS="3.10.2-CAPI-1.16.0" PROJ="8.2.1"

LIBXML="2.9.13" LIBJSON="0.15" LIBPROTOBUF="1.3.3" WAGYU="0.5.0 (Internal)"

5.3.2 Deploy spatial data with PostgreSQL

150 of 165 Percona LLC, © 2023

Upload spatial data to PostgreSQL

PostGIS provides the shp2pgsql command line utility that converts the binary data from shapefiles into the

series of SQL commands and loads them into the database.

For testing purposes, download the sample data set:

Unzip the archive and from the folder where the .shp files are located, execute the following command and

replace the dbname value with the name of your database:

The command does the following:

-D flag instructs the command to generate the dump format

-I flag instructs to create the spatial index on the table upon the data load

-s indicates the spatial reference identifier of the data. The data we load is in the Projected coordinate

system for North America and has the value 26918.

nyc_streets.shp is the source shapefile

nyc_streets is the table name to create in the database

dbname=nyc is the database name

Check the uploaded data

Repeat the command to upload other shapefiles in the data set: nyc_census_blocks , nyc_neighborhoods ,

nyc_subway_stations

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

1.

$ curl -LO https://s3.amazonaws.com/s3.cleverelephant.ca/postgis-workshop-2020.zip

2.

shp2pgsql \

 -D \

 -I \

 -s 26918 \

 nyc_streets.shp \

 nyc_streets \

 | psql -U postgres dbname=nyc

•

•

•

•

•

•

3.

\d nyc_streets;

 Table "public.nyc_streets"

 Column | Type | Collation | Nullable | Default

--------+---------------------------------+-----------+----------

+--

 gid | integer | | not null |

nextval('nyc_streets_gid_seq'::regclass)

 id | double precision | | |

 name | character varying(200) | | |

 oneway | character varying(10) | | |

 type | character varying(50) | | |

 geom | geometry(MultiLineString,26918) | | |

Indexes:

 "nyc_streets_pkey" PRIMARY KEY, btree (gid)

 "nyc_streets_geom_idx" gist (geom)

1.

5.3.2 Deploy spatial data with PostgreSQL

151 of 165 Percona LLC, © 2023

https://en.wikipedia.org/wiki/Spatial_reference_system
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: December 6, 2023

Created: June 29, 2023

5.3.2 Deploy spatial data with PostgreSQL

152 of 165 Percona LLC, © 2023

5.3.3 Query spatial data

After you installed and configured PostGIS and loaded the spatial data to PostgreSQL, let’s find answers to

the following questions by querying the database:

What is the population of the New York City?

Output:

What is the area of Central Park?

To get the answer we will use the ST_Area function that returns the areas of polygons.

Output:

By default, the output is given in square meters. To get the value in square kilometers, divide it by 1 000 000.

How long is Columbus Circle?

Output:

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

SELECT Sum(popn_total) AS population

 FROM nyc_census_blocks;

population

 8175032

(1 row)

SELECT ST_Area(geom) / 1000000

 FROM nyc_neighborhoods

 WHERE name = 'Central Park';

 st_area

 3.5198365965413293

(1 row)

SELECT ST_Length(geom)

 FROM nyc_streets

 WHERE name = 'Columbus Cir';

 st_length

 308.3419936909855

(1 row)

5.3.3 Query spatial data

153 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

Last update: July 3, 2023

Created: June 29, 2023

5.3.3 Query spatial data

154 of 165 Percona LLC, © 2023

5.3.4 Spatial database upgrade

When using PostgreSQL and PostGIS for some time, you may eventually come to the decision to upgrade

your spatial database. There can be different reasons for that: to receive improvements and/or bug fixes

that come with a minor version of the database/extension, reaching the end of life of the currently used

software and others.

The spatial database upgrade consists of two steps:

upgrade of PostgreSQL, and

upgrade of the PostGIS extension.

Before the upgrade, backup your data.

Upgrade PostGIS

Each version of PostGIS is compatible with several versions of PostgreSQL and vise versa. The best practice is

to first upgrade the PostGIS extension on the source cluster to match the compatible version on the target

cluster and then upgrade PostgreSQL. Please see the PostGIS Support matrix for version compatibility.

PostGIS is enabled on the database level. This means that the upgrade is also done on the database level.

Upgrade PostgreSQL

Upgrade PostgreSQL either to the latest minor or to the major version.

If you are using long deprecated views and functions and / or need the expertise in upgrading your spatial

database, contact Percona Managed Services for an individual upgrade scenario development.

