
Page 1

Server for MongoDB 6.0.24-19

Documentation
6.0.24-19 (June 12, 2025)



Page 2

Table of Contents

Home

Percona Server for MongoDB Pro

Get help from Percona

Get started

Quickstart guides

1. Installation

System requirements

Virtual hardware recommendations for cloud deployments

On Debian and Ubuntu

On RHEL and derivatives

On Amazon Linux 2023

From tarballs

Build from source code

Run in Docker

Install Percona Server for MongoDB Pro

2. Connect to Percona Server for MongoDB

3. Manipulate data in Percona Server for MongoDB

4. What's next?

Features

Feature comparison with MongoDB

Storage

Percona Memory Engine

Backup

Hot Backup

$backupCursor and $backupCursorExtend aggregation stages

Authentication

Authentication overview

Enable SCRAM authentication

Set up LDAP authentication with SASL

Set up x.509 authentication and LDAP authorization

Setting up Kerberos authentication



Page 3

AWS IAM authentication

Setting up AWS IAM authentication

LDAP authorization

Set up LDAP authentication and authorization using NativeLDAP

Encryption

Data at rest encryption

Use Vault

Use KMIP

Use local keyfile

Migrate from keyfile to Vault

FIPS compliance

Auditing

Profiling rate limit

Log redaction

Additional text search algorithm - ngram

Administration

Tune parameters

Configure a systemd unit file for `mongos`

Upgrade

Upgrade from 5.0 to 6.0

Upgrade from MongoDB Community

Upgrade to Percona Server for MongoDB Pro

Minor upgrade of Percona Server for MongoDB

Uninstall Percona Server for MongoDB

Release notes

Release notes index

Percona Server for MongoDB 6.0.24-19 (2025-06-12)

Percona Server for MongoDB 6.0.21-18 (2025-04-22)

Percona Server for MongoDB 6.0.20-17 (2025-02-19)

2024 (versions 6.0.13-10 through 6.0.19-16)

Percona Server for MongoDB 6.0.19-16 (2024-11-28)

Percona Server for MongoDB 6.0.18-15 (2024-11-05)

Percona Server for MongoDB 6.0.17-14 (2024-09-18)

Percona Server for MongoDB 6.0.16-13 (2024-07-30)



Page 4

Percona Server for MongoDB 6.0.15-12 (2024-04-30)

Percona Server for MongoDB 6.0.14-11 (2024-03-26)

Percona Server for MongoDB 6.0.13-10 (2024-02-20)

2023 (versions 6.0.5-4 through 6.0.12-9)

Percona Server for MongoDB 6.0.12-9 (2023-12-14)

Percona Server for MongoDB 6.0.11-8 (2023-10-19)

Percona Server for MongoDB 6.0.9-7 (2023-09-14)

Percona Server for MongoDB 6.0.8-6 (2023-08-08)

Percona Server for MongoDB 6.0.6-5 (2023-05-25)

Percona Server for MongoDB 6.0.5-4 (2023-03-29)

2022 (versions 6.0.2-1 through 6.0.4-3)

Percona Server for MongoDB 6.0.4-3 (2023-01-30)

Percona Server for MongoDB 6.0.3-2 (2022-12-07)

Percona Server for MongoDB 6.0.2-1 (2022-10-31)

FAQ

Reference

Glossary

Telemetry and data collection

Copyright and licensing information

Trademark policy

Home

Percona Server for MongoDB Pro

Get help from Percona

Get started

Quickstart guides

1. Installation

System requirements

Virtual hardware recommendations for cloud deployments

On Debian and Ubuntu

On RHEL and derivatives

On Amazon Linux 2023

From tarballs



Page 5

Build from source code

Run in Docker

Install Percona Server for MongoDB Pro

2. Connect to Percona Server for MongoDB

3. Manipulate data in Percona Server for MongoDB

4. What's next?

Features

Feature comparison with MongoDB

Storage

Percona Memory Engine

Backup

Hot Backup

$backupCursor and $backupCursorExtend aggregation stages

Authentication

Authentication overview

Enable SCRAM authentication

Set up LDAP authentication with SASL

Set up x.509 authentication and LDAP authorization

Setting up Kerberos authentication

AWS IAM authentication

Setting up AWS IAM authentication

LDAP authorization

Set up LDAP authentication and authorization using NativeLDAP

Encryption

Data at rest encryption

Use Vault

Use KMIP

Use local keyfile

Migrate from keyfile to Vault

FIPS compliance

Auditing

Profiling rate limit

Log redaction

Additional text search algorithm - ngram



Page 6

Administration

Tune parameters

Configure a systemd unit file for `mongos`

Upgrade

Upgrade from 5.0 to 6.0

Upgrade from MongoDB Community

Upgrade to Percona Server for MongoDB Pro

Minor upgrade of Percona Server for MongoDB

Uninstall Percona Server for MongoDB

Release notes

Release notes index

Percona Server for MongoDB 6.0.24-19 (2025-06-12)

Percona Server for MongoDB 6.0.21-18 (2025-04-22)

Percona Server for MongoDB 6.0.20-17 (2025-02-19)

2024 (versions 6.0.13-10 through 6.0.19-16)

Percona Server for MongoDB 6.0.19-16 (2024-11-28)

Percona Server for MongoDB 6.0.18-15 (2024-11-05)

Percona Server for MongoDB 6.0.17-14 (2024-09-18)

Percona Server for MongoDB 6.0.16-13 (2024-07-30)

Percona Server for MongoDB 6.0.15-12 (2024-04-30)

Percona Server for MongoDB 6.0.14-11 (2024-03-26)

Percona Server for MongoDB 6.0.13-10 (2024-02-20)

2023 (versions 6.0.5-4 through 6.0.12-9)

Percona Server for MongoDB 6.0.12-9 (2023-12-14)

Percona Server for MongoDB 6.0.11-8 (2023-10-19)

Percona Server for MongoDB 6.0.9-7 (2023-09-14)

Percona Server for MongoDB 6.0.8-6 (2023-08-08)

Percona Server for MongoDB 6.0.6-5 (2023-05-25)

Percona Server for MongoDB 6.0.5-4 (2023-03-29)

2022 (versions 6.0.2-1 through 6.0.4-3)

Percona Server for MongoDB 6.0.4-3 (2023-01-30)

Percona Server for MongoDB 6.0.3-2 (2022-12-07)

Percona Server for MongoDB 6.0.2-1 (2022-10-31)



Page 7

Percona Server for MongoDB 6.0
Documentation
Percona Server for MongoDB is an enhanced, fully compatible, source available, drop-in replacement for

MongoDB 6.0 Community Edition with enterprise-grade features. To migrate to Percona Server for

MongoDB requires no changes to MongoDB applications or code.

What’s new in Percona Server for MongoDB 6.0.24-19

Changes to Chunk Management and Balancing

Several changes have been incrementally introduced within 6.0.x releases.

The name of a subset of data has changed from a chunk  to a range .

The data size has changed from 64 MB for a chunk to 128 MB for a range.

The balancer now distributes ranges based on the actual data size of collections. Formerly the balancer migrated

and balanced data across shards based strictly on the number of chunks of data that exist for a collection across

each shard. This, combined with the auto-splitter process could cause quite a heavy performance impact to heavy

write environments.

Ranges (formerly chunks) are no longer auto-split. They are split only when they move across shards for distribution

purposes. The auto-splitter process is currently still available but it serves no purpose and does nothing active to the

data. This also means that the Enable/Disable AutoSplit helpers should no longer be used.

The above changes are expected to lead to better performance overall going forward.

 Installation guides  Control database access

FAQ

Reference

Glossary

Telemetry and data collection

Copyright and licensing information

Trademark policy

Important



Page 8

Ready to try out Percona Server for

MongoDB? Get started quickly with the step-

by-step installation instructions.

Quickstart guides 

Define who has access to the database and

manage their permissions in a single place

like LDAP server, ensuring only authorized

users have access to resources and

operations.

Authentication 

 Backup and restore
Make enterprise-level backups and restores

with guaranteed data consistency using

Percona Backup for MongoDB (PBM). Or,

create physical backups on a running server

using the built-in hot backup functionality.

Get started with PBM 

 Secure access to data
Keep your sensitive data safe, ensuring

users only see the data they are authorized

to access.

Data-at-rest encryption 

Percona Server for MongoDB Pro
Percona Server for MongoDB Pro is a build of Percona Server for MongoDB that contains purpose-built

enterprise features. It is wrapped in packages created and tested by Percona and is available exclusively

for Percona customers.

Percona Server for MongoDB Pro is available starting with version 6.0.9-7.

Become a Percona Customer

Non-paying Percona software users can also benefit from Percona Pro Builds, but they’ll have to build

them from the source code provided by Percona and available to everyone.

Features
Find the list of features available in Percona Server for MongoDB Pro:

https://docs.percona.com/percona-backup-mongodb/installation.html
https://www.percona.com/about/contact


Page 9

Name Version

added

Description

FIPS support 6.0.9-7 FIPS mode provides a way to use FIPS-compliant encryption and run the

Percona Server for MongoDB with the FIPS-140 certified library for OpenSSL.

This helps customers meet minimum security requirements for cryptographic

modules and testing in both hardware and software

Binaries with

debug

symbols

6.0.21-18 By including debug symbols in the binary, Percona Server for MongoDB enables

deeper integration with monitoring agent-based solutions. These agents can

instrument the binary at runtime, providing more detailed telemetry data, such as

performance metrics, error tracking, and function-level diagnostics. This

enhanced observability allows for better monitoring of system health, faster

identification of issues, and more granular insights into how the application

performs in production environments.

Including this information empowers teams to respond proactively to

performance bottlenecks, optimize resource allocation, and improve the overall

stability of the application with real-time insights.

Ubuntu 20.04 6.0.21-18 Percona Server for MongoDB Pro remains available on Ubuntu 20.04 (Focal

Fossa) enabling customers to continue using this operating system version for

their deployments while receiving updates and support from Percona.

Benefits
Save on deploying and maintaining build infrastructure as we do the build and testing for you

Longer support for older versions of operating systems.

Install Percona Server for MongoDB Pro

Get help from Percona
Our documentation guides are packed with information, but they can’t cover everything you need to know

about Percona Server for MongoDB. They also won’t cover every scenario you might come across. Don’t

be afraid to try things out and ask questions when you get stuck.

Percona’s Community Forum
Be a part of a space where you can tap into a wealth of knowledge from other database enthusiasts and

experts who work with Percona’s software every day. While our service is entirely free, keep in mind that

response times can vary depending on the complexity of the question. You are engaging with people who

genuinely love solving database challenges.



Page 10

We recommend visiting our Community Forum. It’s an excellent place for discussions, technical insights,

and support around Percona database software. If you’re new and feeling a bit unsure, our FAQ and Guide

for New Users ease you in.

If you have thoughts, feedback, or ideas, the community team would like to hear from you at Any ideas on

how to make the forum better?. We’re always excited to connect and improve everyone’s experience.

Percona experts
Percona experts bring years of experience in tackling tough database performance issues and design

challenges.

We understand your challenges when managing complex database environments. That’s why we offer

various services to help you simplify your operations and achieve your goals.

Service Description

24/7 Expert Support Our dedicated team of database experts is available 24/7 to assist you with any

database issues. We provide flexible support plans tailored to your specific needs.

Hands-On Database

Management

Our managed services team can take over the day-to-day management of your database

infrastructure, freeing up your time to focus on other priorities.

Expert Consulting Our experienced consultants provide guidance on database topics like architecture

design, migration planning, performance optimization, and security best practices.

Comprehensive Training Our training programs help your team develop skills to manage databases effectively,

offering virtual and in-person courses.

We’re here to help you every step of the way. Whether you need a quick fix or a long-term partnership, we’re

ready to provide your expertise and support.

Get started

https://forums.percona.com/t/welcome-to-perconas-community-forum/7
https://forums.percona.com/faq
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522


Page 11

Quickstart guides
Percona Server for MongoDB is an enhanced, fully compatible, source available, drop-in replacement for

MongoDB 6.0 Community Edition with enterprise-grade features.

Find the full list of supported platforms for Percona Server for MongoDB on the Percona Software and

Platform Lifecycle page.

Install Percona Server for MongoDB Regular
You can use any of the easy-install guides. We recommend to use the package manager of your operating

system for a convenient and quick way to install the software for production use. Use Docker to try the

software first.

https://www.percona.com/services/policies/percona-software-platform-lifecycle#mongodb
https://www.percona.com/services/policies/percona-software-platform-lifecycle#mongodb


Page 12

 Package manager

Use the package manager of your operating system to install Percona Server for MongoDB:

on Debian and Ubuntu on RHEL and derivatives on Amazon Linux 2023 

We gather Telemetry data in Percona packages.

 Docker

Get our Docker image and spin up Percona Server for MongoDB for a quick evaluation.

Check the Docker guide for step-by-step guidelines.

Run in Docker 

We gather Telemetry data in Docker images.

 Kubernetes

Percona Operator for Kubernetes is a controller introduced to simplify complex deployments that require

meticulous and secure database expertise.

Check the Quickstart guides how to deploy and run Percona Server for MongoDB on Kubernetes with

Percona Operator for MongoDB.

Deploy in Kubernetes Quickstart 

 Build from source

Have a full control over the installation by building Percona Server for MongoDB from source code.

Check the guide below for step-by-step instructions.

Build from source 

 Manual download

If you need to install Percona Server for MongoDB offline or prefer a specific version of it, check out the

link below for a step-by-step guide and get access to the downloads directory.

Note that for this scenario you must make sure that all dependencies are satisfied.

Install from tarballs 

https://docs.percona.com/percona-operator-for-mongodb/quickstart.html


Page 13

Install Percona Server for MongoDB Pro
Percona Server for MongoDB Pro is available only from Percona repositories.

Install Percona Server for MongoDB Pro 

Upgrade instructions
If you are currently using MongoDB Community Edition, see Upgrading from MongoDB.

If you are running an earlier version of Percona Server for MongoDB, see Upgrading from Version 5.0.

If you wish to upgrade to Percona Server for MongoDB Pro, see Upgrade to Percona Server for MongoDB

Pro guide.

1. Installation

System requirements

x86_64
Percona Server for MongoDB requires the following minimum x86_64 microarchitectures:

For Intel x86_64, it requires one of the following:

a Sandy Bridge or later Core processor, or

a Tiger Lake or later Celeron or Pentium processor.

For AMD x86_64, it requires a Bulldozer or later processor.

mongod  and mongos  instances are supported on x86_64 platforms that must meet these minimum

microarchitecture requirements:



Page 14

Only Oracle Linux running the Red Hat Compatible Kernel (RHCK) is supported. MongoDB does not

support the Unbreakable Enterprise Kernel (UEK).

MongoDB 5.0 and above require the AVX instruction set, which is available on select Intel and AMD

processors.

ARM64
Percona Server for MongoDB requires the ARMv8.2-A or later microarchitectures. Support for ARM64

(AARch64) includes AWS Graviton2 or newer processors. 

Virtual hardware recommendations for cloud
deployments
Percona Server for MongoDB runs reliably on cloud infrastructure and is supported for all cloud providers.

This document includes virtual hardware recommendations for the most popular cloud providers.

Amazon Web Services (AWS)
Percona recommends the AWS EC2 memory-optimized instances as they best suit Percona Server for

MongoDB usage. The R7i  offers the best performance-per-dollar ratio among all memory-optimized AWS

EC2 instance types. The cost efficiency makes these instances a strong choice for organizations that

need high and cost-efficient performance. You can review the Amazon website for more details on

Amazon EC2 R5 Instances .

Instance size vCPU Memory (GiB)

r7i.xlarge 4 32

r7i.2xlarge 8 64

r7i.4xlarge 16 128

r7i.8xlarge 32 256

r7i.16xlarge 64 512

The recommendation is based on Yahoo! Cloud Serving Benchmark (YCSB) version 0.17.0 and is fully

described in the article “Which memory-optimized AWS EC2 instance type is best for MongoDB? “

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/r7i/
https://aws.amazon.com/ec2/instance-types/r7i/
https://aws.amazon.com/ec2/instance-types/r7i/
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Which-memory-optimized-AWS-EC2-instance-type-is-best-for-MongoDB/post/1615010
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Which-memory-optimized-AWS-EC2-instance-type-is-best-for-MongoDB/post/1615010
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Which-memory-optimized-AWS-EC2-instance-type-is-best-for-MongoDB/post/1615010


Page 15

Microsoft Azure
Percona recommends Virtual Machine (VM) sizes from the D-series for Percona Server for MongoDB

deployments in Microsoft Azure. Dsv5  instance family is the most cost-efficient choice. For more

information on Azure Virtual Machines, see Linux Virtual Machines pricing .

Instance size vCPU Memory (GiB)

D8s v5 8 32

D16s v5 16 64

D32s v5 32 128

D64s v5 64 256

D96s v5 96 384

The recommendation is based on Yahoo! Cloud Serving Benchmark (YCSB) version 0.17.0 and fully

described in the article “Best Virtual Machine Size for Self-Managed MongoDB on Microsoft Azure “

Google Cloud
Percona recommends c3-standard  machine families among other general-purpose GCP instances for

Percona Server for MongoDB deployment in Google Cloud Platform (GCP). For more information on

Google virtual machines, see Google Compute Products .

Instance size vCPU Memory (GiB)

c3-standard-8 8 32

c3-standard-22 16 88

c3-standard-44 32 176

c3-standard-88 64 352

The recommendation is based on Yahoo! Cloud Serving Benchmark (YCSB) version 0.17.0 and fully

described in the article “MongoDB: Best choice of instance type on GCP “

https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Best-Virtual-Machine-Size-for-Self-Managed-MongoDB-on-Microsoft/post/1606921
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Best-Virtual-Machine-Size-for-Self-Managed-MongoDB-on-Microsoft/post/1606921
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Best-Virtual-Machine-Size-for-Self-Managed-MongoDB-on-Microsoft/post/1606921
https://cloud.google.com/compute/vm-instance-pricing?hl=en
https://cloud.google.com/compute/vm-instance-pricing?hl=en
https://cloud.google.com/compute/vm-instance-pricing?hl=en
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/MongoDB-Best-choice-of-instance-type-on-GCP/post/1556443
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/MongoDB-Best-choice-of-instance-type-on-GCP/post/1556443
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/MongoDB-Best-choice-of-instance-type-on-GCP/post/1556443


Page 16

Install Percona Server for MongoDB on Debian
and Ubuntu
This document describes how to install Percona Server for MongoDB from Percona repositories on DEB-

based distributions such as Debian and Ubuntu.

We gather Telemetry data to understand the use of the software and improve our products.

Package Contains

percona-server-

mongodb

The mongosh  shell, import/export tools, other client utilities, server software,

default configuration, and init.d  scripts.

percona-server-

mongodb-server

The mongod  server, default configuration files, and init.d  scripts

percona-server-

mongodb-shell

The mongosh  shell

percona-server-

mongodb-mongos

The mongos  sharded cluster query router

percona-server-

mongodb-tools

Mongo tools for high-performance MongoDB fork from Percona

percona-server-

mongodb-dbg

Debug symbols for the server

Procedure
Before you start, check the system requirements.

Configure Percona repository

Percona provides the percona-release  configuration tool that simplifies operating repositories and

enables to install and update both Percona Server for MongoDB packages and required dependencies

smoothly.

1. Fetch percona-release  packages from Percona web:

Package contents

https://docs.percona.com/percona-software-repositories/index.html


Page 17

2. Install the downloaded package with dpkg:

After you install this package, you have the access to Percona repositories. You can check the

repository setup in the /etc/apt/sources.list.d/percona-release.list  file.

3. Enable the repository:

4. Remember to update the local cache:

Install Percona Server for MongoDB

$ wget https://repo.percona.com/apt/percona-release_latest.$(lsb_release -

sc)_all.deb

$ sudo dpkg -i percona-release_latest.$(lsb_release -sc)_all.deb

$ sudo percona-release enable psmdb-60 release

$ sudo apt update



Page 18

By default, Percona Server for MongoDB stores data files in /var/lib/mongodb/  and configuration

parameters in /etc/mongod.conf .

Run Percona Server for MongoDB
Percona Server for MongoDB is started automatically after installation unless it encounters errors during

the installation process.