•

•

Important

Connect to the database where it is enabled and run the PostGIS_Extensions_Upgrade() function:

Repeat these steps to upgrade PostGIS on every database where it is enabled.

Connect to the database with the enabled extension and run the following commands:

Starting with version 3, vector and raster functionalities have been separated in two individual extensions.

Thus, to upgrade those, you need to run the postgis_extensions_upgrade(); twice.

TIP: If you don’t need the raster functionality, you can drop the postgis_raster extension after the upgrade.

Repeat these steps to upgrade PostGIS on every database where it is enabled.

PostGIS 3 and above PostGIS 2.5

SELECT postgis_extensions_upgrade();

ALTER EXTENSION postgis UPDATE;

SELECT postgis_extensions_upgrade();

SELECT postgis_extensions_upgrade();

5.3.4 Spatial database upgrade

155 of 165 Percona LLC, © 2023

https://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS#PostGISSupportMatrix
https://postgis.net/docs/PostGIS_Extensions_Upgrade.html
https://postgis.net/docs/PostGIS_Extensions_Upgrade.html
https://www.percona.com/services/managed-services

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 29, 2023

Created: June 29, 2023

5.3.4 Spatial database upgrade

156 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

5.4 LDAP Authentication

When a client application or a user that runs the client application connects to the database, it must identify

themselves. The process of validating the client’s identity and determining whether this client is permitted to

access the database it has requested is called authentication.

Percona Distribution for PortgreSQL supports several authentication methods, including the LDAP

authentication. The use of LDAP is to provide a central place for authentication - meaning the LDAP server

stores usernames and passwords and their resource permissions.

The LDAP authentication in Percona Distribution for PortgreSQL is implemented the same way as in upstream

PostgreSQL.

CONTACT US

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 2, 2022

Created: June 2, 2022

5.4 LDAP Authentication

157 of 165 Percona LLC, © 2023

https://www.postgresql.org/docs/13/auth-methods.html
https://www.postgresql.org/docs/13/auth-ldap.html
https://www.postgresql.org/docs/13/auth-ldap.html
https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

6. Telemetry on Percona Distribution for PostgreSQL

Percona telemetry fills in the gaps in our understanding of how you use Percona Distribution for PostgreSQL

to improve our products. Participation in this anonymous program is optional. You can opt-out if you prefer

to not share this information.

6.1 What information is collected

Currently, telemetry is added only to the Percona packages and Docker images. It collects only information

about the installation environment. Future releases may add additional telemetry metrics.

Be assured that access to this raw data is rigorously controlled. Percona does not collect personal data. All

data is anonymous and cannot be traced to a specific user. To learn more about our privacy practices, read

the Percona Privacy statement.

The following is an example of the collected data:

6.2 Disable telemetry

Starting with Percona Distribution for PostgreSQL 13.13, telemetry is enabled by default. If you decide not to

send usage data to Percona, you can set the PERCONA_TELEMETRY_DISABLE=1 environment variable for either

the root user or in the operating system prior to the installation process.

[{"id" : "c416c3ee-48cd-471c-9733-37c2886f8231",

"product_family" : "PRODUCT_FAMILY_POSTGRESQL",

"instanceId" : "6aef422e-56a7-4530-af9d-94cc02198343",

"createTime" : "2023-11-01T10:46:23Z",

"metrics":

[{"key" : "deployment","value" : "PACKAGE"},

{"key" : "pillar_version","value" : "13.13"},

{"key" : "OS","value" : "Oracle Linux Server 8.8"},

{"key" : "hardware_arch","value" : "x86_64 x86_64"}]}]

Add the environment variable before the install process.

Add the environment variable before the install process.

Add the environment variable when running a command in a new container.

Debian-derived distribution Red Hat-derived distribution DOCKER

$ sudo PERCONA_TELEMETRY_DISABLE=1 apt install percona-postgresql-13

$ sudo PERCONA_TELEMETRY_DISABLE=1 yum install percona-postgresql13-server

$ docker run --name container-name -e POSTGRES_PASSWORD=secret -e

PERCONA_TELEMETRY_DISABLE=1 -d percona/percona-distribution-postgresql:tag

6. Telemetry on Percona Distribution for PostgreSQL

158 of 165 Percona LLC, © 2023

https://www.percona.com/privacy-policy#h.e34c40q8sb1a

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: December 6, 2023

Created: December 6, 2023

6.2 Disable telemetry

159 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

7. Uninstalling Percona Distribution for PostgreSQL

To uninstall Percona Distribution for PostgreSQL, remove all the installed packages and data / configuration

files.

NOTE: Should you need the data files later, back up your data before uninstalling Percona Distribution for

PostgreSQL.

To uninstall Percona Distribution for PostgreSQL on platforms that use apt package manager such as

Debian or Ubuntu, complete the following steps.

Run all commands as root or via sudo.

Stop the Percona Distribution for PostgreSQL service.

Remove the percona-postgresql packages.

Remove configuration and data files.

To uninstall Percona Distribution for PostgreSQL on platforms that use yum package manager such as Red

Hat Enterprise Linux or CentOS, complete the following steps.

Run all commands as root or via sudo.

Stop the Percona Distribution for PostgreSQL service.

Remove the percona-postgresql packages

Remove configuration and data files

On Debian and Ubuntu using apt On Red Hat Enterprise Linux and CentOS using yum

1.

$ sudo systemctl stop postgresql.service

2.

$ sudo apt remove percona-postgresql-13* percona-patroni percona-pgbackrest percona-

pgbadger percona-pgbouncer

3.

$ rm -rf /etc/postgresql/13/main

1.

$ sudo systemctl stop postgresql-13

2.

$ sudo yum remove percona-postgresql13* percona-pgbadger

3.

$ rm -rf /var/lib/pgsql/13/data

7. Uninstalling Percona Distribution for PostgreSQL

160 of 165 Percona LLC, © 2023

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: December 5, 2022

Created: June 4, 2021

7. Uninstalling Percona Distribution for PostgreSQL

161 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

8. Copyright and licensing information

Percona Distribution for PostgreSQL is licensed under the PostgreSQL license and licenses of all components

included in the Distribution.

8.1 Documentation licensing

Percona Distribution for PostgreSQL documentation is (C)2016-2023 Percona LLC and/or its affiliates and is

distributed under the Creative Commons Attribution 4.0 International Public License license.

8. Copyright and licensing information

162 of 165 Percona LLC, © 2023

https://opensource.org/licenses/postgresql
https://creativecommons.org/licenses/by/4.0/

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 28, 2023

Created: June 4, 2021

8.1 Documentation licensing

163 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

9. Trademark Policy

This Trademark Policy is to ensure that users of Percona-branded products or services know that what they

receive has really been developed, approved, tested and maintained by Percona. Trademarks help to

prevent confusion in the marketplace, by distinguishing one company’s or person’s products and services

from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB, XtraBackup,

Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and logos

associated with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service,

website, or other use is not permitted without Percona’s written permission with the following three limited

exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona

fide Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”),

you may use the appropriate Percona mark when distributing a verbatim copy of that product in

accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona software

that has been modified with minor changes for the sole purpose of allowing the software to operate on an

operating system or hardware platform for which Percona has not yet released the software, provided that

those third party changes do not affect the behavior, functionality, features, design or performance of the

software. Users who acquire this Percona-branded software receive substantially exact implementations of

the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if

Percona believes that your modification is beyond the scope of the limited license granted in this Policy or

that your use of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon

revocation, you must immediately cease using the applicable Percona mark. If you do not immediately

cease using the Percona mark upon revocation, Percona may take action to protect its rights and interests

in the Percona mark. Percona does not grant any license to use any Percona mark for any other modified

versions of Percona software; such use will require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate,

modify or otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a modified

version of the Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or “Percona XYZ

Server”, even if that modification otherwise complies with the third exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as

amended from time to time. For instance, any mention of Percona trademarks should include the full

trademarked name, with proper spelling and capitalization, along with attribution of ownership to Percona

Inc. For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to

omit the word “Percona” for brevity on the second and subsequent uses, where such omission does not

cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please

contact trademarks@percona.com for assistance and we will do our very best to be helpful.

9. Trademark Policy

164 of 165 Percona LLC, © 2023

https://www.percona.com/trademark-policy
mailto:trademarks@percona.com

Contact Us

For free technical help, visit the Percona Community Forum.

To report bugs or submit feature requests, open a JIRA ticket.

For paid support and managed or consulting services , contact Percona Sales.