Start the service

You can manually start the service using the following command:

 Install the latest version

Run the following command to install the latest version of Percona Server for MongoDB:

 Install a specific version

To install a specific version of Percona Server for MongoDB, do the following:

$ sudo apt install percona-server-mongodb

List available versions:

Sample output:

1

$ sudo apt-cache madison percona-server-mongodb

percona-server-mongodb | 6.0.24-19.jammy | http://repo.percona.com/psmdb-

60/apt jammy/main amd64 Packages

Install a specific version packages. You must specify each package with the version number. For

example, to install Percona Server for MongoDB 6.0.24-19, run the following command:

2

$ sudo apt install percona-server-mongodb=6.0.24-19.jammy percona-server-

mongodb-mongos=6.0.24-19.jammy percona-server-mongodb-shell=6.0.24-19.jammy

percona-server-mongodb-server=6.0.24-19.jammy percona-server-mongodb-

tools=6.0.24-19.jammy

$ sudo systemctl start mongod



Page 19

Confirm that the service is running

Check the service status using the following command:

Stop the service

Restart the service

Congratulations! Your Percona Server for MongoDB is up and running.

Next steps

Connect to MongoDB 

Install Percona Server for MongoDB on Red Hat
Enterprise Linux and derivatives
This document describes how to install Percona Server for MongoDB on RPM-based distributions such as

Red Hat Enterprise Linux and compatible derivatives.

We gather Telemetry data to understand the use of the software and improve our products.

$ sudo systemctl status mongod

$ sudo systemctl stop mongod

$ sudo systemctl restart mongod



Page 20

Package Contains

percona-server-

mongodb

The mongosh  shell, import/export tools, other client utilities, server software,

default configuration, and init.d  scripts.

percona-server-

mongodb-server

The mongod  server, default configuration files, and init.d  scripts

percona-server-

mongodb-shell

The mongosh  shell

percona-server-

mongodb-mongos

The mongos  sharded cluster query router

percona-server-

mongodb-tools

Mongo tools for high-performance MongoDB fork from Percona

percona-server-

mongodb-dbg

Debug symbols for the server

Procedure
Before you start, check the system requirements.

Configure Percona repository

Percona provides the percona-release  configuration tool that simplifies operating repositories and

enables to install and update both Percona Server for MongoDB packages and required dependencies

smoothly.

1. Install percona-release:

Package contents

$ sudo yum install https://repo.percona.com/yum/percona-release-

latest.noarch.rpm

https://docs.percona.com/percona-software-repositories/index.html


Page 21

2. Enable the repository:

Install Percona Server for MongoDB packages

Example output

Retrieving https://repo.percona.com/yum/percona-release-latest.noarch.rpm

Preparing... ########################################### [100%]

1:percona-release ########################################### [100%]

$ sudo percona-release enable psmdb-60 release

 Install the latest version

To install the latest version of Percona Server for MongoDB, use the following command:

 Install a specific version

To install a specific version of Percona Server for MongoDB, do the following:

$ sudo yum install percona-server-mongodb

List available versions:

Sample output:

1

$ sudo yum list percona-server-mongodb --showduplicates

Available Packages

percona-server-mongodb.x86_64 6.0.24-19.el8 psmdb-60-release-x86_64

Install a specific version packages. For example, to install Percona Server for MongoDB 6.0.24-19, run

the following command:

2

$ sudo yum install percona-server-mongodb-6.0.24-19.el8



Page 22

By default, Percona Server for MongoDB stores data files in /var/lib/mongodb/  and configuration

parameters in /etc/mongod.conf .

Run Percona Server for MongoDB

If you use SELinux in enforcing mode, you must customize your SELinux user policies to allow access to certain /sys

and /proc  files for OS-level statistics. Also, you must customize directory and port access policies if you are using

non-default locations.

Please refer to Configure SELinux section of MongoDB Documentation for policy configuration guidelines.

Start the service

Percona Server for MongoDB is not started automatically after installation. Start it manually using the

following command:

Confirm that service is running

Check the service status using the following command:

Stop the service

Stop the service using the following command:

Restart the service

Restart the service using the following command:

Run after reboot

The mongod  service is not automatically started after you reboot the system.

To make it start automatically after reboot, enable it using the systemctl utility:

Note

$ sudo systemctl start mongod

$ sudo systemctl status mongod

$ sudo systemctl stop mongod

$ sudo systemctl restart mongod

https://docs.mongodb.com/v6.0/tutorial/install-mongodb-on-red-hat/#configure-selinux


Page 23

Then start the mongod  service:

Next steps

Connect to MongoDB 

Install Percona Server for MongoDB on Amazon
Linux 2023
This guide walks you through the installation of Percona Server for MongoDB on Amazon Linux 2023.

We gather Telemetry data to understand the use of the software and improve our products.

Compatibility with Amazon Linux 2023
We build and test Percona Server for MongoDB only on the latest versions of Amazon Linux 2023.

Because of the way Amazon Linux updates their libraries, Percona Server for MongoDB works only on

specific Amazon Linux versions.

The following table shows Percona Server for MongoDB versions that are supported on specific versions

of Amazon Linux 2023:

Percona Server for MongoDB version Amazon Linux 2023 version

6.0.20-17 2023.6.x and earlier

6.0.21-18 2023.7.x

To upgrade Percona Server for MongoDB, make sure that you run a compatible version of Amazon Linux

2023. Use the update instructions  to update the operating system.

$ sudo systemctl enable mongod

$ sudo systemctl start mongod

https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html


Page 24

Package Contains

percona-server-

mongodb

The mongosh  shell, import/export tools, other client utilities, server software,

default configuration, and init.d  scripts.

percona-server-

mongodb-server

The mongod  server, default configuration files, and init.d  scripts

percona-server-

mongodb-shell

The mongosh  shell

percona-server-

mongodb-mongos

The mongos  sharded cluster query router

percona-server-

mongodb-tools

Mongo tools for high-performance MongoDB fork from Percona

percona-server-

mongodb-dbg

Debug symbols for the server

Procedure
Before you start, check the system requirements.

Configure Percona repository

Percona provides the percona-release  configuration tool that simplifies operating repositories and

enables to install and update both Percona Server for MongoDB packages and required dependencies

smoothly.

1. Install percona-release:

Package contents

$ sudo yum install https://repo.percona.com/yum/percona-release-

latest.noarch.rpm

https://docs.percona.com/percona-software-repositories/index.html


Page 25

2. Enable the repository:

Install Percona Server for MongoDB packages

Example output

Retrieving https://repo.percona.com/yum/percona-release-latest.noarch.rpm

Preparing... ########################################### [100%]

1:percona-release ########################################### [100%]

$ sudo percona-release enable psmdb-60 release

 Install the latest version

To install the latest version of Percona Server for MongoDB, use the following command:

 Install a specific version

To install a specific version of Percona Server for MongoDB, do the following:

1. List available versions:

Sample output:

2. Install a specific version packages. For example, to install Percona Server for MongoDB 6.0.24-19, run

the following command:

$ sudo yum install percona-server-mongodb

$ sudo yum list percona-server-mongodb --showduplicates

Available Packages

percona-server-mongodb.aarch64 6.0.24-19.amzn2023 psmdb-60-release-

aarch64

$ sudo yum install percona-server-mongodb-6.0.24-19.amzn2023



Page 26

By default, Percona Server for MongoDB stores data files in /var/lib/mongodb/  and configuration

parameters in /etc/mongod.conf .

Run Percona Server for MongoDB

If you use SELinux in enforcing mode, you must customize your SELinux user policies to allow access to certain /sys

and /proc  files for OS-level statistics. Also, you must customize directory and port access policies if you are using

non-default locations.

Please refer to Configure SELinux section of MongoDB Documentation for policy configuration guidelines.

Start the service

Percona Server for MongoDB is not started automatically after installation. Start it manually using the

following command:

Confirm that service is running

Check the service status using the following command:

Stop the service

Stop the service using the following command:

Restart the service

Restart the service using the following command:

Run after reboot

The mongod  service is not automatically started after you reboot the system.

To make it start automatically after reboot, enable it using the systemctl utility:

Note

$ sudo systemctl start mongod

$ sudo systemctl status mongod

$ sudo systemctl stop mongod

$ sudo systemctl restart mongod

https://docs.mongodb.com/v6.0/tutorial/install-mongodb-on-red-hat/#configure-selinux


Page 27

Then start the mongod  service:

Next steps

Connect to MongoDB 

Install Percona Server for MongoDB from binary
tarball
You can find links to the binary tarballs under the Generic Linux menu item on the Percona website

There are the following tarballs available:

percona-server-mongodb-6.0.24-19-x86_64.<operating-system>.tar.gz  is the tarball for a

supported operating system.

percona-mongodb-mongosh-2.5.0-x86_64.tar.gz  is the tarball for mongosh  shell.

Tarball types

Type Name Description

Full percona-server-mongodb-6.0.24-19-

x86_64..tar.gz

Contains binaries and libraries

Minimal percona-server-mongodb-6.0.24-19-x86_64.-

minimal.tar.gz

Contains binaries and libraries without debug

symbols

Checksum percona-server-mongodb-6.0.24-19-x86_64.-

minimal.tar.gz.sha256sum

Contains the MD5 checksum to verify the

integrity of the files after the extraction

Preconditions
Install the following dependencies required to install Percona Server for MongoDB from tarballs.

$ sudo systemctl enable mongod

$ sudo systemctl start mongod

https://www.percona.com/downloads/percona-server-mongodb-6.0/
https://www.percona.com/services/policies/percona-software-platform-lifecycle#mongodb


Page 28

Procedure
Follow these steps to install Percona Server for MongoDB from a tarball:

 RHEL and derivatives

 Ubuntu

 Debian

$ sudo yum install openldap cyrus-sasl-gssapi curl

$ sudo apt install curl libsasl2-modules-gssapi-mit

$ sudo apt curl libsasl2-modules-gssapi-mit

Fetch and the binary tarballs:1

$ wget https://www.percona.com/downloads/percona-server-mongodb-6.0/percona-

server-mongodb-6.0.24-19/binary/tarball/percona-server-mongodb-6.0.24-19-

x86_64.jammy.tar.gz\

$ wget https://www.percona.com/downloads/percona-server-mongodb-6.0/percona-

server-mongodb-6.0.24-19/binary/tarball/percona-mongodb-mongosh-2.5.0-

x86_64.tar.gz

Extract the tarballs2

$ tar -xf percona-server-mongodb-6.0.24-19-x86_64.jammy.tar.gz

$ tar -xf percona-mongodb-mongosh-2.5.0-x86_64.tar.gz

Add the location of the binaries to the PATH  variable:3

$ export PATH=~/percona-server-mongodb-6.0.24-19/bin/:~/percona-mongodb-

mongosh-2.5.0/bin/:$PATH

Create the default data directory:4

$ mkdir -p /data/db

Make sure that you have read and write permissions for the data directory and run mongod .5



Page 29

Next steps

Connect to MongoDB 

Build from source code
This document guides you though the steps how to build Percona Server for MongoDB from source code.

Available builds
Pro buildsThese builds include features that are typically demanded by large enterprises. They are

included into packages built by Percona and are available to Percona Customers. Learn how to become

a Customer.

Regular builds. These include all Percona Server for MongoDB functionality except the solutions in Pro

builds. The packages built by Percona are available to everyone.

Build options

Manually

Using the build script. You can build only Regular builds with it.

Manual build
To build Percona Server for MongoDB manually, you need the following:

A modern C++ compiler capable of compiling C++17 like GCC 8.2 or newer

Amazon AWS Software Development Kit for C++ library

Python 3.7.x and Pip modules.

The set of dependencies for your operating system. The following table lists dependencies for Ubuntu

22.04 and Red Hat Enterprise 9 and compatible derivatives:

Linux Distribution Dependencies

Debian/Ubuntu gcc g++ cmake curl libssl-dev libldap2-dev libkrb5-dev libcurl4-openssl-dev libsasl2-dev

liblz4-dev libbz2-dev libsnappy-dev zlib1g-dev libzlcore-dev liblzma-dev e2fslibs-dev

RedHat Enterprise

Linux/CentOS 9

gcc gcc-c++ cmake curl openssl-devel openldap-devel krb5-devel libcurl-devel cyrus-

sasl-devel bzip2-devel zlib-devel lz4-devel xz-devel e2fsprogs-devel

https://www.percona.com/about/contact
https://www.percona.com/about/contact


Page 30

About 13 GB of disk space for the core binaries ( mongod , mongos , and mongo ) and about 600 GB for

the install-all target.

Build steps

Install Python and Python modules

Install operating system dependencies

Make sure the python3 , python3-dev , python3-pip  Python packages are installed on your

machine. Otherwise, install them using the package manager of your operating system.

1

Clone Percona Server for MongoDB repository2

$ git clone https://github.com/percona/percona-server-mongodb.git

Switch to the Percona Server for MongoDB branch that you are building and install Python3 modules3

$ cd percona-server-mongodb && git checkout v6.0

$ python3 -m pip install --user -r etc/pip/dev-requirements.txt

Define Percona Server for MongoDB version (6.0.6 for the time of writing this document)4

$ echo '{"version": "6.0.6"}' > version.json



Page 31

Build AWS Software Development Kit for C++ library

 Debian and Ubuntu

The following command installs the dependencies for Ubuntu 22.04:

 RHEL and derivatives

The following command installs the dependencies for Oracle Linux 9:

$ sudo apt install -y gcc g++ cmake curl libssl-dev libldap2-dev libkrb5-dev

libcurl4-openssl-dev libsasl2-dev liblz4-dev libbz2-dev libsnappy-dev zlib1g-dev

libzlcore-dev liblzma-dev e2fslibs-dev

$ sudo yum -y install gcc gcc-c++ cmake curl openssl-devel openldap-devel krb5-

devel libcurl-devel cyrus-sasl-devel bzip2-devel zlib-devel lz4-devel xz-devel

e2fsprogs-devel

Clone the AWS Software Development Kit for C++ repository1

$ git clone --recurse-submodules https://github.com/aws/aws-sdk-cpp.git

Create a directory to store the AWS library2

$ mkdir -p /tmp/lib/aws

Declare an environment variable AWS_LIBS  for this directory3

$ export AWS_LIBS=/tmp/lib/aws

Percona Server for MongoDB is built with AWS SDK CPP 1.9.379 version. Switch to this version4

$ cd aws-sdk-cpp && git checkout 1.9.379

It is recommended to keep build files outside the SDK directory. Create a build directory and navigate

to it

5

$ mkdir build && cd build

Generate build files using cmake6



Page 32

Build Percona Server for MongoDB

This command builds core components of the database. Other available targets for the scons  command

are:

install-mongod

install-mongos

install-servers  (includes mongod  and mongos )

install-core  (includes mongod  and mongos )

install-devcore  (includes mongod , mongos , and jstestshell  (formerly mongo shell))

install-all

$ cmake .. -DCMAKE_BUILD_TYPE=Release '-DBUILD_ONLY=s3;transfer' -

DBUILD_SHARED_LIBS=OFF -DMINIMIZE_SIZE=ON -DCMAKE_INSTALL_PREFIX="${AWS_LIBS}"

Install the SDK7

$ make install

Change directory to percona-server-mongodb1

$ cd percona-server-mongodb

Build Percona Server for MongoDB from buildscripts/scons.py2

 Regular build

 Pro build

$ buildscripts/scons.py --disable-warnings-as-errors --release --ssl --opt=on

-j$(nproc --all) --use-sasl-client --wiredtiger --audit --inmemory --hotbackup

CPPPATH="${AWS_LIBS}/include" LIBPATH="${AWS_LIBS}/lib ${AWS_LIBS}/lib64"

install-mongod install-mongos

$ buildscripts/scons.py --disable-warnings-as-errors --release --ssl --opt=on

-j$(nproc --all) --use-sasl-client --wiredtiger --audit --inmemory --hotbackup

--full-featured CPPPATH="${AWS_LIBS}/include" LIBPATH="${AWS_LIBS}/lib 

${AWS_LIBS}/lib64" install-mongod install-mongos



Page 33

The built binaries are in the percona-server-mongodb/bin  directory.

Use the build script
To automate the build process, Percona provides the build script. With this script you can either build

binary tarballs or DEB/RPM packages to install a regular build of Percona Server for MongoDB from.

Prerequisites

To use the build script you need the following:

Docker up and running on your machine

About 200GB of disk space

Prepare the build environment

Build steps

Use the following instructions to build tarballs or packages:

Tarballs

You can build only Percona Server for MongoDB Regular tarballs with the build script. Percona Server for MongoDB Pro

tarballs are not supported.

To build tarballs, the steps are the following:

Create the folder where all build actions take place. For the steps below we use the

/tmp/psmdb/test  folder.

1

Navigate to the build folder and download the build script. Replace the <tag>  placeholder with the

required version of Percona Server for MongoDB:

2

$ wget https://raw.githubusercontent.com/percona/percona-server-mongodb/psmdb-

<tag>/percona-packaging/scripts/psmdb_builder.sh -O psmdb_builder.sh

Note



Page 34

Packages

The steps are the following:

The following command builds tarballs of Percona Server for MongoDB 6.0.12-9 on Oracle Linux 8.

Change the Docker image and the values for --branch , --psm_ver , --psm_release  flags to build

tarballs of a different version and on a different operating system.

The command does the following:

runs Docker daemon as the root user using the Oracle Linux 8 image

mounts the build directory into the container

establishes the shell session inside the container

inside the container, navigates to the build directory and runs the build script to install

dependencies

runs the build script again to build the tarball for the Percona Server for MongoDB version 6.0.12-

9

1

$ docker run -ti -u root -v /tmp/psmdb:/tmp/psmdb oraclelinux:8 sh -c '

set -o xtrace

cd /tmp/psmdb

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --install_deps=1

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --

repo=https://github.com/percona/percona-server-mongodb.git \

--branch=release-6.0.12-9 --psm_ver=6.0.12 --psm_release=9 --

mongo_tools_tag=100.7.0 --get_sources=1 --build_tarball=1

'

→

→

→

→

→

Check that tarballs are built:2

$ ls -la /tmp/psmdb/test/tarball/

Sample output

total 88292

-rw-r--r--. 1 root root 90398894 Jul  1 10:58 percona-server-mongodb-6.0.12-9-

x86_64.glibc2.17.tar.gz



Page 35

Build the source tarball. It serves as the base for source packages. It is important to build source

tarball using the oldest supported operating system, which is Oracle Linux 8.

1

$ docker run -ti -u root -v /tmp/psmdb:/tmp/psmdb oraclelinux:8 sh -c '

set -o xtrace

cd /tmp/psmdb

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --install_deps=1

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --

repo=https://github.com/percona/percona-server-mongodb.git --branch=release-

6.0.12-9 --psm_ver=6.0.12 --psm_release=9 --mongo_tools_tag=100.7.0 --

get_sources=1'

Build source packages. These packages include the source code and patches and are used to build

binary packages.

Note that to build source packages you still have to use the oldest supported operating system:

Oracle Linux 8 for RPMs and Ubuntu 22.04 (Jelly Fish) for DEB packages.

2



Page 36

 DEB

Check that source packages are created

 RPM

Check that source packages are created

$ docker run -ti -u root -v /tmp/psmdb:/tmp/psmdb ubuntu:bionic sh -c '

set -o xtrace

cd /tmp/psmdb

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --install_deps=1

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --

repo=https://github.com/percona/percona-server-mongodb.git \

--branch=release-6.0.12-9 --psm_ver=6.0.12--psm_release=9 --

mongo_tools_tag=100.7.0 --build_src_deb=1

'

$ ls -la /tmp/psmdb/test/source_deb/

Sample output

rw-r--r--. 1 root root 90398894 Jul  1 11:45 percona-server-mongodb_6.0.12.orig.tar.gz

$ docker run -ti -u root -v /tmp/psmdb:/tmp/psmdb oraclelinux:8 sh -c '

set -o xtrace

cd /tmp/psmdb

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --install_deps=1

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --

repo=https://github.com/percona/percona-server-mongodb.git \

--branch=release-6.0.12-9 --psm_ver=6.0.12--psm_release=9 --

mongo_tools_tag=100.7.0 --build_src_rpm=1

'

$ ls -la /tmp/psmdb/test/srpm/

Sample output

rw-r--r--. 1 root root 90398894 Jul  1 11:45 percona-server-mongodb-6.0.12-

9.generic.src.rpm



Page 37

Build Percona Server for MongoDB packages. Here you can use the operating system of your choice.

In the commands below, we use Oracle Linux 9 for RPMs and Ubuntu 22.04 (Jammy Jellyfish) for DEB

packages.

3



Page 38

 DEB

Check that source packages are created

 RPM

Check that source packages are created

$ docker run -ti -u root -v /tmp/psmdb:/tmp/psmdb ubuntu:jammy sh -c '

set -o xtrace

cd /tmp/psmdb

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --install_deps=1

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --

repo=https://github.com/percona/percona-server-mongodb.git \

--branch=release-6.0.12-9 --psm_ver=6.0.12 --psm_release=9 --

mongo_tools_tag=100.7.0 --build_deb=1

'

$ ls -la /tmp/psmdb/test/deb/

Sample output

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-dbg_6.0.12-

9.jammy_amd64.deb  

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-mongos-pro_6.0.12-

9.jammy_amd64.deb 

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-server_6.0.12-

9.jammy_amd64.deb 

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-tools_6.0.12-

9.jammy_amd64.deb  

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb_6.0.12-

9.jammy_amd64.deb

$ docker run -ti -u root -v /tmp/psmdb:/tmp/psmdb oraclelinux:9 sh -c '

set -o xtrace

cd /tmp/psmdb

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --install_deps=1

bash -x ./psmdb_builder.sh --builddir=/tmp/psmdb/test --

repo=https://github.com/percona/percona-server-mongodb.git \

--branch=release-6.0.12-9 --psm_ver=6.0.12 --psm_release=9 --

mongo_tools_tag=100.7.0 --build_rpm=1

'

$ ls -la /tmp/psmdb/test/rpm/



Page 39

Next steps

Connect to MongoDB 

Run Percona Server for MongoDB in a Docker
container
Docker images of Percona Server for MongoDB are hosted publicly on Docker Hub.

For more information about using Docker, see the Docker Docs.

Make sure that you are using the latest version of Docker. The ones provided via apt  and yum  may be outdated and

cause errors.

By default, Docker will pull the image from Docker Hub if it is not available locally.

We gather Telemetry data to understand the use of the software and improve our products.

To run the latest Percona Server for MongoDB 6.0 in a Docker container, run the following command as

the root user or via sudo :

Sample output

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-6.0.12-

9.el9.x86_64.rpm  

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-debugsource-6.0.12-

9.el9.x86_64.rpm 

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-mongos-6.0.12-

9.el9.x86_64.rpm    

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-mongos-debuginfo-

6.0.12-9.el9.x86_64.rpm 

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-server-6.0.12-

9.el9.x86_64.rpm    

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-server-debuginfo-

6.0.12-9.el9.x86_64.rpm 

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-tools-6.0.12-

9.el9.x86_64.rpm 

rw-r--r--. 1 root root 90398894 Jul  1 13:16 percona-server-mongodb-tools-debuginfo-

6.0.12-9.el9.x86_64.rpm

Note

$ docker run -d --name psmdb -p 27017:27017 --restart always percona/percona-

server-mongodb:<TAG>

https://hub.docker.com/r/percona/percona-server-mongodb/
https://docs.docker.com/


Page 40

The command does the following:

The docker run  command instructs the docker  daemon to run a container from an image.

The -d  option starts the container in detached mode (that is, in the background).

The --name  option assigns a custom name for the container that you can use to reference the

container within a Docker network. In this case: psmdb .

The -p  option binds the container’s port 27017  to TCP port 27017  on all host network interfaces. This

makes the container accessible externally.

The --restart  option defines the container’s restart policy. Setting it to always  ensures that the

Docker daemon will start the container on startup and restart it if the container exits.

percona/percona-server-mongodb  is the name of the image to derive the container from.

<TAG>  is the tag specifying the version you need. For example, 6.0.24-19 . Docker automatically

identifies the architecture (x86_64 or ARM64) and pulls the respective image. See the full list of tags.

Access container shell
Run the following command to start the bash session and run commands inside the container:

where <container-name>  is the name of your database container.

For example, to connect to Percona Serer for MongoDB, run:

Connecting from another Docker container
The Percona Server for MongoDB container exposes standard MongoDB port (27017), which can be used

for connection from an application running in another container.

For example, to set up a replica set for testing purposes, you have the following options:

Interconnect the mongod  nodes in containers on a default bridge  network. In this scenario, containers

communicate with each other by their IP address.

Create a user-defined network and interconnect the mongod  nodes on it. In this scenario, containers

communicate with each other by name.

Automate the container provisioning and the replica set setup via the Docker Compose tool.

$ docker exec -it <container-name>

$ mongosh

https://hub.docker.com/r/percona/percona-server-mongodb/tags
https://docs.docker.com/network/bridge/
https://docs.docker.com/compose/


Page 41

The following example demonstrates the setup on x86_64 platforms. The rs101 , rs102 , rs103  are the

container names for Percona Server for MongoDB and rs  is the replica set name.

For ARM64 architectures, change the image to percona/percona-server-mongodb:<TAG>-arm64 .



Page 42

Bridge network

When you start Docker, a default bridge  network is created and all containers are automatically attached

to it unless otherwise specified.

1. Start the containers and expose different ports

2. Check that the containers are started

Output:

3. Get the IP addresses of each container

4. Interconnect the containers and initiate the replica set. Replace rs101SERVER , rs102SERVER  and

rs103SERVER  with the IP address of each respective container.

$ docker run --rm -d --name rs101 -p 27017:27017 percona/percona-server-

mongodb:6.0 --port=27017 --replSet rs

$ docker run --rm -d --name rs102 -p 28017:28017 percona/percona-server-

mongodb:6.0 --port=28017 --replSet rs

$ docker run --rm -d --name rs103 -p 29017:29017 percona/percona-server-

mongodb:6.0 --port=29017 --replSet rs

$ docker container ls

CONTAINER ID  IMAGE                                         COMMAND

CREATED         STATUS             PORTS                     NAMES

3a4b70cd386b  percona/percona-server-mongodb:6.0  --port=27017 --re...  3

minutes ago   Up 3 minutes ago   0.0.0.0:27017->27017/tcp  rs101

c9b40a00e32b  percona/percona-server-mongodb:6.0  --port=28017 --re...  11

seconds ago  Up 11 seconds ago  0.0.0.0:28017->28017/tcp  rs102

b8aebc00309e  percona/percona-server-mongodb:6.0  --port=29017 --re...  3

seconds ago   Up 3 seconds ago   0.0.0.0:29017->29017/tcp  rs103

$ docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}

{{end}}' rs101

$ docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}

{{end}}' rs102

$ docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}

{{end}}' rs103

$ docker exec -ti rs101 mongosh --eval 'config={"_id":"rs","members":

[{"_id":0,"host":"rs101SERVER:27017"},{"_id":1,"host":"rs102SERVER:28017"},

{"_id":2,"host":"rs103SERVER:29017"}]};rs.initiate(config);'



Page 43

5. Check your setup

User-defined network

You can isolate desired containers in a user-defined network and provide DNS resolution across them so

that they communicate with each other by hostname.

1. Create the network:

2. Start the containers and connect them to your network, exposing different ports

Alternatively, you can connect the already running containers to your network:

3. Interconnect the containers and initiate the replica set.

4. Check your setup

Docker Compose

As the precondition, you need to have Docker Engine and Docker Compose on your machine. Refer to

Docker documentation for how to get Docker Compose.

1. Create a compose file and define the services in it.

$ docker exec -it rs101 mongosh --eval 'rs.status()'

$ docker network create my-network

$ docker run --rm -d --name rs101 --net my-network -p 27017:27017

percona/percona-server-mongodb:6.0 --port=27017 --replSet rs

$ docker run --rm -d --name rs102 --net my-network -p 28017:28017

percona/percona-server-mongodb:6.0 --port=28017 --replSet rs

$ docker run --rm -d --name rs103 --net my-network -p 29017:29017

percona/percona-server-mongodb:6.0 --port=29017 --replSet rs

$ docker network connect my-network rs101 rs102 rs103

$ docker exec -ti rs101 mongosh --eval 'config={"_id":"rs","members":

[{"_id":0,"host":"rs101:27017"},{"_id":1,"host":"rs102:28017"},

{"_id":2,"host":"rs103:29017"}]};rs.initiate(config);'

$ docker exec -it rs101 mongosh --eval 'rs.status()'

https://docs.docker.com/compose/install/


Page 44

docker-compose.yaml



Page 45

version: "3"

services:

rs101:

image: percona/percona-server-mongodb:6.0

container_name: rs101

hostname: rs101

ports:

- "27017:27017"

networks:

- my-network

command: "--port=27017 --replSet rs"

rs102:

image: percona/percona-server-mongodb:6.0

container_name: rs102

hostname: rs102

ports:

- "28017:28017"

networks:

- my-network

command: "--port=28017 --replSet rs"

rs103:

image: percona/percona-server-mongodb:6.0

container_name: rs103

hostname: rs103

ports:

- "29017:29017"

networks:

- my-network

command: "--port=29017 --replSet rs"

rs-init:

image: percona/percona-server-mongodb:6.0

container_name: rs-init

restart: "no"

networks:

- my-network

depends_on:

- rs101

- rs102

- rs103

command: >

mongosh --host rs101:27017 --eval 

'

config = {

"_id" : "rs",

"members" : [

{

"_id" : 0,



Page 46

Connecting with the mongosh  shell

To start another container with the mongosh  shell that connects to your Percona Server for MongoDB

container, run the following command:

Set MONGODB_SERVER , PORT , and DB_NAME  with the IP address of the psmdb  container, the port of your

MongoDB Server (default value is 27017), and the name of the database you want to connect to.

You can get the IP address by running this command:

2. Build and run the replica set with Compose

3. Check your setup

"host" : "rs101:27017"

},

{

"_id" : 1,

"host" : "rs102:28017"

},

{

"_id" : 2,

"host" : "rs103:29017"

}

]

};

rs.initiate(config);

' 

networks:

my-network:

driver: bridge

$ docker compose up -d

$ docker exec -it rs101 mongosh --eval 'rs.status()'

$ docker run -it --link psmdb --rm percona/percona-server-mongodb:6.0 mongosh

mongodb://MONGODB_SERVER:PORT/DB_NAME

$ docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}'

psmdb



Page 47

Install Pro packages of Percona Server for
MongoDB
This document provides guidelines how to install Percona Server for MongoDB Pro from Percona

repositories and from binary tarballs. Learn more about Percona Server for MongoDB Pro.

If you already run Percona Server for MongoDB and wish to upgrade to Percona Server for MongoDB Pro,

see the upgrade guide.

Get the access token to the Pro repository
As a Percona Customer, you have the access to the ServiceNow portal. To request the access token, do

the following:

1. In ServiceNow, click My Account and select Entitlements.

2. Select your entitlement.

3. If you are entitled for Pro builds, you will see the Token Management widget. Click the Get Percona

Builds Token button.

If you don’t see the widget, contact Percona Support.

4. Click Request Token button in the Request a Percona Pro Builds Token dialog window.

5. A token will be generated for you. You will also see the Customer ID. Copy both the Customer ID and

the token as you will use them to configure the Pro repository and install the software.

Install from Percona repository



Page 48

 Debian and Ubuntu

1. Install percona-release  repository management tool. Fetch percona-release  packages from

Percona web:

2. Install the downloaded package with dpkg:

3. Update the local cache

4. Enable the repository. Choose your preferable method:

5. Install Percona Server for MongoDB Pro packages:

$ wget https://repo.percona.com/apt/percona-release_latest.$(lsb_release -

sc)_all.deb

$ sudo dpkg -i percona-release_latest.$(lsb_release -sc)_all.deb

$ sudo apt update

 Command line

Run the following command and pass your credentials to the Pro repository:

 Configuration file

a. Create the /root/.percona-private-repos.config  configuration file with the following

content:

b. Enable the repository

$ sudo percona-release enable psmdb-60-pro release --user_name=<Your Customer

ID> --repo_token=<Your PRO repository token>

/root/.percona-private-repos.config

[psmdb-60-pro]

USER_NAME=<Your Customer ID>

REPO_TOKEN=<Your PRO repository token>

$ sudo percona-release enable psmdb-60-pro release



Page 49

6. Start the server

 RHEL and derivatives

1. Install percona-release  using the following command:

2. Enable the repository. Choose your preferable method:

3. Install Percona Server for MongoDB Pro packages:

$ sudo apt install -y percona-server-mongodb-pro

$ sudo systemctl start mongod

$ sudo yum install https://repo.percona.com/yum/percona-release-

latest.noarch.rpm

 Command line

Run the following command and pass your credentials to the Pro repository:

 Configuration file

a. Create the /root/.percona-private-repos.config  configuration file with the following

content:

b. Enable the repository

$ sudo percona-release enable psmdb-60-pro release --user_name=<Your Customer

ID> --repo_token=<Your PRO repository token>

/root/.percona-private-repos.config

[psmdb-60-pro]

USER_NAME=<Your Customer ID>

REPO_TOKEN=<Your PRO repository token>

$ sudo percona-release enable psmdb-60-pro release

$ sudo yum install -y percona-server-mongodb-pro



Page 50

Install from binary tarballs
Binary tarballs are available for the following operating systems:

Starting with version 6.0.13-10:

Ubuntu 22.04 (Jammy Jellyfish)

Red Hat Enterprise Linux 9

Starting with 6.0.14-11:

Red Hat Enterprise Linux 8

Preconditions

The following packages are required for the installation.

Procedure

The steps below describe the installation on Ubuntu 22.04.

1. Download the tarballs from the pro repository

4. Start the server

$ sudo systemctl start mongod

On Debian and Ubuntu

libcurl4

libsasl2-modules

libsasl2-modules-gssapi-mit

On Red hat Enterprise Linux and derivatives

libcurl

cyrus-sasl-gssapi

cyrus-sasl-plain



Page 51

2. Extract the tarballs

2. Add the location of the binaries to the PATH  variable:

3. Create the default data directory:

4. Make sure that you have read and write permissions for the data directory and run mongod .

Next steps

Connect to MongoDB 

Connect to Percona Server for MongoDB
After you have successfully installed and started Percona Server for MongoDB, let’s connect to it.

By default, access control is disabled in MongoDB. We recommend enabling it so that users must verify

their identity to be able to connect to the database. Percona Server for MongoDB supports several

authentication methods. We will use the default one, SCRAM, to configure authentication.

The steps are the following:

$ wget https://repo.percona.com/private/ID-TOKEN/psmdb-60-

pro/tarballs/percona-server-mongodb-6.0.24-19/percona-server-mongodb-pro-

6.0.24-19-x86_64.jammy.tar.gz \

$ wget https://repo.percona.com/private/ID-TOKEN/psmdb-60-

pro/tarballs/percona-mongodb-mongosh-2.5.0/percona-mongodb-mongosh-2.5.0-

x86_64.tar.gz

$ tar -xf percona-server-mongodb-6.0.24-19-x86_64.jammy.tar.gz

$ tar -xf percona-mongodb-mongosh-2.5.0-x86_64.tar.gz

$ export PATH=~/percona-server-mongodb-pro-6.0.24-19-

x86_64.jammy/bin/:~/percona-mongodb-mongosh-2.5.0/bin/:$PATH

$ mkdir -p /data/db

Connect to Percona Server for MongoDB instance without authentication:1

$ mongosh



Page 52

Sample output

Current Mongosh Log ID: 6598270a3a0c418751550ded

Connecting to:      mongodb://127.0.0.1:27017/?

directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.0.0

Using MongoDB:      6.0.24-19

Using Mongosh:      2.0.0    

For mongosh info see: https://docs.mongodb.com/mongodb-shell/    

test>

Create the administrative user in the admin  database:2

Switch to the admin  database1

> use admin

Sample output

switched to db admin

Create the user:2

> db.createUser(

{

user: "admin",

pwd: passwordPrompt(), // or cleartext password

roles: [

{ role: "userAdminAnyDatabase", db: "admin" },

{ role: "readWriteAnyDatabase", db: "admin" }

]

}

)

Shutdown the mongod  instance and exit mongosh3

> db.adminCommand( { shutdown: 1 } )

Enable authentication4



Page 53

Next steps

Run simple queries 

Manipulate data in Percona Server for
MongoDB
After you connected to Percona Server for MongoDB, let’s insert some data and operate with it.

 Command line

Start the server with authentication enabled using the following command:

 Configuration file

$ mongod --auth --port 27017 --dbpath /var/lib/mongodb --fork --syslog

Edit the configuration file1

/etc/mongod.conf

security:

authorization: enabled

Start the mongod  service2

$ systemctl start mongod

Connect to Percona Server for MongoDB and authenticate.5

$ mongosh --port 27017 --authenticationDatabase \

"admin" -u "admin" -p



Page 54

To secure the data, you may wish to use data-at-rest encryption. Note that you can only enable it on an empty database.

Otherwise you must clean up the data directory first.

See the following documentation for data-at-rest encryption:

Using HashiCorp Vault server

Using KMIP server

Using a local keyfile

Insert data

Note

For example, let’s add an item to the fruits  collection. Use the insertOne()  command for this

purpose:

If there is no fruits  collection in the database, it will be created during the command execution.

1

> db.fruits.insertOne(

{item: "apple", qty: 50}

)

Sample output

{

acknowledged: true,

insertedId: ObjectId('659c2b846252bfad93fc1578')

}

Now, let’s add more fruits to the fruits  collection using the insertMany()  command:2

> db.fruits.insertMany([

{item: "banana", weight: "kg", qty: 10 },

{item: "peach", weight: "kg", qty: 30}

])



Page 55

See Insert documents for more information about data insertion.

Query data
Run the following command to query data in MongoDB:

Refer to the Query documents documentation to for more information about reading data.

Update data
Let’s update the apples  entry by adding weight to it.

Sample output

{

acknowledged: true,

insertedIds: {

'0': ObjectId('659c2bc46252bfad93fc1579'),

'1': ObjectId('659c2bc46252bfad93fc157a')

}

}

> db.fruits.find()

Sample output

[

{ _id: ObjectId('659c2b846252bfad93fc1578'), item: 'apple', qty: 50 },

{

_id: ObjectId('659c2bc46252bfad93fc1579'),

item: 'banana',

weight: 'kg',

qty: 10

},

{

_id: ObjectId('659c2bc46252bfad93fc157a'),

item: 'peach',

weight: 'kg',

qty: 30

}

]

Use the updateOne()  command for that:1

https://www.mongodb.com/docs/manual/tutorial/insert-documents/
https://www.mongodb.com/docs/manual/tutorial/query-documents/


Page 56

See Update methods documentation for other available data update methods

Delete data
Run the following command to delete all documents where the quantity is less than 30 kg:

> db.fruits.updateOne(

{"item": "apple" },

{$set: {"weight": "kg"}}

)

Sample output

{

acknowledged: true,

insertedId: null,

matchedCount: 1,

modifiedCount: 1,

upsertedCount: 0

}

Query the collection to check the updated document:2

> db.fruits.find({item: "apple"})

Sample output

[

{

_id: ObjectId('659c2b846252bfad93fc1578'),

item: 'apple',

qty: 50,

weight: 'kg'

}

]

> db.fruits.deleteMany(

{"qty": {$lt: 30} }

)

https://www.mongodb.com/docs/manual/reference/update-methods/


Page 57

Learn more about deleting data in Delete methods documentation.

Congratulations! You have used basic create, read, update and delete (CRUD) operations to manipulate

data in Percona Server for MongoDB. See MongoDB CRUD Concepts manual to learn more about CRUD

operations.

Next steps

What’s next? 

What’s next?
Congratulations on completing your first hands-on experience with Percona Server for MongoDB.

To deepen your knowledge in working with the database, see the MongoDB documentation on

aggregation, indexes, data modelling, transactions.

The following sections help you achieve your organization’s goals on:

High availability
Multiple copies of the data on different servers provide redundancy and high availability. MongoDB replica

sets serve this purpose. Replica sets also increase data availability and provide fault tolerance against the

loss of a database instance.

Replica set deployment 

Scalability
Ensure your database handles the load as your data set grows without performance degradation. The

sharding method in MongoDB is the distribution of data across multiple servers where each server

handles a subset of data. This is the horizontal scaling mechanism where you can add additional servers

if needed for a lower overall cost than upgrading existing hardware. The tradeoff is additional complexity

in the infrastructure management.

Deploy a sharded cluster 

Sample output

{ acknowledged: true, deletedCount: 1 }

https://www.mongodb.com/docs/manual/reference/delete-methods/
https://www.mongodb.com/docs/manual/core/crud/
https://www.mongodb.com/docs/manual/aggregation/
https://www.mongodb.com/docs/manual/indexes/
https://www.mongodb.com/docs/manual/data-modeling/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/current/replication/
https://www.mongodb.com/docs/current/replication/
https://www.mongodb.com/docs/current/administration/replica-set-deployment/
https://www.mongodb.com/docs/current/sharding/
https://www.mongodb.com/docs/current/tutorial/deploy-shard-cluster/


Page 58

Encryption
Protecting your data from unauthorized access is crucial. Introducing data-at-rest encryption helps protect

sensitive information when it is stored on storage devices, such as hard drives, solid-state drives, or other

types of persistent storage. Percona Server for MongoDB is integrated with several external key

managers.

Data-at-rest encryption 

Backup and restore
Protect your database against data loss by implementing a backup strategy. You can either use the built-in

hot backup feature or consider deploying Percona Backup for MongoDB - an open source solution for

making consistent backups and restores in sharded clusters and replica sets.