Last update: June 28, 2023

Created: June 28, 2023

9. Trademark Policy

165 of 165 Percona LLC, © 2023

https://forums.percona.com/c/postgresql/25?utm_campaign=Doc-20pages
https://jira.percona.com/projects/DISTPG/issues/
https://www.percona.com/services/support
https://www.percona.com/services/managed-services
https://www.percona.com/services/consulting
https://www.percona.com/about-percona/contact

	Distribution for PostgreSQL Documentation
	1. Percona Distribution for PostgreSQL 13 Documentation
	Contact Us

	2. Release notes
	2.1 Percona Distribution for PostgreSQL release notes
	Contact Us

	2.2 Percona Distribution for PostgreSQL 13.13 (2023-12-06)
	2.2.1 Release Highlights
	Contact Us

	2.3 Percona Distribution for PostgreSQL 13.12 (2023-08-30)
	2.3.1 Release Highlights
	Contact Us

	2.4 Percona Distribution for PostgreSQL 13.11 (2023-06-29)
	2.4.1 Release Highlights
	Contact Us

	2.5 Percona Distribution for PostgreSQL 13.10 Update (2023-05-22)
	Contact Us

	2.6 Percona Distribution for PostgreSQL 13.10 (2023-03-27)
	2.6.1 Release Highlights
	Contact Us

	2.7 Percona Distribution for PostgreSQL 13.9 (2022-11-24)
	Contact Us

	2.8 Percona Distribution for PostgreSQL 13.8 (2022-09-06)
	Contact Us

	2.9 Percona Distribution for PostgreSQL 13.7 (2022-06-02)
	2.9.1 Release Highlights
	Contact Us

	2.10 Percona Distribution for PostgreSQL 13.6 Second Update (2022-05-05)
	Contact Us

	2.11 Percona Distribution for PostgreSQL 13.6 Update (2022-04-14)
	Contact Us

	2.12 Percona Distribution for PostgreSQL 13.6 (2022-03-22)
	Contact Us

	2.13 Percona Distribution for PostgreSQL 13.5 Second Update (2021-12-07)
	Contact Us

	2.14 Percona Distribution for PostgreSQL 13.5 Update (2021-02-12)
	2.14.1 Bugs Fixed
	Contact Us

	2.15 Percona Distribution for PostgreSQL 13.5 (2021-11-23)
	Contact Us

	2.16 Percona Distribution for PostgreSQL 13.4 Update (2021-09-30)
	2.16.1 Bugs Fixed
	Contact Us

	2.17 Percona Distribution for PostgreSQL 13.4 (2021-09-09)
	Contact Us

	2.18 Percona Distribution for PostgreSQL 13.3 Third Update (2021-07-15)
	Contact Us

	2.19 Percona Distribution for PostgreSQL 13.3 Second Update (2021-07-01)
	Contact Us

	2.20 Percona Distribution for PostgreSQL 13.3 Update (2021-06-10)
	Contact Us

	2.21 Percona Distribution for PostgreSQL 13.3 (2021-05-20)
	Contact Us

	2.22 Percona Distribution for PostgreSQL 13.2 Fourth Update (2021-06-10)
	Contact Us

	2.23 Percona Distribution for PostgreSQL 13.2 Third Update (2021-05-10)
	Contact Us

	2.24 Percona Distribution for PostgreSQL 13.2 Second Update (2021-04-27)
	Contact Us

	2.25 Percona Distribution for PostgreSQL 13.2 Update (2021-04-12)
	Contact Us

	2.26 Percona Distribution for PostgreSQL 13.2 (2021-03-04)
	Contact Us

	2.27 Percona Distribution for PostgreSQL 13.1 (2020-12-02)
	Contact Us

	2.28 Percona Distribution for PostgreSQL 13.0 (2020-10-16)
	Contact Us

	3. Installation and Upgrade
	3.1 Install Percona Distribution for PostgreSQL
	3.1.1 Install Percona Distribution for PostgreSQL
	Contact Us

	3.1.2 Install Percona Distribution for PostgreSQL on Debian and Ubuntu
	Preconditions
	Procedure
	Configure Percona repository
	Install packages
	Start the service
	Connect to the PostgreSQL server
	Contact Us

	3.1.3 Install Percona Distribution for PostgreSQL on Red Hat Enterprise Linux and derivatives
	Platform specific notes
	For Percona Distribution for PostgreSQL packages
	For PERCONA-POSTGRESQL13-DEVEL package
	For PGPOOL2 extension
	For PostGIS

	Procedure
	Install dependencies
	Configure the repository
	Install packages
	Start the service
	Connect to the PostgreSQL server
	Contact Us

	3.1.4 Enable Percona Distribution for PostgreSQL extensions
	Contact Us

	3.1.5 Repositories overview
	Repository contents
	PERCONA-PPG-SERVER
	PERCONA-PPG-SERVER-HA
	Contact Us

	3.2 Run Percona Distribution for PostgreSQL in a Docker container
	3.2.1 Start the container
	3.2.2 Connect to Percona Distribution for PostgreSQL from an application in another Docker container
	3.2.3 Connect to Percona Distribution for PostgreSQL from the psql command line client
	3.2.4 Enable pg_stat_monitor
	Contact Us