Percona Backup for MongoDB 

Monitoring
Get insights into the database health and performance using Percona Monitoring and Management

(PMM) - an open-source database monitoring, management, and observability solution for MySQL,

PostgreSQL, and MongoDB. It allows you to observe the health of your database systems, explore new

patterns in their behavior, troubleshoot them and perform database management operations

Get started with PMM 

Advanced command line tools
Perform sophisticated database management and administration tasks using Percona Toolkit - a

collection of advanced command-line tools developed and tested by Percona as an alternative to private

or “one-off” scripts.

Get Percona Toolkit 

https://docs.percona.com/percona-backup-mongodb/installation.html
https://docs.percona.com/percona-monitoring-and-management/quickstart/index.html
https://docs.percona.com/percona-toolkit/installation.html


Page 59

Features

Percona Server for MongoDB feature
comparison
Percona Server for MongoDB 6.0 is based on MongoDB Community Edition 6.0 and extends it with the

functionality, that is otherwise only available in MongoDB Enterprise Edition.

PSMDB MongoDB

Storage Engines - WiredTiger (default)

- Percona Memory Engine

- WiredTiger (default)

- In-Memory (Enterprise only)

Encryption-at-Rest - Key servers = Hashicorp Vault, KMIP

- Fully open source

- Key server = KMIP

- Enterprise only

Hot Backup YES (replica set) NO

LDAP Authentication (legacy) LDAP authentication with SASL Enterprise only

LDAP Authorization YES Enterprise only

Kerberos Authentication YES Enterprise only

AWS IAM authentication YES MongoDB Atlas

Audit Logging YES Enterprise only

Log redaction YES Enterprise only

SNMP Monitoring NO Enterprise only

https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.com/v6.0/core/inmemory/


Page 60

PSMDB MongoDB

Database profiler YES with the --rateLimit  argument YES

Profiling Rate Limiting
Profiling Rate Limiting was added to Percona Server for MongoDB in v3.4 with the --rateLimit

argument. Since v3.6, MongoDB Community (and Enterprise) Edition includes a similar option

slowOpSampleRate. Please see Profiling Rate Limit for more information.

Storage

Percona Memory Engine
Percona Memory Engine is a special configuration of WiredTiger that does not store user data on disk.

Data fully resides in the main memory, making processing much faster and smoother. Keep in mind that

you need to have enough memory to hold the data set, and ensure that the server does not shut down.

The Percona Memory Engine is available in Percona Server for MongoDB along with the default MongoDB

engine WiredTiger.

Usage
As of version 3.2, Percona Server for MongoDB runs with WiredTiger by default. You can select a storage

engine using the --storageEngine  command-line option when you start mongod . Alternatively, you can

set the storage.engine  variable in the configuration file (by default, /etc/mongod.conf ):

storage:

dbPath: <dataDir>

engine: inMemory

https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-operationProfiling.slowOpSampleRate
https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/wiredtiger/


Page 61

Configuration
You can configure Percona Memory Engine using either command-line options or corresponding

parameters in the /etc/mongod.conf  file. The following are the configuration examples:

Options

The following options are available (with corresponding YAML configuration file parameters):

Configuration file storage.inMemory.engineConfig.inMemorySizeGB

Command line inMemorySizeGB()

Default 50% of total memory minus 1024 MB, but not less than 256 MB

Description Specifies the maximum memory in gigabytes to use for data

 Configuration file

The configuration file is formatted in YAML

 Command line

Setting parameters in the configuration file is the same as starting the mongod  daemon with the following

options:

storage:

engine: inMemory

inMemory:

engineConfig:

inMemorySizeGB: 140

statisticsLogDelaySecs: 0

mongod --storageEngine=inMemory \

--inMemorySizeGB=140 \

--inMemoryStatisticsLogDelaySecs=0



Page 62

Configuration

file

storage.inMemory.engineConfig.statisticsLogDelaySecs

Command line inMemoryStatisticsLogDelaySecs()()

Default 0

Description Specifies the number of seconds between writes to statistics log. A 0 value means statistics are

not logged

Switching storage engines

Considerations

If you have data files in your database and want to change to Percona Memory Engine, consider the

following:

Data files created by one storage engine are not compatible with other engines, because each one has

its own data model.

When changing the storage engine, the mongod  node requires an empty dbPath  data directory when it

is restarted. Though Percona Memory Engine stores all data in memory, some metadata files,

diagnostics logs and statistics metrics are still written to disk. This is controlled with the --

inMemoryStatisticsLogDelaySecs  option.

Creating a new dbPath  data directory for a different storage engine is the simplest solution. Yet when you

switch between disk-using storage engines (e.g. from WiredTiger to Percona Memory Engine), you may

have to delete the old data if there is not enough disk space for both. Double-check that your backups are

solid and/or the replica set nodes are healthy before you switch to the new storage engine.

Procedure

To change a storage engine, you have the following options:

Temporarily test Percona Memory Engine

Set a different data directory for the dbPath  variable in the configuration file. Make sure that the user

running mongod  has read and write permissions for the new data directory.

1. Stop mongod

$ service mongod stop

https://docs.mongodb.org/manual/core/wiredtiger/


Page 63

2. Edit the configuration file

3. Start mongod

Permanent switch to Percona Memory Engine without any valuable data in your database

Clean out the dbPath  data directory (by default, /var/lib/mongodb ) and edit the configuration file:

1. Stop mongod

2. Clean out the dbPath  data directory

3. Edit the configuration file

4. Start mongod

Switch to Percona Memory Engine with data migration and compatibility

storage:

dbPath: <newDataDir>

engine: inmemory

$ service mongod start

$ service mongod stop

$ sudo rm -rf <dbpathDataDir>

storage:

dbPath: <newDataDir>

engine: inmemory

$ service mongod start



Page 64

Standalone instance

For a standalone instance or a single-node replica set, use the mongodump  and mongorestore  utilities:

1. Export the dataDir contents

2. Stop mongod

3. Clean out the dbPath  data directory

4. Update the configuration file by setting the new value for the storage.engine  variable. Set the

engine-specific settings such as storage.inMemory.engineConfig.inMemorySizeGB

5. Start mongod

6. Restore the database

Replica set

Use the “rolling restart” process.

1. Switch to the Percona Memory Engine on the secondary node. Clean out the dbPath  data directory

and edit the configuration file:

2. Stop mongod

3. Clean out the dbPath  data directory

$ mongodump --out <dumpDir>

$ service mongod stop

$ sudo rm -rf <dbpathDataDir>

$ service mongod start

$ mongorestore <dumpDir>

$ service mongod stop

$ sudo rm -rf <dbpathDataDir>



Page 65

Data at rest encryption

Using Data at Rest Encryption means using the same storage.\*  configuration options as for

WiredTiger. To change from normal to Data at Rest Encryption mode or backward, you must clean up the

dbPath  data directory, just as if you change the storage engine. This is because mongod cannot convert

the data files to an encrypted format ‘in place’. It must get the document data again either via the initial

sync from another replica set member, or from imported backup dump.

Backup

Hot backup
Percona Server for MongoDB includes an integrated open source hot backup system for the default

WiredTiger storage engine. It creates a physical data backup on a running server without notable

performance and operating degradation.

4. Edit the configuration file

5. Start mongod

6. Wait for the node to rejoin with the other nodes and report the SECONDARY status.

7. Repeat the procedure to switch the remaining nodes to Percona Memory Engine.

storage:

dbPath: <newDataDir>

engine: inmemory

$ service mongod start

https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/wiredtiger/


Page 66

Hot backups are done on mongod  servers independently, without synchronizing them across replica set members and

shards in a cluster. To ensure data consistency during backups and restores, we recommend using Percona Backup for

MongoDB.

Make a backup
To take a hot backup of the database in your current dbpath , do the following:

The backup taken is the snapshot of the mongod  server’s dataDir  at the moment of the createBackup

command start.

If the backup was successful, you should receive an { "ok" : 1 }  object. If there was an error, you will

receive a failing ok  status with the error message, for example:

Save a backup to a TAR archive
To save a backup as a tar archive, use the archive  field to specify the destination path:

Streaming hot backups to a remote destination

Note

Provide access to the backup directory for the mongod  user:1

$ sudo chown mongod:mongod <backupDir>

Run the createBackup  command as administrator on the admin  database and specify the backup

directory.

2

> use admin

switched to db admin

> db.runCommand({createBackup: 1, backupDir: "<backup_data_path>"})

{ "ok" : 1 }

> db.runCommand({createBackup: 1, backupDir: ""})

{ "ok" : 0, "errmsg" : "Destination path must be absolute" }

> use admin

...

> db.runCommand({createBackup: 1, archive: <path_to_archive>.tar })

https://docs.percona.com/percona-backup-mongodb/index.html
https://docs.percona.com/percona-backup-mongodb/index.html


Page 67

Percona Server for MongoDB enables uploading hot backups to an Amazon S3 or a compatible storage

service, such as MinIO.

This method requires that you provide the bucket field in the s3 object:

In addition to the mandatory bucket  field, the s3  object may contain the following fields:

Field Type Description

bucket string The only mandatory field. Names are subject to restrictions described in

the Bucket Restrictions and Limitations section of Amazon S3

documentation

path string The virtual path inside the specified bucket where the backup will be

created. If the path  is not specified, then the backup is created in the

root of the bucket. If there are any objects under the specified path, the

backup will not be created and an error will be reported.

endpoint string The endpoint address and port - mainly for AWS S3 compatible servers

such as the MinIO server. For a local MinIO server, this can be

“127.0.0.1:9000”. For AWS S3 this field can be omitted.

scheme string “HTTP” or “HTTPS” (default). For a local MinIO server started with the

minio server command this should field should contain HTTP.

useVirtualAddressing bool The style of addressing buckets in the URL. By default ‘true’. For MinIO

servers, set this field to false. For more information, see Virtual Hosting

of Buckets in the Amazon S3 documentation.

region string The name of an AWS region. The default region is US_EAST_1. For more

information see AWS Service Endpoints in the Amazon S3

documentation.

profile string The name of a credentials profile in the credentials configuration file. If

not specified, the profile named default is used.

accessKeyId string The access key id

secretAccessKey string The secret access key

> use admin

...

> db.runCommand({createBackup: 1, s3: {bucket: "backup20190510", path:

<some_optional_path>} })

https://aws.amazon.com/s3/
https://min.io/
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/VirtualHosting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/VirtualHosting.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


Page 68

Credentials

If the user provides the access key id and the secret access key parameters, these are used as credentials.

If the access key id parameter is not specified then the credentials are loaded from the credentials

configuration file. By default, it is ~/.aws/credentials .

Example credentials file

Examples

Backup in root of bucket on local instance of MinIO server

Backup on MinIO testing server with the default credentials profile

The following command creates a backup under the virtual path “year2019/day42” in the backup  bucket:

Backup on AWS S3 service using default settings

~/.aws/credentials

[default]

aws_access_key_id = ABC123XYZ456QQQAAAFFF

aws_secret_access_key = zuf+secretkey0secretkey1secretkey2

[localminio]

aws_access_key_id = ABCABCABCABC55566678

aws_secret_access_key = secretaccesskey1secretaccesskey2secretaccesskey3

> db.runCommand({createBackup: 1, s3: {bucket: "backup20190901500",

scheme: "HTTP",

endpoint: "127.0.0.1:9000",

useVirtualAddressing: false,

profile: "localminio"}})

> db.runCommand({createBackup: 1, s3: {bucket: "backup",

path: "year2019/day42",

endpoint: "sandbox.min.io:9000",

useVirtualAddressing: false}})

> db.runCommand({createBackup: 1, s3: {bucket: "backup", path:

"year2019/day42"}})



Page 69

AWS Documentation: Providing AWS Credentials

Restore data from backup

Restore from a backup on a standalone server

If you try to restore the node into the existing replica set and there is more recent data, the restored node detects that it

is out of date with the other replica set members, deletes the data and makes an initial sync.

Run the following commands as root or by using the sudo  command

1. Stop the mongod  service

2. Clean out the data directory

3. Copy backup files

4. Grant permissions to data files for the mongod  user

5. Start the mongod  service

Restoring from backup in a replica set

The recommended way to restore the replica set from a backup is to restore it into a standalone node and

then initiate it as the first member of a new replica set.

See also

Note

$ systemctl stop mongod

$ rm -rf /var/lib/mongodb/*

$ cp -RT <backup_data_path> /var/lib/mongodb/

$ chown -R mongod:mongod /var/lib/mongodb/

$ systemctl start mongod

https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/credentials.html


Page 70

If you try to restore the node into the existing replica set and there is more recent data, the restored node detects that it

is out of date with the other replica set members, deletes the data and makes an initial sync.

Run the following commands as root or by using the sudo command

1. Stop the mongod  service:

2. Clean the data directory and then copy the files from the backup directory to your data directory.

Assuming that the data directory is /var/lib/mongodb/ , use the following commands:

3. Grant permissions to the data files for the mongod  user

4. Make sure the replication is disabled in the config file and start the mongod  service.

5. Connect to your standalone node via the mongo  shell and drop the local database

6. Restart the node with the replication enabled

Shut down the node.

Edit the configuration file and specify the replication.replSetname  option

Start the mongod  node:

Note

$ systemctl stop mongod

$ rm -rf /var/lib/mongodb/*

$ cp -RT <backup_data_path> /var/lib/mongodb/

$ chown -R mongod:mongod /var/lib/mongodb/

$ systemctl start mongod

> mongo

> use local

> db.dropDatabase()

$ systemctl stop mongod

$ systemctl start mongod



Page 71

7. Initiate a new replica set

$backupCursor and $backupCursorExtend
aggregation stages
$backupCursor  and $backupCursorExtend  aggregation stages expose the WiredTiger API which

allows making consistent backups. Running these stages allows listing and freezing the files so you can

copy them without the files being deleted or necessary parts within them being overwritten.

$backupCursor  outputs the list of files and their size to copy.

$backupCursorExtend  outputs the list of WiredTiger transaction log files that have been updated or

newly added since the $backupCursor  was first run. Saving these files enables restoring the database

to any arbitrary time between the $backupCursor  and $backupCursorExtend  execution times.

They are available in Percona Server for MongoDB starting with version 6.0.2-1.

Percona provides Percona Backup for MongoDB (PBM) – a light-weight open source solution for

consistent backups and restores across sharded clusters. PBM relies on these aggregation stages for

physical backups and restores. However, if you wish to develop your own backup application, this

document describes the $backupCursor  and $backupCursorExtend  aggregation stages.

Usage
You can run these stages in any type of MongoDB deployment. If you need to back up a single node in a

replica set, first run the $backupCursor , then the $backupCursorExtend  and save the output files to the

backup storage.

To make a consistent backup of a sharded cluster, run both aggregation stages on one node from each

shard and the config server replica set. It can be either the primary or the secondary node. Note that since

the secondary node may lag in syncing the data from the primary one, you will have to wait for the exact

same time before running the $backupCursorExtend .

Note that for standalone MongoDB node with disabled oplogs, you can only run the $backupCursor

aggregation stage.

Get a list of all files to copy with $backupCursor

# Start the mongosh shell

> mongosh

# Initiate a new replica set

> rs.initiate()

https://www.percona.com/doc/percona-backup-mongodb/index.html


Page 72

Sample output:

Store the metadata  document somewhere, because you need to pass the backupId  parameter from this

document as the input parameter for the $backupCursorExtend  stage. Also you need the oplogEnd

timestamp. Make sure that the $backupCursor  is complete on all shards in your cluster.

Note that when running $backupCursor  in a standalone node deployment, oplogStart , oplogEnd ,

checkpointTimesatmp  values may be absent. This is because standalone node deployments don’t have oplogs.

Run $backupCursorExtend  to retrieve the WiredTiger transaction logs

Pass the backupId  from the metadata document as the first parameter. For the timestamp  parameter,

use the maximum (latest) value among the oplogEnd  timestamps from all shards and config server

replica set. This will be the target time to restore.

Sample output:

Loop the $backupCursor

var bkCsr = db.getSiblingDB("admin").aggregate([{$backupCursor: {}}])

bkCsrMetadata = bkCsr.next().metadata

[

{

metadata: {

backupId: UUID("35c34101-0107-44cf-bdec-fad285e07534"),

dbpath: '/var/lib/mongodb',

oplogStart: { ts: Timestamp({ t: 1666631297, i: 1 }), t: Long("-1") },

oplogEnd: { ts: Timestamp({ t: 1666631408, i: 1 }), t: Long("1") },

checkpointTimestamp: Timestamp({ t: 1666631348, i: 1 })

}

},

Note

var bkExtCsr = db.aggregate([{$backupCursorExtend: {backupId:

bkCsrMetadata.backupId, timestamp: new Timestamp(1666631418, 1)}}])

{ "filename" : "/data/plain_rs/n1/data/journal/WiredTigerLog.0000000042" }

{ "filename" : "/data/plain_rs/n1/data/journal/WiredTigerLog.0000000043" }

{ "filename" : "/data/plain_rs/n1/data/journal/WiredTigerLog.0000000044" }



Page 73

Prevent the backup cursor from closing on timeout (default – 10 minutes). This is crucial since it prevents

overwriting backup snapshot file blocks with new ones if the files take longer than 10 minutes to copy. Use

the getMore command for this purpose.

Copy the files to the storage

Now you can copy the output of both aggregation stages to your backup storage.

After the backup is copied to the storage, terminate the getMore command and close the cursor.

Save the timestamp that you passed for the $backupCursorExtend  stage somewhere since you will need it for the

restore.

This document is based on the blog post Experimental Feature: $backupCursorExtend in Percona Server for MongoDB

by Akira Kurogane

Authentication

Authentication
Authentication is the process of verifying a client’s identity. Normally, a client needs to authenticate

themselves against the MongoDB server user database before doing any work or reading any data from a

mongod  or mongos  instance.

By default, Percona Server for MongoDB provides a SCRAM authentication mechanism where clients

authenticate themselves by providing their user credentials. In addition, you can integrate Percona Server

for MongoDB with a separate service, such as OpenLDAP or Active Directory. This enables users to access

the database with the same credentials they use for their emails or workstations.

You can use any of these authentication mechanisms supported in Percona Server for MongoDB:

Note

https://www.mongodb.com/docs/v6.0/reference/command/getMore/#getmore
https://www.mongodb.com/docs/v6.0/reference/command/getMore/#getmore
https://www.percona.com/blog/2021/06/07/experimental-feature-backupcursorextend-in-percona-server-for-mongodb/


Page 74

SCRAM (default)

x.509 certificate authentication

LDAP authentication with SASL

Kerberos Authentication

Authentication and authorization with direct binding to LDAP

AWS IAM authentication

SCRAM
SCRAM is the default authentication mechanism. Percona Server for MongoDB verifies the credentials

against the user’s name, password and the database where the user record is created for a client

(authentication database). For how to enable this mechanism, see Enable authentication.

x.509 certificate authentication
This authentication mechanism enables a client to authenticate in Percona Server for MongoDB by

providing an x.509 certificate instead of user credentials. Each certificate contains the subject  field

defined in the DN format. In Percona Server for MongoDB, each certificate has a corresponding user

record in the $external  database. When a user connects to the database, Percona Server for MongoDB

matches the subject  value against the usernames defined in the $external  database.

For production use, we recommend using valid CA certificates. For testing purposes, you can generate and

use self-signed certificates.

x.509 authentication is compatible with with LDAP authorization to enable you to control user access and

operations in Percona Server for MongoDB. For configuration guidelines, refer to Set up x.509

authentication and LDAP authorization.

MongoDB Documentation: x.509

Percona Blog: Setting up MongoDB with Member x509 auth and SSL + easy-rsa

LDAP authentication with SASL

Overview
LDAP authentication with SASL means that both the client and the server establish a SASL session using

the SASL library. Then authentication (bind) requests are sent to the LDAP server through the SASL

authentication daemon ( saslauthd ) that acts as a remote proxy for the mongod  server.

See also

https://docs.mongodb.com/manual/core/security-x.509/
https://www.percona.com/blog/2019/10/28/setting-up-mongodb-with-member-x509-auth-and-ssl-easy-rsa/


Page 75

The following components are necessary for external authentication to work:

LDAP Server: Remotely stores all user credentials (i.e. user name and associated password).

SASL Daemon: Used as a MongoDB server-local proxy for the remote LDAP service.

SASL Library: Used by the MongoDB client and server to create data necessary for the authentication

mechanism.

The following image illustrates this architecture:

An authentication session uses the following sequence:

1. A mongosh  client connects to a running mongod  instance.

2. The client creates a PLAIN  authentication request using the SASL library.

3. The client then sends this SASL request to the server as a special mongo command.

4. The mongod  server receives this SASL message, with its authentication request payload.

5. The server then creates a SASL session scoped to this client, using its own reference to the SASL

library.

6. Then the server passes the authentication payload to the SASL library, which in turn passes it on to

the saslauthd  daemon.

7. The saslauthd  daemon passes the payload on to the LDAP service to get a YES or NO

authentication response (in other words, does this user exist and is the password correct).

8. The YES/NO response moves back from saslauthd , through the SASL library, to mongod .

9. The mongod  server uses this YES/NO response to authenticate the client or reject the request.

10. If successful, the client has authenticated and can proceed.

For configuration instructions, refer to Setting up LDAP authentication with SASL.

Kerberos authentication



Page 76

Percona Server for MongoDB supports Kerberos authentication starting from release 6.0.2-1.

This authentication mechanism involves the use of a Key Distribution Center (KDC) - a symmetric

encryption component which operates with tickets. A ticket is a small amount of encrypted data which is

used for authentication. It is issued for a user session and has a limited lifetime.

When using Kerberos authentication, you also operate with principals and realms.

A realm is the logical network, similar to a domain, for all Kerberos nodes under the same master KDC.

A principal is a user or a service which is known to Kerberos. A principal name is used for authentication

in Kerberos. A service principal represents the service, e.g. mongodb . A user principal represents the user.

The user principal name corresponds to the username in the $external  database in Percona Server for

MongoDB.

The following diagram shows the authentication workflow:

The sequence is the following:

1. A mongo  client sends the Ticket-Grantng Ticket (TGT) request to the Key Distribution Center (KDC)

2. The KDC issues the ticket and sends it to the mongo  client.

3. The mongo  client sends the authentication request to the mongod  server presenting the ticket.

4. The mongod  server validates the ticket in the KDC.

5. Upon successful ticket validation, the authentication request is approved and the user is

authenticated.



Page 77

Kerberos authentication in Percona Server for MongoDB is implemented the same way as in MongoDB

Enterprise.

MongoDB Documentation: Kerberos Authentication

Enable SCRAM authentication
By default, Percona Server for MongoDB does not restrict access to data and configuration.

Enabling authentication enforces users to identify themselves when accessing the database. This

documents describes how to enable built-in SCRAM authentication mechanism. Percona Server for

MongoDB also supports the number of external authentication mechanisms. To learn more, refer to

Authentication.

You can enable authentication either automatically or manually.

Automatic setup
To enable authentication and automatically set it up, run the /usr/bin/percona-server-mongodb-

enable-auth.sh  script as root or using sudo .

This script creates the dba  user with the root  role. The password is randomly generated and printed out

in the output. Then the script restarts Percona Server for MongoDB with access control enabled. The dba

user has full superuser privileges on the server. You can add other users with various roles depending on

your needs.

For usage information, run the script with the -h  option.

Manual setup
To enable access control manually:

1. Add the following lines to the configuration file:

2. Run the following command on the admin  database:

See also

security:

authorization: enabled

> db.createUser({user: 'USER', pwd: 'PASSWORD', roles: ['dbAdmin'] });

https://docs.mongodb.com/manual/core/kerberos/


Page 78

3. Restart the mongod  service:

4. Connect to the database as the newly created user:

MongoDB Documentation: Enable Access Control

Set up LDAP authentication with SASL
This document describes an example configuration suitable only to test out the external authentication

functionality in a non-production environment. Use common sense to adapt these guidelines to your

production environment.

To learn more about how the authentication works, see LDAP authentication with SASL.

Environment setup and configuration
The following components are required:

slapd : OpenLDAP server.

libsasl2  version 2.1.25 or later.

saslauthd : Authentication Daemon (distinct from libsasl2 ).

The following steps will help you configure your environment:

Assumptions

Before we move on to the configuration steps, we assume the following:

1. You have the LDAP server up and running and have configured users on it. The LDAP server is

accessible to the server with Percona Server for MongoDB installed. This document focuses on

OpenLDAP server. If you use Microsoft Windows Active Directory, see to the Microsoft Windows Active

Directory section for saslauthd  configuration.

$ service mongod restart

$ mongosh --port 27017 -u 'USER' -p 'PASSWORD' --authenticationDatabase

"admin"

See also

https://www.mongodb.com/docs/v6.0/tutorial/enable-authentication/


Page 79

2. You must place these two servers behind a firewall as the communications between them will be in

plain text. This is because the SASL mechanism of PLAIN can only be used when authenticating and

credentials will be sent in plain text.

3. You have sudo  privilege to the server with the Percona Server for MongoDB installed.

Configuring saslauthd

1. Install the SASL packages. Depending on your OS, use the following command:

2. Configure SASL to use ldap  as the authentication mechanism.

Back up the original configuration file before making changes.

Debian and Ubuntu

RHEL and derivatives

$ sudo apt install -y sasl2-bin

$ sudo yum install -y cyrus-sasl

Note



Page 80

3. Create the /etc/saslauthd.conf  configuration file and specify the settings that saslauthd

requires to connect to a local LDAP service:

Debian and Ubuntu

Use the following commands to enable the saslauthd  to auto-run on startup and to set the ldap

value for the --MECHANISMS  option:

Alternatively, you can edit the /etc/default/sysconfig/saslauthd  configuration file:

RHEL and derivatives

Specify the ldap  value for the --MECH  option using the following command:

Alternatively, you can edit the /etc/sysconfig/saslauthd configuration file:

$ sudo sed -i -e s/^MECH=pam/MECH=ldap/g /etc/sysconfig/saslauthdsudo sed -i -

e s/^MECHANISMS="pam"/MECHANISMS="ldap"/g /etc/default/saslauthd

$ sudo sed -i -e s/^START=no/START=yes/g /etc/default/saslauthd

START=yes

MECHANISMS="ldap

$ sudo sed -i -e s/^MECH=pam/MECH=ldap/g /etc/sysconfig/saslauthd

MECH=ldap



Page 81

4. Start the saslauthd  process and set it to run at restart:

5. Give write permissions to the /run/saslauthd  folder for the mongod . Either change permissions to

the /run/saslauthd  folder:

Or add the mongod  user to the sasl  group:

OpenLDAP server

The following is the example configuration file. Note that the server address MUST match the

OpenLDAP installation:

Note the LDAP password ( ldap_password ) and bind domain name ( ldap_bind_dn ). This allows the

saslauthd  service to connect to the LDAP service as admin. In production, this would not be the

case; users should not store administrative passwords in unencrypted files.

Microsoft Windows Active Directory

In order for LDAP operations to be performed against a Windows Active Directory server, a user record

must be created to perform the lookups.

The following example shows configuration parameters for saslauthd  to communicate with an

Active Directory server:

In order to determine and test the correct search base and filter for your Active Directory installation,

the Microsoft LDP GUI Tool can be used to bind and search the LDAP-compatible directory.

ldap_servers: ldap://localhost

ldap_mech: PLAIN

ldap_search_base: dc=example,dc=com

ldap_filter: (cn=%u)

ldap_bind_dn: cn=admin,dc=example,dc=com

ldap_password: secret

ldap_servers: ldap://localhost

ldap_mech: PLAIN

ldap_search_base: CN=Users,DC=example,DC=com

ldap_filter: (sAMAccountName=%u)

ldap_bind_dn: CN=ldapmgr,CN=Users,DC=<AD Domain>,DC=<AD TLD>

ldap_password: ld@pmgr_Pa55word

$ sudo systemctl start saslauthd

$ sudo systemctl enable saslauthd

$ sudo chmod 755 /run/saslauthd

https://technet.microsoft.com/en-us/library/Cc772839%28v=WS.10%29.aspx


Page 82

Sanity check

Verify that the saslauthd  service can authenticate against the users created in the LDAP service:

This should return 0:OK "Success" . If it doesn’t, then either the user name and password are not in the

LDAP service, or sasaluthd  is not configured properly.

Configuring libsasl2

The mongod  also uses the SASL library for communications. To configure the SASL library, create a

configuration file.

The configuration file must be named mongodb.conf  and placed in a directory where libsasl2  can find

and read it. libsasl2  is hard-coded to look in certain directories at build time. This location may be

different depending on the installation method.

In the configuration file, specify the following:

The first two entries ( pwcheck_method  and saslauthd_path ) are required for mongod  to successfully

use the saslauthd  service. The log_level  is optional but may help determine configuration errors.

SASL documentation

Configuring mongod  server

The configuration consists of the following steps:

Creating a user with the root privileges. This user is required to log in to Percona Server for MongoDB

after the external authentication is enabled.

Editing the configuration file to enable the external authentication

$ sudo usermod -a -G sasl mongod

$ testsaslauthd -u christian -p secret -f /var/run/saslauthd/mux

pwcheck_method: saslauthd

saslauthd_path: /var/run/saslauthd/mux

log_level: 5

mech_list: plain

See also

https://www.cyrusimap.org/sasl/index.html


Page 83

Create a root user

Create a user with the root privileges in the admin  database. If you have already created this user, skip

this step. Otherwise, run the following command to create the admin user:

Enable external authentication

Edit the etc/mongod.conf  configuration file to enable the external authentication:

Restart the mongod  service:

Add an external user to Percona Server for MongoDB

User authentication is done by mapping a user object on the LDAP server against a user created in the

$external  database. Thus, at this step, you create the user in the $external  database and they inherit

the roles and privileges. Note that the username must exactly match the name of the user object on the

LDAP server.

Connect to Percona Server for MongoDB and authenticate as the root user.

Use the following command to add an external user to Percona Server for MongoDB:

Authenticate as an external user in Percona Server for
MongoDB

> use admin

switched to db admin

> db.createUser({"user": "admin", "pwd": "$3cr3tP4ssw0rd", "roles": ["root"]})

Successfully added user: { "user" : "admin", "roles" : [ "root" ] }

security:

authorization: enabled

setParameter:

authenticationMechanisms: PLAIN,SCRAM-SHA-1

$ sudo systemctl restart mongod

$ mongosh --host localhost --port 27017 -u admin -p '$3cr3tP4ssw0rd' --

authenticationDatabase 'admin'

> db.getSiblingDB("$external").createUser( {user : "christian", roles: [ {role:

"read", db: "test"} ]} );



Page 84

When running the mongo  client, a user can authenticate against a given database using the following

command:

Alternatively, a user can authenticate while connecting to Percona Server for MongoDB:

This section is based on the blog post Percona Server for MongoDB Authentication Using Active Directory by Doug

Duncan:

Set up x.509 authentication and LDAP
authorization
x.509 certificate authentication is one of the supported authentication mechanisms in Percona Server for

MongoDB. It is compatible with LDAP authorization to enable you to control user access and operations in

your database environment.

This document provides the steps on how to configure and use x.509 certificates for authentication in

Percona Server for MongoDB and authorize users in the LDAP server.

Considerations

1. For testing purposes, in this tutorial we use OpenSSL to issue self-signed certificates. For production

use, we recommend using certificates issued and signed by the CA in Percona Server for MongoDB.

Client certificates must meet the client certificate requirements.

2. The setup of the LDAP server and the configuration of the LDAP schema is out of scope of this

document. We assume that you have the LDAP server up and running and accessible to Percona

Server for MongoDB.

Setup procedure

Issue certificates

1. Create a directory to store the certificates. For example, /var/lib/mongocerts .

> db.getSiblingDB("$external").auth({ mechanism:"PLAIN", user:"christian",

pwd:"secret", digestPassword:false})

$ mongo --host localhost --port 27017 --authenticationMechanism PLAIN --

authenticationDatabase \$external -u christian -p

https://www.percona.com/blog/2018/12/21/percona-server-for-mongodb-authentication-using-active-directory/
https://www.openssl.org/
https://docs.mongodb.com/manual/core/security-x.509/#client-certificate-requirements


Page 85

2. Grant access to the mongod  user to this directory:

Generate the root Certificate Authority certificate

The root Certificate Authority certificate will be used to sign the SSL certificates.

Run the following command and in the -subj  flag, provide the details about your organization:

C - Country Name (2 letter code);

ST - State or Province Name (full name);

L - Locality Name (city);

O - Organization Name (company);

CN - Common Name (your name or your server’s hostname) .

Generate server certificate

1. Create the server certificate request and key. In the -subj  flag, provide the details about your

organization:

C - Country Name (2 letter code);

ST - State or Province Name (full name);

L - Locality Name (city);

O - Organization Name (company);

CN - Common Name (your name or your server’s hostname) .

2. Sign the server certificate request with the root CA certificate:

$ sudo mkdir -p /var/lib/mongocerts

$ sudo chown mongod:mongod /var/lib/mongocerts

$ cd /var/lib/mongocerts

$ sudo openssl req -nodes -x509 -newkey rsa:4096 -keyout ca.key -out ca.crt -subj

"/C=US/ST=California/L=SanFrancisco/O=Percona/OU=root/CN=localhost"

$ sudo openssl req -nodes -newkey rsa:4096 -keyout server.key -out server.csr

-subj "/C=US/ST=California/L=SanFrancisco/O=Percona/OU=server/CN=localhost"

$ sudo openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -set_serial

01 -out server.crt



Page 86

3. Combine the server certificate and key to create a certificate key file. Run this command as the root

user:

Generate client certificates

1. Generate client certificate request and key. In the -subj  flag, specify the information about clients in

the format.

2. Sign the client certificate request with the root CA certificate.

3. Combine the client certificate and key to create a certificate key file.

Set up the LDAP server

The setup of the LDAP server is out of scope of this document. Please work with your LDAP

administrators to set up the LDAP server and configure the LDAP schema.

Configure the mongod  server

The configuration consists of the following steps:

Creating a role that matches the user group on the LDAP server

Editing the configuration file to enable the x.509 authentication

When you use x.509 authentication with LDAP authorization, you don’t need to create users in the $external

database. User management is done on the LDAP server so when a client connects to the database, they are

authenticated and authorized through the LDAP server.

$ cat server.key server.crt > server.pem

$ openssl req -nodes -newkey rsa:4096 -keyout client.key -out client.csr -subj

"/DC=com/DC=percona/CN=John Doe"

$ openssl x509 -req -in client.csr -CA ca.crt -CAkey ca.key -set_serial 02 -

out client.crt

$ cat client.key client.crt > client.pem

Note



Page 87

Create roles

At this step, create the roles in the admin  database with the names that exactly match the names of the

user groups on the LDAP server. These roles are used for user LDAP authorization in Percona Server for

MongoDB.

In our example, we create the role cn=otherusers,dc=percona,dc=com  that has the corresponding

LDAP group.

Output:

Enable x.509 authentication

1. Stop the mongod  service

2. Edit the /etc/mongod.conf  configuration file.

var admin = db.getSiblingDB("admin")

db.createRole(

{

role: "cn=otherusers,dc=percona,dc=com",

privileges: [],

roles: [

"userAdminAnyDatabase",

"clusterMonitor",

"clusterManager",

"clusterAdmin"

]

}

)

{

"role" : "cn=otherusers,dc=percona,dc=com",

"privileges" : [ ],

"roles" : [

"userAdminAnyDatabase",

"clusterMonitor",

"clusterManager",

"clusterAdmin"

]

}

$ sudo systemctl stop mongod



Page 88

Replace ldap.example.com  with the hostname of your LDAP server. In the LDAP query template,

replace the domain controllers percona  and com  with those relevant to your organization.

3. Start the mongod  service

Authenticate with the x.509 certificate

To test the authentication, connect to Percona Server for MongoDB using the following command:

The result should look like the following:

net:

port: 27017

bindIp: 127.0.0.1

tls:

mode: requireTLS

certificateKeyFile: /var/lib/mongocerts/server.pem

CAFile: /var/lib/mongocerts/ca.crt

security:

authorization: enabled

ldap:

servers: "ldap.example.com"

transportSecurity: none

authz:

queryTemplate: "dc=percona,dc=com??sub?(&(objectClass=groupOfNames)

(member={USER}))"

setParameter:

authenticationMechanisms: PLAIN,MONGODB-X509

$ sudo systemctl start mongod

$ mongosh --host localhost --tls --tlsCAFile /var/lib/mongocerts/ca.crt --

tlsCertificateKeyFile <path_to_client_certificate>/client.pem --

authenticationMechanism MONGODB-X509 --authenticationDatabase='$external'



Page 89

Setting up Kerberos authentication
This document provides configuration steps for setting up Kerberos Authentication in Percona Server for

MongoDB.

Assumptions
The setup of the Kerberos server itself is not included in this document. Please refer to the Kerberos

documentation for the installation and configuration steps relevant to your operating system.

We assume that you have successfully completed the following steps:

> db.runCommand({connectionStatus : 1})

{

"authInfo" : {

"authenticatedUsers" : [

{

"user" : "CN=John Doe,DC=percona,DC=com",

"db" : "$external"

}

],

"authenticatedUserRoles" : [

{

"role" : "cn=otherreaders,dc=percona,dc=com",

"db" : "admin"

},

{

"role" : "clusterAdmin",

"db" : "admin"

},

{

"role" : "userAdminAnyDatabase",

"db" : "admin"

},

{

"role" : "clusterManager",

"db" : "admin"

},

{

"role" : "clusterMonitor",

"db" : "admin"

}

]

},

"ok" : 1

}

https://web.mit.edu/kerberos/krb5-latest/doc/admin/install_kdc.html
https://web.mit.edu/kerberos/krb5-latest/doc/admin/install_kdc.html


Page 90

Installed and configured the Kerberos server

Added necessary realms

Added service, admin, and user principals

Configured the A  and PTR  DNS records for every host running mongod  instance to resolve the

hostnames onto Kerberos realm.

Add user principals to Percona Server for MongoDB
To authenticate, users must exist in the Kerberos and Percona Server for MongoDB servers. Their

usernames must match exactly.

After you have defined the user principals in the Kerberos server, add them to the $external  database in

Percona Server for MongoDB and assign required roles:

Replace demo@PERCONATEST.COM  with your username and Kerberos realm.

Configure Kerberos keytab  files
A keytab  file stores the authentication keys for a service principal representing a mongod  instance to

access the Kerberos admin server.

After you have added the service principal to the Kerberos admin server, the entry for this principal is

added to the /etc/krb5.keytab  file.

To authenticate, the mongod  server must have access to the keytab  file. To keep the keytab  file secure,

restrict access to it only to the user running the mongod  process.

1. Stop the mongod  service

2. Generate the keytab file or get a copy of it if you generated the keytab  file on another host. Save the

key file under a separate path (e.g. /etc/mongodb.keytab )

> use $external

> db.createUser({user: "demo@PERCONATEST.COM",roles: [{role: "read", db:

"admin"}]})

$ sudo systemctl stop mongod

$ cp /etc/krb5.keytab /etc/mongodb.keytab

https://web.mit.edu/kerberos/krb5-1.12/doc/admin/realm_config.html
https://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-user/What-is-a-Kerberos-Principal_003f.html#What-is-a-Kerberos-Principal_003f
https://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-install/The-Keytab-File.html


Page 91

3. Change the ownership to the keytab  file. The user name and group name depend on how you

installed Percona Server for MongoDB:

4. Set the KRB5_KTNAME  variable in the environment file for the mongod  process.

5. Restart the mongod  service

AWS IAM authentication

IAM (Identity Access Management) is the AWS service that allows you to securely control access to AWS

resources. Percona Server for MongoDB supports authentication with AWS IAM enabling you to use the

same AWS credentials both for it and other components of your infrastructure. This saves your DBAs from

managing different sets of secrets and frees their time on other activities.

 RPM/DEB packages or tarballs

 Percona Docker container images

$ sudo chown mongod:mongod /etc/mongodb.keytab

$ sudo chown mongodb:mongodb /etc/mongodb.keytab

Debian and Ubuntu

Edit the environment file at the path /etc/default/mongod  and specify the KRB5_KTNAME  variable:

If you have a different path to the keytab file, specify it accordingly.

RHEL and derivatives

Edit the environment file at the path /etc/sysconfig/mongod  and specify the KRB5_KTNAME

variable:

If you have a different path to the keytab file, specify it accordingly.

KRB5_KTNAME=/etc/mongodb.keytab

KRB5_KTNAME=/etc/mongodb.keytab

$ sudo systemctl start mongod

Version added: 6.0.5-4



Page 92

You can configure AWS IAM for a password-less authentication. Instead of username and password, the

user or the application presents the AWS security credentials for authentication, but the secret key is not

sent to Percona Server for MongoDB. This significantly increases the security in your infrastructure.

Percona Server for MongoDB supports two authentication types:

User authentication
This authentication type is typically used by human operators. Every user account in AWS has the ARN

(Amazon Resource Name), which uniquely identifies this account and the user associated with it. During

authentication, the ARN is used to verify the user’s identity.