	3.3 Migrate from PostgreSQL to Percona Distribution for PostgreSQL
	3.3.1 Migrate on the same server
	3.3.2 Migrate on a different server
	Contact Us

	3.4 Upgrading Percona Distribution for PostgreSQL from 12 to 13
	3.4.1 On Debian and Ubuntu using apt
	3.4.2 On Red Hat Enterprise Linux and derivatives using yum
	Contact Us

	3.5 Minor Upgrade of Percona Distribution for PostgreSQL
	Contact Us

	4. Extensions
	4.1 pg_stat_monitor
	4.1.1 Overview
	Views
	pg_stat_monitor view
	pg_stat_monitor_settings view (dropped)

	4.1.2 Installation
	4.1.3 Setup
	4.1.4 Usage
	4.1.5 Changing the configuration
	Contact Us

	5. Solutions
	5.1 High availability
	5.1.1 High Availability in PostgreSQL with Patroni
	Streaming replication
	Why native streaming replication is not enough

	Patroni
	Key benefits of Patroni:

	Architecture layout
	Components
	How components work together

	Next steps
	Contact Us

	5.1.2 Deploying PostgreSQL for high availability with Patroni on Debian or Ubuntu
	Considerations
	Initial setup
	Set up hostnames in the /ETC/HOSTS file
	Install the software

	Configure ETCD distributed store
	Configure NODE1
	Configure NODE2
	Configure NODE3

	Configure Patroni
	Configure HAProxy
	Next steps
	Contact Us

	5.1.3 Deploying PostgreSQL for high availability with Patroni on RHEL and derivatives
	Preconditions
	Initial setup
	Set up hostnames in the /ETC/HOSTS file
	Install the software

	Configure ETCD distributed store
	Configure NODE1
	Configure NODE2
	Configure NODE3

	Configure Patroni
	Configure HAProxy
	Next steps
	Contact Us

	5.1.4 pgBackRest setup
	Configure backup server
	Install pgBackRest
	Create the configuration file
	Create the certificate files

	Configure database servers
	Create backups
	Contact Us

	5.1.5 Testing the Patroni PostgreSQL Cluster
	Testing replication
	Testing failover
	Scenario 1. Intentionally stop the PostgreSQL on the primary node and verify access to PostgreSQL.
	Scenario 2. Abrupt machine shutdown or power outage

	Manual switchover
	Contact Us

	5.2 Backup and disaster recovery
	5.2.1 Backup and disaster recovery in Percona Distribution for PostgreSQL
	Overview
	pgBackRest

	Setup overview
	System architecture
	Components:

	Deployment
	Contact Us

	5.2.2 Deploying backup and disaster recovery solution in Percona Distribution for PostgreSQL
	Deployment
	Set up hostnames
	Set up passwordless SSH
	Install Percona Distribution for PostgreSQL
	Configure PostgreSQL on the primary node for continuous backup
	Install pgBackRest
	Create the PGBACKREST configuration file
	Update PGBACKREST configuration file in the primary node
	Update PGBACKREST configuration file in the remote backup repository node
	Initialize PGBACKREST stanza in the remote backup repository node

	Testing Backup and Restore with pgBackRest
	Use Case 1: Create a backup with PGBACKREST
	Use Case 2: Restore a PostgreSQL Instance from a full backup
	Use Case 3: Point-In-Time Recovery
	Use Case 4: Restoring to a Separate PostgreSQL Instance
	Contact Us

	5.3 Spatial data handling
	5.3.1 Spatial data manipulation
	When to use PostGIS
	When not to use PostGIS
	Next steps:
	Contact Us

	5.3.2 Deploy spatial data with PostgreSQL
	Considerations
	Install PostGIS
	Enable PostGIS extension
	Upload spatial data to PostgreSQL
	Contact Us

	5.3.3 Query spatial data
	What is the population of the New York City?
	What is the area of Central Park?
	How long is Columbus Circle?
	Contact Us

	5.3.4 Spatial database upgrade
	Upgrade PostGIS
	Upgrade PostgreSQL
	Contact Us

	5.4 LDAP Authentication
	Contact Us

	6. Telemetry on Percona Distribution for PostgreSQL
	6.1 What information is collected
	6.2 Disable telemetry
	Contact Us

	7. Uninstalling Percona Distribution for PostgreSQL
	Contact Us

	8. Copyright and licensing information
	8.1 Documentation licensing
	Contact Us

	9. Trademark Policy
	Contact Us