Role authentication
This type is typically used for applications / mongo  clients. For instance, if your application is running on

AWS resources like EC2 instance or ECS (Elastic Container Service) which uses the IAM role assigned to

it. Another scenario is to allow users to assume the IAM role and in such a way, grant a user the

permissions outlined in the IAM role. The ARN of the IAM role is used to authenticate the application in

Percona Server for MongoDB.

For either type of AWS IAM authentication, the flow is the following:

1. A mongo  client (a Mongo shell or an application that talks to Percona Server for MongoDB via a

driver) gets AWS credentials from either EC2/ECS instance metadata service, environmental variables

or MongoDB URI connection string.

2. The mongo  client constructs the authentication request which includes the AWS access key ID, token

and the signature and sends it to Percona Server for MongoDB

The mongo  client never sends the secret access key to Percona Server for MongoDB.

3. Percona Server for MongoDB sends the received credentials to the AWS STS (Security Token Service)

for verification

Important



Page 93

4. The AWS STS service validates whether the signature is correct and answers with the user / role ARN

that created the signature

5. Percona Server for MongoDB looks for the same username as the received ARN in the $external

database and grants privileges to access Percona Server for MongoDB as defined for the respective

user.

Starting with version 6.0.8-6, you can configure the AWS STS endpoint by specifying the

setParameter.awsStsHost  in the configuration file. This allows you to send requests to the AWS

resources of your choice to meet security requirements of your organization and ensure successful

authentication.

AWS documentation:

AWS Identity and Access Management

Temporary security credentials in IAM

Authenticating Requests (AWS Signature Version 4)

Managing AWS STS in an AWS Region

MongoDB documentation: Set Up Passwordless Authentication with AWS IAM

Configuration
For how to configure AWS IAM authentication, see Setting up AWS IAM authentication.

Setting up AWS IAM authentication
This document provides guidelines how to configure Percona Server for MongoDB to use AWS IAM

authentication. The use of this authentication method enables you to natively integrate Percona Server for

MongoDB with AWS services, increase security of your infrastructure by setting up password-less

authentication and offload your DBAs from managing different sets of secrets. To learn more, see AWS

IAM authentication

To configure AWS IAM authentication means to set up your AWS environment and configure Percona

Server for MongoDB. The AWS environment setup is out of scope of this document. Consult the AWS

documentation to perform the following setup steps:

1. Configure the AWS resource to work with IAM.

2. For user authentication:

Create the IAM user and copy its ARN (Amazon Resource Name)

For role authentication:

See also

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html#sts-introduction
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html#sts-introduction
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://www.mongodb.com/docs/atlas/security/passwordless-authentication/#std-label-passwordless-auth-aws-no-saml
https://www.mongodb.com/docs/atlas/security/passwordless-authentication/#std-label-passwordless-auth-aws-no-saml
https://www.mongodb.com/docs/atlas/security/passwordless-authentication/#std-label-passwordless-auth-aws-no-saml
https://www.mongodb.com/docs/atlas/security/passwordless-authentication/#std-label-passwordless-auth-aws-no-saml
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html


Page 94

Create the IAM role

Attach the IAM role to the AWS resource.

Copy the ARN of the IAM role.

Configure Percona Server for MongoDB
The steps are the following:

1. Create users in the $external  database with the username as the IAM user/role ARN

2. Enable authentication and specify the authentication mechanism as MONGODB-AWS .

Create users in $external  database

During the authentication, Percona Server for MongoDB matches the ARN of the IAM user or role retrieved

from AWS STS against the user created in the $external  database. Thus, the username for this user

must include their ARN and have the following format:

Create a user and assign the required roles to them. Specify the ARN and names in the following example

commands:

User authentication

Role authentication

arn:aws:iam::<ARN>:user/<user_name>

arn:aws:iam::<ARN>:role/<role_name>

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


Page 95

Enable authentication

Run the following commands as root or via sudo

1. Stop the mongod  service

2. Edit the /etc/mongod.conf  configuration file

3. Start the mongod  service

Configure AWS STS endpoint

User authentication

Role authentication

> use $external

> db.createUser(

{

user: "arn:aws:iam::000000000000:user/myUser",

roles: [{role: "read", db: "admin"}]

}

)

> use $external

> db.createUser(

{

user: "arn:aws:iam::111111111111:role/myRole",

roles: [{role: "read", db: "admin"}]

}

)

$ sudo systemctl stop mongod

security:

authorization: enabled

setParameter:

authenticationMechanisms: MONGODB-AWS

$ sudo systemctl start mongod



Page 96

By default, all authentication requests are sent to the sts.amazonaws.com  endpoint. If this endpoint is

unavailable for some reason, you can override it and send AWS STS requests to the endpoints of your

choice to ensure successful authentication. You must enable the AWS region to use it.

Edit the /etc/mongod.conf  configuration file and specify the AWS endpoint for the awsStsHost

parameter.

See the list of AWS endpoints.

Authenticate in Percona Server for MongoDB using AWS IAM
To test the authentication, use either of the following methods:

security:

authorization: enabled

setParameter:

authenticationMechanisms: MONGODB-AWS

awsStsHost: <aws-endpoint>

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#id_credentials_region-endpoints
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#id_credentials_region-endpoints
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#id_credentials_region-endpoints


Page 97

Upon successful authentication, the result should look like the following:

MongoDB connection string

Replace <aws_access_key_id> , <aws_secret_access_key>  and psmdb.example.com  with actual

values in the following command:

To pass temporary credentials and AWS token, replace <aws_access_key_id> ,

<aws_secret_access_key> , <aws_session_token>  and psmdb.example.com  in the following

command:

Environment variables

Set AWS environment variables:

Connect to Percona Server for MongoDB:

AWS resource metadata

If your application is running on the AWS resource, it receives the credentials from the resource metadata.

To connect to Percona Server for MongoDB, run the command as follows:

$ mongosh 'mongodb://<aws_access_key_id>:

<aws_secret_access_key>:@psmdb.example.com/admin?

authSource=$external&authMechanism=MONGODB-AWS'

$ mongosh 'mongodb://<aws_access_key_id>:

<aws_secret_access_key>:@psmdb.example.com/admin?

authSource=$external&authMechanism=MONGODB-

AWS&authMechanismProperties=AWS_SESSION_TOKEN:<aws_session_token>'

export AWS_ACCESS_KEY_ID='<aws_access_key_id>'

export AWS_SECRET_ACCESS_KEY='<aws_secret_access_key>'

export AWS_SESSION_TOKEN='<aws_session_token>'

$ mongosh 'mongodb://psmdb.example.com/testdb?

authSource=$external&authMechanism=MONGODB-AWS'

$ mongosh --authenticationMechanism=MONGODB-AWS --

authenticationDatabase='$external'



Page 98

LDAP authorization
LDAP authorization allows you to control user access and operations in your database environment using

the centralized user management storage – an LDAP server. You create and manage user credentials and

permission information in the LDAP server. In addition, you create roles in the admin  database with the

names that exactly match the LDAP group Distinguished Name. These roles define what privileges the

users who belong to the corresponding LDAP group.

Supported authentication mechanisms
LDAP authorization is compatible with the following authentication mechanisms:

x.509 certificate authentication

Kerberos Authentication

Authentication and authorization with direct binding to LDAP

Authentication and authorization with direct binding to LDAP
You can configure Percona Server for MongoDB to communicate with the LDAP server directly to

authenticate and authorize users.

The advantage of using this mechanism is that it is easy to setup and does not require pre-creating users

in the dummy $external  database. Nevertheless, the --authenticationDatabase  connection

argument will still need to be specified as $external .

The following example illustrates the connection to Percona Server for MongoDB from the mongosh  shell:

> db.runCommand( { connectionStatus: 1 })

{

authInfo: {

authenticatedUsers: [

{

user: 'arn:aws:iam::00000000000:user/myUser',

db: '$external'

}

],

authenticatedUserRoles: [ { role: 'read', db: 'admin' } ]

},

ok: 1

}

$ mongosh -u "CN=alice,CN=Users,DC=engineering,DC=example,DC=com" -p --

authenticationDatabase '$external' --authenticationMechanism PLAIN



Page 99

The following diagram illustrates the authentication and authorization flow:

1. A user connects to the database providing their credentials

2. If required, Percona Server for MongoDB transforms the username to match the user in the LDAP

server according to the mapping rules specified for the --ldapUserToDNMapping  parameter.

3. Percona Server for MongoDB queries the LDAP server for the user identity and/or the LDAP groups

this user belongs to.

4. The LDAP server evaluates the query and if a user exists, returns their LDAP groups.

5. Percona Server for MongoDB authorizes the user by mapping the DN of the returned groups against

the roles assigned to the user in the admin  database. If a user belongs to several groups they receive

permissions associated with every group.

Username transformation

If clients connect to Percona Server for MongoDB with usernames that are not LDAP DN, these usernames

must be converted to the format acceptable by LDAP.

To achieve this, the --ldapUserToDNMapping  parameter is available in Percona Server for MongoDB

configuration.

The --ldapUserToDNMapping  parameter is a JSON string representing an ordered array of rules

expressed as JSON documents. Each document provides a regex pattern ( match  field) to match against a

provided username. If that pattern matches, there are two ways to continue:

If there is the substitution  value, then the matched pattern becomes the username of the user for

further processing.

If there is the ldapQuery  value, the matched pattern is sent to the LDAP server and the result of that

LDAP query becomes the DN of the user for further processing.

Both substitution  and ldapQuery  should contain placeholders to insert parts of the original username

– those placeholders are replaced with regular expression submatches found on the match  stage.



Page 100

So having an array of documents, Percona Server for MongoDB tries to match each document against the

provided name and if it matches, the name is replaced either with the substitution string or with the result

of the LDAP query.

Escaping special characters in usernames

A username can contain special characters in any of its parts. A special character is any character which

is not alphanumeric and not an ASCII character.

These characters must be escaped to formulate the correct LDAP query on the following stages:

To transform a username to the LDAP DN, and the matched pattern of a username must be first queried

in the LDAP server to become the DN.

To retrieve the groups a user is the member of.

Additionally, the username pattern to match for the transformation can have special characters that must

be escaped too.

What exactly characters require escaping depends on the Percona Server for MongoDB configuration.

Namely, on the configuration of the LDAP query template and the regular expressions inside the --

ldapUserToDNMapping  parameter.

The escaping rules are described in the following documents:

RFC 4514 | LDAP: Distinguished Names - Escaping in Distinguished Names

RFC 4515 | LDAP: String Representation of Search Filters - LDAP search filters utilize its own escaping

mechanism

RFC 4516 | LDAP: Uniform Resource Locator - General URL escaping rules.

Their explanation is out of the scope of the Percona Server For MongoDB documentation. Please review

the RFC directly or use your preferred LDAP resource.

To summarize, username escaping happens in the following cases:

When a username is defined as the LDAP DN and has special characters in any of its parts.

When a username must be transformed to the LDAP DN and the username pattern for the

transformation has special characters

When the transformed LDAP DN value contains special characters in any of its parts.

LDAP referrals

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4515
https://datatracker.ietf.org/doc/html/rfc4516


Page 101

As of version 6.0.2-1, Percona Server for MongoDB supports LDAP referrals as defined in RFC 4511

4.1.10. For security reasons, referrals are disabled by default. Double-check that using referrals is safe

before enabling them.

To enable LDAP referrals, set the ldapFollowReferrals  server parameter to true  using the

setParameter command or by editing the configuration file.

Connection pool

As of version 6.0.2-1, Percona Server for MongoDB always uses a connection pool to LDAP server to

process bind requests. The connection pool is enabled by default. The default connection pool size is 2

connections.

You can change the connection pool size either at the server startup or dynamically by specifying the

value for the ldapConnectionPoolSizePerHost  server parameter.

For example, to set the number of connections in the pool to 5, use the setParameter command:

Support for multiple LDAP servers

As of version 6.0.2-1, you can specify multiple LDAP servers for failover. Percona Server for MongoDB

sends bind requests to the first server defined in the list. When this server is down or unavailable, it sends

requests to the next server and so on. Note that Percona Server for MongoDB keeps sending requests to

this server even after the unavailable server recovers.

Specify the LDAP servers as a comma-separated list in the format <host>:<port>  for the –ldapServers

option.

You can define the option value at the server startup by editing the configuration file.

setParameter:

ldapFollowReferrals: true

Command line

Configuration file

> db.adminCommand( { setParameter: 1, ldapConnectionPoolSizePerHost: 5 } )

setParameter:

ldapConnectionPoolSizePerHost: 5

https://www.rfc-editor.org/rfc/rfc4511.txt
https://www.rfc-editor.org/rfc/rfc4511.txt
https://docs.mongodb.com/manual/reference/program/mongod/index.html#cmdoption-mongod-ldapservers


Page 102

You can change ldapServers  dynamically at runtime using the setParameter.

MongoDB Documentation:

Authenticate and Authorize Users Using Active Directory via Native LDAP

LDAP referrals

Configuration
For how to configure LDAP authorization with the native LDAP authentication, see Setting up LDAP

authentication and authorization using NativeLDAP.

Set up LDAP authentication and authorization
using NativeLDAP
This document describes an example configuration of LDAP authentication and authorization using direct

binding to an LDAP server (Native LDAP). We recommend testing this setup in a non-production

environment first, before applying it in production.

Assumptions
The setup of an LDAP server is out of scope of this document. We assume that you are familiar with

the LDAP server schema.

If usernames contain special characters, they must be escaped as described in RFC4514, RFC4515,

RFC4516. The usage of particular escaping rules depends on the part of the LDAP query which will

contain the substituted value. An explanation of escaping rules or LDAP queries is out of scope of this

setup. Please review the RFC directly or use your preferred LDAP resource.

You have the LDAP server up and running and it’s accessible to the servers with Percona Server for

MongoDB installed.

security:

authorization: "enabled"

ldap:

servers: "ldap1.example.net,ldap2.example.net"

> db.adminCommand( { setParameter: 1,

ldapServers:"localhost,ldap1.example.net,ldap2.example.net"} )

{ "was" : "ldap1.example.net,ldap2.example.net", "ok" : 1 }

See also

https://docs.mongodb.com/manual/tutorial/authenticate-nativeldap-activedirectory/
https://ldapwiki.com/wiki/LDAP%20Referral
https://www.ietf.org/rfc/rfc4514.txt
https://tools.ietf.org/html/rfc4515
https://tools.ietf.org/html/rfc4516


Page 103

This document primarily focuses on OpenLDAP used as the LDAP server and the examples are given

based on the OpenLDAP format. If you are using Active Directory, refer to the Active Directory

configuration section.

In examples below, we use anonymous binds to the LDAP server and the following OpenLDAP groups:

Prerequisites

To configure LDAP, you must have the sudo  privilege to the server with the {{ no such element: dict

object[‘psmdb_full_name’] }} installed.

If your LDAP server disallows anonymous binds, create the user that Percona Server for MongoDB will

use to connect to and query the LDAP server. Afterwards, set that username and password using the

security.ldap.bind.queryUser  and security.ldap.bind.queryPassword  parameters in the

mongod.conf  configuration file. If the username or any part of it ends up substituted as distinguished

name, it must be escaped according to RFC 4514. It may happen when:

A username is a fully distinguished name and can be substituted directly into the LDAP query

without using any transformation. The LDAP query is defined within the

security.ldap.authz.queryTemplate  configuration parameter.

A username represents an email address or a full name and requires transformation to LDAP DN.

The transformation rules are defined via the security.ldap.userToDNMapping  configuration

parameter. After the transformation, some parts of the username may become part of distinguished

name substituted into the security.ldap.authz.queryTemplate  parameter.

Setup procedure

Configure TLS/SSL connection for Percona Server for MongoDB

By default, Percona Server for MongoDB establishes the TLS connection when binding to the LDAP server

and thus, it requires access to the LDAP certificates. To make Percona Server for MongoDB aware of the

certificates, do the following:

1. Place the certificate in the certs  directory. The path to the certs  directory is:

dn: cn=testusers,dc=percona,dc=com

objectClass: groupOfNames

cn: testusers

member: cn=alice,dc=percona,dc=com   

dn: cn=otherusers,dc=percona,dc=com

objectClass: groupOfNames

cn: otherusers

member: cn=bob,dc=percona,dc=com

https://tools.ietf.org/html/rfc4514


Page 104

On RHEL / derivatives: /etc/openldap/certs/

On Debian / Ubuntu: /etc/ssl/certs/

2. Specify the path to the certificates in the ldap.conf  file:

Create roles for LDAP groups in Percona Server for MongoDB

Percona Server for MongoDB authorizes users based on LDAP group membership. For every group, you

must create the role in the admin  database with the name that exactly matches the of the LDAP group.

Percona Server for MongoDB maps the user’s LDAP group to the roles and determines what role is

assigned to the user. Percona Server for MongoDB then grants privileges defined by this role.

To create the roles, use the following command:

Percona Server for MongoDB configuration

 RHEL and derivatives

 Debian / Ubuntu

tee -a /etc/openldap/ldap.conf <<EOF

TLS_CACERT /etc/openldap/certs/my_CA.crt

EOF

tee -a /etc/openldap/ldap.conf <<EOF

TLS_CACERT /etc/ssl/certs/my_CA.crt

EOF

var admin = db.getSiblingDB("admin")

admin.createRole(

{

role: "cn=testusers,dc=percona,dc=com",

privileges: [],

roles: [ "readWrite"]

}

)

admin.createRole(

{

role: "cn=otherusers,dc=percona,dc=com",

privileges: [],

roles: [ "read"]

}

)



Page 105

Access without username transformation

This section assumes that users connect to Percona Server for MongoDB by providing their LDAP DN as

the username and the LDAP DNs don’t contain special characters. Otherwise, you must escape them

according to RFC 4514 | LDAP: Distinguished Names.

1. Edit the Percona Server for MongoDB configuration file (by default, /etc/mongod.conf ) and specify

the following configuration:

The {PROVIDED_USER}  variable substitutes the provided username before authentication or

username transformation takes place.

Replace ldap.example.com  with the hostname of your LDAP server. In the LDAP query template,

replace the domain controllers percona  and com  with those relevant to your organization.

2. Restart the mongod  service:

3. Test the access to Percona Server for MongoDB:

Access with username transformation

If users connect to Percona Server for MongoDB with usernames that are not LDAP, you need to transform

these usernames to be accepted by the LDAP server. If usernames contain special characters, these

characters must be escaped.

Using the --ldapUserToDNMapping  configuration parameter allows you to do this. You specify the match

pattern as a regexp to capture a username. Next, specify how to transform it - either to use a substitution

value or to query the LDAP server for a username.

security:

authorization: "enabled"

ldap:

servers: "ldap.example.com"

transportSecurity: tls

authz:

queryTemplate: "dc=percona,dc=com??sub?(&(objectClass=groupOfNames)

(member={PROVIDED_USER}))"

setParameter:

authenticationMechanisms: "PLAIN"

$ sudo systemctl restart mongod

$ mongosh -u "cn=alice,dc=percona,dc=com" -p "secretpwd" --

authenticationDatabase '$external' --authenticationMechanism 'PLAIN'

https://datatracker.ietf.org/doc/html/rfc4514


Page 106

If you don’t know what the Substitution or LDAP query string should be, please consult with the LDAP

administrators to figure this out.

Note that you can use only the LDAP query  or the Substitution  stage, and you cannot combine the

two.



Page 107

Substitution

1. Edit the Percona Server for MongoDB configuration file (by default, /etc/mongod.conf ) and specify

the userToDNMapping  parameter:

The {USER}  variable substitutes the username transformed during the userToDNMapping  stage.

Modify the given example configuration to match your deployment.

2. Restart the mongod  service:

3. Test the access to Percona Server for MongoDB:

LDAP query

1. Edit the Percona Server for MongoDB configuration file (by default, /etc/mongod.conf ) and specify

the userToDNMapping  parameter:

security:

authorization: "enabled"

ldap:

servers: "ldap.example.com"

transportSecurity: tls

authz:

queryTemplate: "dc=percona,dc=com??sub?(&(objectClass=groupOfNames)

(member={USER}))"

userToDNMapping: >-

[

{

match: "([^@]+)@percona\\.com",

substitution: "CN={0},DC=percona,DC=com"

}

]

setParameter:

authenticationMechanisms: "PLAIN"

$ sudo systemctl restart mongod

$ mongosh -u "alice@percona.com" -p "secretpwd" --authenticationDatabase

'$external' --authenticationMechanism 'PLAIN'



Page 108

Escaping special characters

The substitution  parameter

The {USER}  variable substitutes the username transformed during the userToDNMapping stage.

Modify the given example configuration to match your deployment, For example, replace

ldap.example.com  with the hostname of your LDAP server. Replace the domain controllers (DC)

percona  and com  with those relevant to your organization. Depending on your LDAP schema, further

modifications of the LDAP query may be required.

2. Restart the mongod  service:

3. Test the access to Percona Server for MongoDB:

security:

authorization: "enabled"

ldap:

servers: "ldap.example.com"

transportSecurity: tls

authz:

queryTemplate: "dc=percona,dc=com??sub?(&(objectClass=groupOfNames)

(member={USER}))"

userToDNMapping: >-

[

{

match: "([^@]+)@percona\\.com",

ldapQuery: "dc=percona,dc=com??sub?(&

(objectClass=organizationalPerson)(cn={0}))"

}

]

setParameter:

authenticationMechanisms: "PLAIN"

$ sudo systemctl restart mongod

mongosh -u "alice" -p "secretpwd" --authenticationDatabase '$external' --

authenticationMechanism 'PLAIN'



Page 109

The result of the substitution becomes the value of the {USER}  placeholder, which is a {USER}  value in

the security.ldap.authz.queryTemplate  parameter. Escaping requirements depend on the part of the

query template that will be substituted. For example, the result of the substitution can be a full

distinguished name or a part of it. In this case, according to RFC4514, you must escape special characters

in the substitution  parameter. Using other escaping mechanisms in this parameter is unnecessary

because {{ no such element: dict object[‘psmdb_full_name’] }} applies the necessary escaping as outlined

in RFC4515 and RFC4516 while substituting the security.ldap.authz.queryTemplate  parameter.

The ldapQuery  and queryTemplate  parameters

To properly escape special characters, follow these steps:

1. Escape special characters in full or partially distinguished names in the query according to RFC 4514.

2. Next, escape special characters within the LDAP search filter portion of the query, as outlined in RFC

4515.

3. Then, escape special characters in the query according to RFC 4516. Note that you do not need to

escape question marks if they are being used to separate parts of the query.

4. Finally, if you plan to use the result in a YAML configuration file, you may need to escape characters

according to the YAML specification

Active Directory configuration

Microsoft Active Directory uses a different schema for user and group definition. To illustrate Percona

Server for MongoDB configuration, we will use the following AD users:

The following are respective groups:

Use one of the given Percona Server for MongoDB configurations for user authentication and

authorization in Active Directory. Read about escaping special characters in usernames to modify the

configuration accordingly.

dn:CN=alice,CN=Users,DC=testusers,DC=percona,DC=com

userPrincipalName: alice@testusers.percona.com

memberOf: CN=testusers,CN=Users,DC=percona,DC=com

dn:CN=bob,CN=Users,DC=otherusers,DC=percona,DC=com

userPrincipalName: bob@otherusers.percona.com

memberOf: CN=otherusers,CN=Users,DC=percona,DC=com

dn:CN=testusers,CN=Users,DC=percona,DC=com

member:CN=alice,CN=Users,DC=testusers,DC=example,DC=com

dn:CN=otherusers,CN=Users,DC=percona,DC=com

member:CN=bob,CN=Users,DC=otherusers,DC=example,DC=com

https://www.ietf.org/rfc/rfc4514.txt
https://tools.ietf.org/html/rfc4515
https://tools.ietf.org/html/rfc4516
https://www.ietf.org/rfc/rfc4514.txt
https://www.ietf.org/rfc/rfc4515.txt
https://www.ietf.org/rfc/rfc4515.txt
https://www.ietf.org/rfc/rfc4516.txt
https://yaml.org/spec/


Page 110

No username transformation

1. Edit the /etc/mongod.conf  configuration file:

2. Restart the mongod  service:

3. Test the access to Percona Server for MongoDB:

Username substitution

1. Edit the /etc/mongod.conf  configuration file:

2. Restart the mongod  service:

ldap:

servers: "ldap.example.com"

authz:

queryTemplate: "DC=percona,DC=com??sub?(&(objectClass=group)

(member:1.2.840.113556.1.4.1941:={PROVIDED_USER}))"

setParameter:

authenticationMechanisms: "PLAIN"

$ sudo systemctl restart mongod

$ mongosh -u "CN=alice,CN=Users,DC=testusers,DC=percona,DC=com" -p "secretpwd"

--authenticationDatabase '$external' --authenticationMechanism 'PLAIN'

ldap:

servers: "ldap.example.com"

authz:

queryTemplate: "DC=percona,DC=com??sub?(&(objectClass=group)

(member:1.2.840.113556.1.4.1941:={USER}))"

userToDNMapping: >-

[

{

match: "([^@]+)@([^\\.]+)\\.percona\\.com",

substitution: "CN={0},CN=Users,DC={1},DC=percona,DC=com"

}

]

setParameter:

authenticationMechanisms: "PLAIN"



Page 111

Modify one of this example configuration to match your deployment.

This document is based on the following posts from Percona Database Performance Blog:

Percona Server for MongoDB LDAP Enhancements: User-to-DN Mapping by Igor Solodovnikov

Authenticate Percona Server for MongoDB Users via Native LDAP by Ivan Groenewold

3. Test the access to Percona Server for MongoDB:

LDAP query

1. Edit the /etc/mongod.conf  configuration file:

2. Restart the mongod  service:

3. Test the access to Percona Server for MongoDB:

$ sudo systemctl restart mongod

$ mongosh -u "alice@percona.com" -p "secretpwd" --authenticationDatabase

'$external' --authenticationMechanism 'PLAIN'

ldap:

servers: "ldap.example.com"

authz:

queryTemplate: "DC=percona,DC=com??sub?(&(objectClass=group)

(member:1.2.840.113556.1.4.1941:={USER}))"

userToDNMapping: >-

[

{

match: "(.+)",

ldapQuery: "dc=example,dc=com??sub?(&

(objectClass=organizationalPerson)(userPrincipalName={0}))"

}

]

setParameter:

authenticationMechanisms: "PLAIN"

$ sudo systemctl restart mongod

$ mongosh -u "alice" -p "secretpwd" --authenticationDatabase '$external' --

authenticationMechanism 'PLAIN'

https://www.percona.com/blog/2020/04/24/percona-server-for-mongodb-ldap-enhancements-user-to-dn-mapping/
https://www.percona.com/blog/2020/04/24/percona-server-for-mongodb-ldap-enhancements-user-to-dn-mapping/
https://www.percona.com/blog/2020/04/24/percona-server-for-mongodb-ldap-enhancements-user-to-dn-mapping/
https://www.percona.com/blog/2021/07/08/authenticate-percona-server-for-mongodb-users-via-native-ldap/


Page 112

Encryption

Data at rest encryption
Data at rest encryption for the WiredTiger storage engine in MongoDB was introduced in MongoDB

Enterprise version 3.2 to ensure that encrypted data files can be decrypted and read by parties with the

decryption key.

Differences from upstream
The data encryption at rest in Percona Server for MongoDB is introduced in version 3.6 to be compatible

with data encryption at rest interface in MongoDB. In the current release of Percona Server for MongoDB,

the data encryption at rest does not include support for Amazon AWS key management service. Instead,

Percona Server for MongoDB is integrated with HashiCorp Vault.

Starting with release 6.0.2-1, Percona Server for MongoDB supports the secure transfer of keys using Key

Management Interoperability Protocol (KMIP). This allows users to store encryption keys in their favorite

KMIP-compatible key manager when they set up encryption at rest.

Workflow

You can only enable data at rest encryption and provide all encryption settings on an empty database, when you start

the mongod instance for the first time. You cannot enable or disable encryption while the Percona Server for MongoDB

server is already running and / or has some data. Nor can you change the effective encryption mode by simply

restarting the server. Every time you restart the server, the encryption settings must be the same.

Important



Page 113

Each node of Percona Server for MongoDB generates a random, individual key for every database. It

encrypts every database with an individual key and puts those keys into the special, so-called key

database. Then each node of Percona Server for MongoDB randomly generates a unique master

encryption key and encrypts the key database with this key.

Thus, two types of keys are used for data at rest encryption:

Database keys to encrypt data. They are stored internally, near the data that they encrypt.

The master key to encrypt database keys. It is kept separately from the data and database keys and

requires external management.

To manage the master encryption key, use one of the supported key management options:

Integration with an external key server (recommended). Percona Server for MongoDB is integrated with

HashiCorp Vault for this purpose and supports the secure transfer of keys using Key Management

Interoperability Protocol (KMIP).

Local key management using a keyfile.

Note that you can use only one of the key management options at a time. However, you can switch from

one management option to another (e.g. from a keyfile to HashiCorp Vault). Refer to Migrating from Key

File Encryption to HashiCorp Vault Encryption section for details.

Important configuration options
Percona Server for MongoDB supports the encryptionCipherMode  option where you choose one of the

following cipher modes:

AES256-CBC

AES256-GCM

By default, the AES256-CBC  cipher mode is applied. The following example demonstrates how to apply

the AES256-GCM cipher mode when starting the mongod  service:

MongoDB Documentation: encryptionCipherMode Option

Encryption of rollback files

$ mongod ... --encryptionCipherMode AES256-GCM

See also

https://docs.mongodb.com/manual/reference/program/mongod/#cmdoption-mongod-encryptionciphermode


Page 114

Starting from version 3.6, Percona Server for MongoDB also encrypts rollback files when data at rest

encryption is enabled. To inspect the contents of these files, use perconadecrypt. This is a tool that you

run from the command line as follows:

When decrypting, the cipher mode must match the cipher mode which was used for the encryption. By

default, the --encryptionCipherMode  option uses the AES256-CBC  mode.

Parameters of perconadecrypt

Option Purpose

–-encryptionKeyFile The path to the encryption key file

--

encryptionCipherMode

The cipher mode for decryption. The supported values are AES256-CBC  or AES256-

GCM

--inputPath The path to the encrypted rollback file

--outputPath The path to save the decrypted rollback file

HashiCorp Vault integration
Percona Server for MongoDB is integrated with HashiCorp Vault. HashiCorp Vault supports different

secrets engines. Percona Server for MongoDB only supports the HashiCorp Vault back end with KV

Secrets Engine - Version 2 (API) with versioning enabled.

Percona Blog: Using Vault to Store the Master Key for Data at Rest Encryption on Percona Server for MongoDB

HashiCorp Vault Documentation: How to configure the KV Engine

$ perconadecrypt --encryptionKeyFile FILE --inputPath FILE --outputPath FILE [--

encryptionCipherMode MODE]

See also

https://www.percona.com/blog/2020/04/21/using-vault-to-store-the-master-key-for-data-at-rest-encryption-on-percona-server-for-mongodb/
https://www.vaultproject.io/api/secret/kv/kv-v2.html


Page 115

The following table lists the changes in the implementation of HashiCorp Vault integration with Percona Server for

MongoDB and the versions that introduced those changes:

Version Description

6.0.5-4 Key rotation in replica sets

6.0.18-15 Master key loss prevention

HashiCorp Vault parameters

Command line Configuration file Type Description

vaultServerName security.vault.serverName string The IP address of the Vault server

vaultPort security.vault.port int The port on the Vault server

vaultTokenFile security.vault.tokenFile string The path to the vault token file. The

token file is used by MongoDB to

access HashiCorp Vault. The vault

token file consists of the raw vault

token and does not include any

additional strings or parameters.

Example of a vault token file:

s.uTrHtzsZnEE7KyHeA797CkWA

vaultSecret security.vault.secret string The path to the Vault secret. The

Vault secret path format must be

<secrets_engine_mount_path>/d

ata/<custom_path>

where:

- <secrets_engine_mount_path>

is the path to the Key/Value Secrets

Engine v2;

- data  is the mandatory path prefix

required by Version 2 API;

- <custom_path>  is the path to the

specific secret.

Example: secret_v2/data/psmdb-

Version changes



Page 116

Command line Configuration file Type Description

test/rs1-27017

Starting with version 6.0.5-4, a

distinct Vault secret path for every

replica set member is no longer

mandatory. In earlier versions, it is

recommended to use different

secret paths for every database

node in the entire deployment to

avoid issues during the master key

rotation.

vaultSecretVersion security.vault.

secretVersion

unsigned

long

(Optional) The version of the Vault

secret to use

vaultRotateMasterKey security.vault.

rotateMasterKey

switch When enabled, rotates the master

key and exits

vaultServerCAFile security.vault.

serverCAFile

string The path to the TLS certificate file

vaultDisableTLSForTesting security.vault.

disableTLSForTesting

switch Disables secure connection to Vault

using SSL/TLS client certificates

vaultCheckMaxVersions security.vault.

checkMaxVersions

boolean Verifies that the current number of

secret versions has not reached the

maximum, defined by the

max_versions  parameter for the

secret or the secrets engine on the

Vault server. If the number of

versions has reached the maximum,

the server logs an error and exits.

Enabled by default. Available

starting with version 6.0.18-15.

Config file example

security:

enableEncryption: true

vault:

serverName: 127.0.0.1

port: 8200

tokenFile: /home/user/path/token

secret: secret/data/hello



Page 117

Starting with 6.0.18-15, Percona Server for MongoDB checks the number of the secrets on the Vault server

before adding a new one thus preventing the loss of the old master key. For these checks, Percona Server

for MongoDB requires read permissions for the secret’s metadata and the secrets engine configuration.

You configure these permissions within the access policy on the Vault server.

Find the sample policy configuration below:

During the first run of the Percona Server for MongoDB, the process generates a new random master

encryption key. Then, it wraps it into a secret and puts the latter on a Vault server at the configured path.

Vault increments the value of the current_version , associates the resulting value with a new secret,

and returns the version. Percona Server for MongoDB then saves the full path and the version in the

metadata and uses them later to get the key from the Vault server.

During the subsequent start, the server tries to read the master key from the Vault. If the configured secret

does not exist, Vault responds with the HTTP 404 error.

Namespaces
Namespaces are isolated environments in Vault that allow for separate secret key and policy

management.

You can use Vault namespaces with Percona Server for MongoDB. Specify the namespace(s) for the

security.vault.secret  option value as follows:

For example, the path to secret keys for namespace test  on the secrets engine secret  will be

test/secret/<my_secret_path> .

Targeting a namespace in Vault configuration

You have the following options of how to target a particular namespace when configuring Vault:

path "secret/data/*" {

capabilities = ["create","read","update","delete"]

}

path "secret/metadata/*" {

capabilities = ["read"]

}

path "secret/config" {

capabilities = ["read"]

}

<namespace>/secret/data/<secret_path>



Page 118

1. Set the VAULT_NAMESPACE environment variable so that all subsequent commands are executed

against that namespace. Use the following command to set the environment variable for the

namespace test :

2. Provide the namespace with the -namespace  flag in commands

HashiCorp Vault Documentation:

Namespaces

Secure Multi-Tenancy with Namespaces

Key rotation
Key rotation is replacing the old master key with a new one. This process helps to comply with regulatory

requirements.

To rotate the keys for a single mongod  instance, do the following:

1. Stop the mongod  process

2. Add --vaultRotateMasterKey  option via the command line or

security.vault.rotateMasterKey  to the config file.

3. Run the mongod  process with the selected option, the process will perform the key rotation and exit.

4. Remove the selected option from the startup command or the config file.

5. Start mongod  again.

Rotating the master key process also re-encrypts the keystore using the new master key. The new master

key is stored in the vault. The entire dataset is not re-encrypted.

Key rotation in replica sets

Starting with version 6.0.5-4, you can store the master key at the same path on every replica set member

in your entire deployment. Vault assigns different versions to the master keys stored at the same path.

The path and the version serve as the unique identifier of a master key. The mongod  server stores that

identifier and uses it to retrieve the correct master key from the Vault server during the restart.

In versions 6.0.4-3 and earlier, every mongod  node in a replica set in your entire deployment must have a

distinct path to the master keys on a Vault server.

$ export VAULT_NAMESPACE=test

See also

https://www.vaultproject.io/docs/enterprise/namespaces
https://learn.hashicorp.com/tutorials/vault/namespaces


Page 119

The key rotation steps are the following:

1. Rotate the master key for the secondary nodes one by one.

2. Step down the primary and wait for another primary to be elected.

3. Rotate the master key for the previous primary node.

Master key loss prevention

Starting with version 6.0.18-15, Percona Server for MongoDB checks if the number of secret versions has

reached the maximum (10 by default) before adding a new master key to the Vault server as a versioned

secret. You configure this number using the max_versions  parameter on the Vault server.

If the number of secrets reaches the maximum, Percona Server for MongoDB logs an error and exits. This

prevents the Vault server from dropping the oldest secret version and the encryption key it stores.

To continue, increase the maximum versions for the secret or the entire secrets engine on the Vault server,

then restart Percona Server for MongoDB. To check the number of secrets on the Vault server, ensure

Percona Server for MongoDB has read permissions for the secret’s metadata and the secrets engine

configuration.

Using the Key Management Interoperability
Protocol (KMIP)
Percona Server for MongoDB adds support for secure transfer of keys using the OASIS Key Management

Interoperability Protocol (KMIP). The KMIP implementation was tested with the PyKMIP server and the

HashiCorp Vault Enterprise KMIP Secrets Engine.

KMIP enables the communication between key management systems and the database server. KMIP

provides the following benefits:

Streamlines encryption key management

Eliminates redundant key management processes

Reduces the mean time to resolve (MTTR) compromised encryption key incidents via key state polling

https://docs.oasis-open.org/kmip/kmip-spec/v2.0/os/kmip-spec-v2.0-os.html
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/os/kmip-spec-v2.0-os.html
https://pykmip.readthedocs.io/en/latest/server.html
https://www.vaultproject.io/docs/secrets/kmip


Page 120

The following table lists the changes in the KMIP implementation in Percona Server for MongoDB and the versions that

introduced those changes:

Version Description

6.0.17-14 Key state polling.

Support for multiple KMIP servers
You can specify multiple KMIP servers for failover. On startup, Percona Server for MongoDB connects to

the servers in the order listed and selects the one with which the connection is successful.

Optional key identifier
Starting with version 6.0.2-1, the kmipKeyIdentifier  option is no longer mandatory. When left blank, the

database server creates a key on the KMIP server and uses that for encryption. When you specify the

identifier, the key with such an ID must exist on the key storage.

Starting with version 6.0.6-5, the master key is stored in a raw-byte format. If you set up Percona Server for MongoDB

6.0.6-5 with data-at-rest encryption using KMIP and wish to downgrade to some previous version, this downgrade is not

possible via binary replacement. Consider using the logical backup and restore via Percona Backup for MongoDB for

this purpose.

Key rotation
Percona Server for MongoDB supports master key rotation. This enables users to comply with data

security regulations when using KMIP.

Key state polling
When a Percona Server for MongoDB node generates a new master encryption key, it registers the key on

the KMIP server with the Pre-Active  state. Starting with version 6.0.17-14, Percona Server for MongoDB

automatically activates the master encryption key and periodically checks (polls) its state. If a master

encryption key for a node is not in the Active  state, the node reports an error and shuts down. This

process helps security engineers identify the nodes that require out-of-schedule master key rotation.

Version changes

Note

https://docs.percona.com/percona-backup-mongodb/usage/start-backup.html
https://www.mongodb.com/docs/manual/tutorial/rotate-encryption-key/#kmip-master-key-rotation


Page 121

Key state polling es enabled by default and is regulated by these configuration file options:

kmip.activateKeys  and kmip.keyStatePollingSeconds .

The following diagram illustrates the master key lifecycle with key state polling:



Page 122



Page 123

The master key state polling functionality is particularly useful in cluster deployments with hundreds of

nodes. If some master keys are compromised, security engineers change their state from Active  so that

the nodes encrypted with these keys identify themselves. This approach allows the security engineers to

rotate master keys only on the affected nodes instead of the entire cluster, thus reducing the mean time to

resolve (MTTR) compromised encryption key incidents.

Percona Blog: Improve the Security of a Percona Server for MongoDB Deployment with KMIP Key State Polling by

Konstantin Trushin.

KMIP parameters

Configuration

file

security.kmip.serverName

Command line kmipServerName

Type string

Description The hostname or IP address of the KMIP server. Multiple KMIP servers are supported as the

comma-separated list, e.g. kmip1.example.com,kmip2.example.com

Configuration

file

security.kmip.port

Command line kmipPort

See also



Page 124

Configuration

file

security.kmip.port

Type number

Description The port used to communicate with the KMIP server. When undefined, the default port 5696  is

used

Configuration

file

security.kmip.serverCAFile

Command line kmipServerCAFile

Type string

Description The path to the certificate of the root authority that issued the certificate for the KMIP server.

Required only if the root certificate is not trusted by default on the machine the database server

works on.

Configuration

file

security.kmip.clientCertificateFile

Command line kmipClientCertificateFile

Type string

Description The path to the PEM file with the KMIP client private key and the certificate chain. The database

server uses this PEM file to authenticate the KMIP server

Configuration

file

security.kmip.keyIdentifier

Command line kmipKeyIdentifier

Type string

Description Optional. The identifier of the KMIP key. If not specified, the database server creates a key on the

KMIP server and saves its identifier internally for future use. When you specify the identifier, the

key with such an ID must exist on the key storage. You can only use this setting for the first time

you enable encryption.



Page 125

Configuration

file

security.kmip.rotateMasterKey

Command line kmipRotateMasterKey

Type boolean

Description Controls master keys rotation. When enabled, generates the new master key and re-encrypts the

keystore.

Configuration

file

security.kmip.clientCertificatePassword

Command line kmipClientCertificatePassword

Type string

Description The password for the KMIP client private key or certificate. Use this parameter only if the KMIP

client private key or certificate is encrypted.

Configuration

file

security.kmip.connectRetries

Command line kmipConnectRetries

Type int

Description Defines how many times to retry the initial connection to the KMIP server. The max number of

connection attempts equals to connectRetries + 1 . Default: 0. The option accepts values

greater than zero.

Use it together with the connectTimeoutMS  parameter to control how long mongod  waits for the

response before making the next retry.

Configuration

file

security.kmip.connectTimeoutMS

Command line kmipConnectTimeoutMS

Type int



Page 126

Configuration

file

security.kmip.connectTimeoutMS

Description The time to wait for the response from the KMIP server. Min value: 1000. Default: 5000.

If the connectRetries  setting is specified, the mongod  waits up to the value specified with

connectTimeoutMS  for each retry.

Configuration

file

security.kmip.activateKeys

Command line kmipActivateKeys

Type boolean

Description When enabled, Percona Server for MongoDB activates a newly created master encryption key or

verifies that the existing master key is in the Active state at startup. It also initiates the key state

polling. Enabled by default. Available starting with version 6.0.17-14.

Configuration

file

security.kmip.keyStatePollingSeconds

Command line kmipKeyStatePollingSeconds

Type int

Description The period in seconds to check the state of the master encryption key. Default: 900. If the master

encryption key is not in the Active state, the node logs the error and shuts down. Available starting

with version 6.0.17-14.

Configuration

file

security.kmip.useLegacyProtocol

Command

line

kmipUseLegacyProtocol

Type boolean

Description When true , sets the KMIP protocol version 1.0 or 1.1. This option has no effect, because Percona

Server for MongoDB uses KMIP version 1.0 by default. It exists for compatibility with MongoDB

Enterprise Advanced to align configuration files and simplify the migration process to Percona

Server for MongoDB. Available starting with version 6.0.21-18.



Page 127

Configuration

Considerations

Make sure you have obtained the root certificate, and the keypair for the KMIP server and the mongod

client. For testing purposes you can use the OpenSSL to issue self-signed certificates. For production use

we recommend you use the valid certificates issued by the key management appliance.

Procedure

To enable data-at-rest encryption in Percona Server for MongoDB using KMIP, edit the

/etc/mongod.conf  configuration file as follows:

Alternatively, you can start Percona Server for MongoDB using the command line as follows:

Upgrade considerations

To version 6.0.17-14 and higher

Percona Server for MongoDB 6.0.17-14 and subsequent versions tolerate already existing Pre-Active

master keys as follows: if at startup Percona Server for MongoDB detects that the data directory is

encrypted with an existing master key in the Pre-Active  state, it logs a warning and continues to operate

as usual. In that case, Percona Server for MongoDB does not do periodic key state polling regardless the

value specified for the kmipKeyStatePollingSeconds  option. Read more about key state polling.

We recommend to either rotate a master encryption key or manually change the existing key to the Active

state. You can also explicitly set the security.kmip.activateKeys  configuration file option to ensure

that only the active keys are used. This one-time operation smooths the major upgrade flow.

security:

enableEncryption: true

kmip:

serverName: <kmip_server_name>

port: <kmip_port>

clientCertificateFile: </path/client_certificate.pem>

serverCAFile: </path/ca.pem>

keyIdentifier: <key_name>

$ mongod --enableEncryption \

--kmipServerName <kmip_servername> \

--kmipPort <kmip_port> \

--kmipServerCAFile <path_to_ca_file> \

--kmipClientCertificateFile <path_to_client_certificate> \

--kmipKeyIdentifier <kmip_identifier>

https://www.openssl.org/


Page 128

Local key management using a keyfile
The key file must contain a 32 character string encoded in base64. You can generate a random key and

save it to a file by using the openssl  command:

Then, as the owner of the mongod  process, update the file permissions: only the owner should be able to

read and modify this file. The effective permissions specified with the chmod  command can be:

600 - only the owner may read and modify the file

400 - only the owner may read the file.

Enable the data encryption at rest in Percona Server for MongoDB by setting these options:

--enableEncryption  to enable data at rest encryption

--encryptionKeyFile  to specify the path to a file that contains the encryption key

By default, Percona Server for MongoDB uses the AES256-CBC  cipher mode. If you want to use the

AES256-GCM  cipher mode, then use the --encryptionCipherMode  parameter to change it.

If mongod  is started with the --relaxPermChecks  option and the key file is owned by root , then

mongod  can read the file based on the group bit set accordingly. The effective key file permissions in this

case are:

440 - both the owner and the group can only read the file, or

640 - only the owner can read and the change the file, the group can only read the file.

All these options can be specified in the configuration file:

$ openssl rand -base64 32 > mongodb-keyfile

$ chmod 600 mongodb-keyfile

$ mongod ... --enableEncryption --encryptionKeyFile <fileName>

security:

enableEncryption: <boolean>

encryptionCipherMode: <string>

encryptionKeyFile: <string>

relaxPermChecks: <boolean>



Page 129

Migrate from key file encryption to HashiCorp
Vault encryption
The steps below describe how to migrate from the key file encryption to using HashiCorp Vault.

This is a simple guideline and it should be used for testing purposes only. We recommend to contact Percona

Consulting Services to assist you with migration in production environment.

Assumptions

We assume that you have installed and configured the vault server and enabled the KV Secrets Engine as

the secrets storage for it.

1. Stop mongod .

2. Insert the key from keyfile into the HashiCorp Vault server to the desired secret path.

3. Retrieve the key value from the keyfile

4. Insert the key into vault

!!! note

5. Edit the configuration file to provision the HashiCorp Vault configuration options instead of the key file

encryption options.

Note

$ sudo systemctl stop mongod

$ sudo cat /data/key/mongodb.key

d0JTFcePmvROyLXwCbAH8fmiP/ZRm0nYbeJDMGaI7Zw=

$ vault kv put secret/dc/psmongodb1

value=d0JTFcePmvROyLXwCbAH8fmiP/ZRm0nYbeJDMGaI7Zw=

Vault KV Secrets Engine uses different read and write secrets paths. To

insert data to Vault, specify the secret path without the `data/` prefix.

https://www.percona.com/services/consulting
https://www.percona.com/services/consulting


Page 130

6. Start the mongod  service

FIPS compliance
FIPS (Federal Information Processing Standard) is the US government computer security standard for

cryptography modules that include both hardware and software components. Percona Server for

MongoDB supports FIPS certified module for OpenSSL, enabling US organizations to introduce FIPS-

compliant encryption and thus meet the requirements towards data security.

The FIPS compliance in Percona Server for MongoDB is implemented in the same way, as in MongoDB

Enterprise. It is available Percona Server for MongoDB Pro out of the box starting with version 6.0.9-7. You

can also receive this functionality by building Percona Server for MongoDB from source code.

Platform support
Starting with Percona Server for MongoDB 6.0.9-7, you can run Percona Server for MongoDB in FIPS mode

on all supported operating systems. To use FIPS mode for Percona Server for MongoDB, your Linux

system must be configured with the OpenSSL FIPS certified module.

Note, that FIPS modules on Ubuntu 24.04 are not available yet as they are awaiting final certification by

CMVP.

See Configure MongoDB for FIPS in MongoDB documentation for configuration guidelines.

Auditing
Auditing allows administrators to track and log user activity on a MongoDB server. With auditing enabled,

the server will generate an audit log file. This file contains information about different user events

including authentication, authorization failures, and so on.

To enable audit logging, specify where to send audit events using the --auditDestination  option on the

command line or the auditLog.destination  variable in the configuration file.

security:

enableEncryption: true

vault:

serverName: 10.0.2.15

port: 8200

secret: secret/data/dc/psmongodb1

tokenFile: /etc/mongodb/token

serverCAFile: /etc/mongodb/vault.crt

$ sudo systemctl start mongod

https://www.percona.com/services/policies/percona-software-support-lifecycle#mongodb
https://www.mongodb.com/docs/v6.0/tutorial/configure-fips/


Page 131

If you want to output events to a file, also specify the format of the file using the --auditFormat  option

or the auditLog.format  variable, and the path to the file using the --auditPath  option or the

auditLog.path  variable.

To filter recorded events, use the --auditFilter  option or the auditLog.filter  variable.

For example, to log only events from a user named tim and write them to a JSON file

/var/log/psmdb/audit.json , start the server with the following parameters:

The options in the previous example can be used as variables in the MongoDB configuration file:

This example shows how to send audit events to the syslog . Specify the following parameters:

Alternatively, you can edit the MongoDB configuration file:

If you start the server with auditing enabled, you cannot disable auditing dynamically during runtime.

Audit options

$ mongod \

--dbpath data/db

--auditDestination file \

--auditFormat JSON \

--auditPath /var/log/psmdb/audit.json \

--auditFilter '{ "users.user" : "tim" }'

storage:

dbPath: data/db

auditLog:

destination: file

format: JSON

path: /var/log/psmdb/audit.json

filter: '{ "users.user" : "tim" }'

mongod \

--dbpath data/db

--auditDestination syslog \

storage:

dbPath: data/db

auditLog:

destination: syslog

Note



Page 132

The following options control audit logging:

Command

line

Configuration

file

Type Description

--

auditDestin

ation

auditLog.des

tination

string Enables auditing and specifies where to send audit events:

- console : Output audit events to stdout .

- file : Output audit events to a file specified by the --

auditPath  option in a format specified by the --

auditFormat  option.

- syslog : Output audit events to syslog

--

auditFilte

r

auditLog.fil

ter

string Specifies a filter to apply to incoming audit events, enabling

the administrator to only capture a subset of them. The

value must be interpreted as a query object with the

following syntax:

{ <field1>: <expression1>, ... }

Audit log events that match this query will be logged.

Events that do not match this query will be ignored.

For more information, see Audit filter examples

--

auditForma

t

auditLog.for

mat

string Specifies the format of the audit log file, if you set the --

auditDestination  option to file .

The default value is JSON . Alternatively, you can set it to

BSON

--

auditPath

auditLog.pat

h

string Specifies the fully qualified path to the file where audit log

events are written, if you set the --auditDestination

option to file .

If this option is not specified, then the auditLog.json  file

is created in the server’s configured log path. If log path is

not configured on the server, then the auditLog.json  file

is created in the current directory (from which mongod  was

started).

NOTE: This file will rotate in the same manner as the

system log path, either on server reboot or using the

logRotate  command. The time of rotation will be added

to the old file’s name.

Audit message syntax
Audit logging writes messages in JSON format with the following syntax:



Page 133

Parameter Description

atype Event type

ts Date and UTC time of the event

local Local IP address and port number of the instance

remote Remote IP address and port number of the incoming connection associated with the event

users Users associated with the event

roles Roles granted to the user

param Details of the event associated with the specific type

result Exit code ( 0  for success)

Audit filter examples
The following examples show the flexibility of audit log filters.

{

atype: <String>,

ts : { "$date": <timestamp> },

local: { ip: <String>, port: <int> },

remote: { ip: <String>, port: <int> },

users : [ { user: <String>, db: <String> }, ... ],

roles: [ { role: <String>, db: <String> }, ... ],

param: <document>,

result: <int>

}



Page 134

Standard query selectors

You can use query selectors, such as $eq , $in , $gt , $lt , $ne , and others to log multiple event types.

For example, to log only the dropCollection  and dropDatabase  events:

Regular expressions

Another way to specify multiple event types is using regular expressions.

For example, to filter all drop  operations:

auditLog:

destination: file

filter: '{atype: {$in: [

"authenticate", "authCheck",

"renameCollection", "dropCollection", "dropDatabase",

"createUser", "dropUser", "dropAllUsersFromDatabase", "updateUser",

"grantRolesToUser", "revokeRolesFromUser", "createRole", "updateRole",

"dropRole", "dropAllRolesFromDatabase", "grantRolesToRole",

"revokeRolesFromRole",

"grantPrivilegesToRole", "revokePrivilegesFromRole",

"replSetReconfig",

"enableSharding", "shardCollection", "addShard", "removeShard",

"shutdown",

"applicationMessage"

]}}'

Command line

Config file

--auditDestination file --auditFilter '{ atype: { $in: [ "dropCollection",

"dropDatabase" ] } }'

auditLog:

destination: file

filter: '{ atype: { $in: [ "dropCollection", "dropDatabase" ] } }'



Page 135

Read and write operations

By default, operations with successful authorization are not logged, so for this filter to work, enable

auditAuthorizationSuccess  parameter, as described in Enabling auditing of authorization success.

For example, to filter read and write operations on all the collections in the test  database:

The dot ( . ) after the database name in the regular expression must be escaped with two backslashes ( \\\\ ).

Enabling auditing of authorization success
By default, the audit system logs only authorization failures for the authCheck  action. The authCheck

action refers to the operations a user is or is not authorized to perform on the server according to the

privileges outlined in the roles assigned to the user.

To enable logging of authorization successes, set the auditAuthorizationSuccess  parameter to true .

Audit events will then be triggered by every command that requires authorization, including CRUD ones.

Command line

Config file

--auditDestination file --auditFilter '{ "atype" : /^drop.*/ }'

auditLog:

destination: file

filter: '{ "atype" : /^drop.*/ }'

Note

Command line

Config file

--setParameter auditAuthorizationSuccess=true --auditDestination file --

auditFilter '{ atype: "authCheck", "param.command": { $in: [ "find", "insert",

"delete", "update", "findandmodify" ] }, "param.ns": /^test\\./ } }'

auditLog:

destination: file

filter: '{ atype: "authCheck", "param.command": { $in: [ "find", "insert",

"delete", "update", "findandmodify" ] }, "param.ns": /^test\\./ } }'

setParameter: { auditAuthorizationSuccess: true }



Page 136

Enabling the auditAuthorizationSuccess  parameter heavily impacts the performance compared to logging only

authorization failures.

You can enable it on a running server using the following command:

To enable it on the command line, use the following option when running mongod  or mongos  process:

You can also add it to the configuration file as follows:

Warning

db.adminCommand( { setParameter: 1, auditAuthorizationSuccess: true } )

--setParameter auditAuthorizationSuccess=true

setParameter:

auditAuthorizationSuccess: true



Page 137

Profiling rate limit

Example of the audit message

{

"atype": "authCheck",

"ts": {

"$date": "2024-03-13T06:28:04.631-04:00"

},

"local": {

"ip": "172.17.0.2",

"port": 20040

},

"remote": {

"ip": "127.0.0.1",

"port": 52128

},

"users": [

{

"user": "admin",

"db": "admin"

}

],

"roles": [

{

"role": "clusterAdmin",

"db": "admin"

},

{

"role": "readWriteAnyDatabase",

"db": "admin"

},

{

"role": "userAdminAnyDatabase",

"db": "admin"

}

],

"param": {

"command": "insert",

"ns": "audit_authz_insert.foo",

"args": {

"insert": "foo",

"ordered": true,

"lsid": {

"id": {

"$binary": "nfnnHQo0RDOtI6722FlP5w==",

"$type": "04"

}

},

"$db": "audit_authz_insert"

}

},

"result": 0

}



Page 138

Percona Server for MongoDB can limit the number of queries collected by the database profiler to

decrease its impact on performance. Rate limit is an integer between 1 and 1000 and represents the

fraction of queries to be profiled. For example, if you set it to 20, then every 20th query will be logged. For

compatibility reasons, rate limit of 0 is the same as setting it to 1, and will effectively disable the feature

meaning that every query will be profiled.

The MongoDB database profiler can operate in one of three modes:

0 : Profiling is disabled. This is the default setting.

1 : The profiler collects data only for slow queries. By default, queries that take more than 100

milliseconds to execute are considered slow.

2 : Collects profiling data for all database operations.

Mode 1  ignores all fast queries, which may be the cause of problems that you are trying to find. Mode 2

provides a comprehensive picture of database performance, but may introduce unnecessary overhead.

With rate limiting you can collect profiling data for all database operations and reduce overhead by

sampling queries. Slow queries ignore rate limiting and are always collected by the profiler.

Comparing to the sampleRate  option
The sampleRate  option (= slowOpSampleRate config file option) is a similar concept to rateLimit . But

it works at different profile level, completely ignores operations faster than slowOpsThresholdMs  (a.k.a.

slowMs ), and affects the log file printing, too.

sampleRate rateLimit

Affects profiling level 1 yes no

Affects profiling level 2 no yes

Discards/filters slow ops yes no

Discards/filters fast ops no yes

Affects log file yes no

Example value of option 0.02 50

rateLimit  is a better way to have continuous profiling for monitoring or live analysis purposes.

sampleRate  requires setting slowOpsThresholdMs to zero if you want to sample all types of operations.

sampleRate  has an effect on the log file which may either decrease or increase the log volume.

https://docs.mongodb.com/manual/reference/program/mongod/index.html#cmdoption-mongod-slowopsamplerate


Page 139

Enabling the rate limit
To enable rate limiting, set the profiler mode to 2  and specify the value of the rate limit. Optionally, you

can also change the default threshold for slow queries, which will not be sampled by rate limiting.

For example, to set the rate limit to 100  (profile every 100th fast query) and the slow query threshold to

200  (profile all queries slower than 200 milliseconds), run the mongod  instance as follows:

To do the same at runtime, use the profile  command. It returns the previous settings and "ok" : 1

indicates that the operation was successful:

To check the current settings, run profile: -1 :

If you want to set or get just the rate limit value, use the profilingRateLimit  parameter on the admin

database:

If you want rate limiting to persist when you restart mongod , set the corresponding variables in the

MongoDB configuration file (by default, /etc/mongod.conf ):

The value of the operationProfiling.mode  variable is a string, which you can set to either off , slowOp , or all ,

corresponding to profiling modes 0 , 1 , and 2 .

$ mongod --profile 2 --slowms 200 --rateLimit 100

> db.runCommand( { profile: 2, slowms: 200, ratelimit: 100 } );

{ "was" : 0, "slowms" : 100, "ratelimit" : 1, "ok" : 1 }

> db.runCommand( { profile: -1 } );

{ "was" : 2, "slowms" : 200, "ratelimit" : 100, "ok" : 1 }

> db.getSiblingDB('admin').runCommand( { setParameter: 1, "profilingRateLimit":

100 } );

{ "was" : 1, "ok" : 1 }

> db.getSiblingDB('admin').runCommand( { getParameter: 1, "profilingRateLimit": 1

} );

{ "profilingRateLimit" : 100, "ok" : 1 }

operationProfiling:

mode: all

slowOpThresholdMs: 200

rateLimit: 100

Note



Page 140

Profiler collection extension
Each document in the system.profile  collection includes an additional rateLimit  field. This field

always has the value of 1  for slow queries and the current rate limit value for fast queries.

Log redaction
Percona Server for MongoDB can prevent writing sensitive data to the diagnostic log by redacting

messages of events before they are logged.

To enable log redaction, run mongod  with the --redactClientLogData  option.

Metadata such as error or operation codes, line numbers, and source file names remain visible in the logs.

Log redaction is important for complying with security requirements, but it can make troubleshooting and

diagnostics more difficult due to the lack of data related to the log event. For this reason, debug messages

are not redacted even when log redaction is enabled. Keep this in mind when switching between log

levels.

You can permanently enable log redaction by adding the following to the configuration file:

To enable log redaction at runtime, use the setParameter  command as follows:

If you enable the profiler, the query is still logged to the system.profile  collection without any redaction.

Example
This is an example of a log entry with redaction enabled:

Note

security:

redactClientLogData: true

> db.adminCommand(

{ setParameter: 1, redactClientLogData : true }

)

Note



Page 141

As you can see, the field names are still visible but the values are hidden. Some other fields like the

readPreference  are also hidden.

Additional text search algorithm - ngram

{

"t": {

"$date": "2025-02-11T15:37:16.902+00:00"

},

"s": "I",

"c": "COMMAND",

"id": 51803,

"svc": "S",

"ctx": "conn1592",

"msg": "Slow query",

"attr": {

"type": "command",

"isFromUserConnection": true,

"ns": "admin.mytestcol",

"collectionType": "admin",

"appName": "mongosh 2.3.2",

"command": {

"insert": "###",

"documents": [

{

"a": "###",

"b": "###",

"c": "###",

"_id": "###"

}

],

"ordered": "###",

"lsid": {

"id": "###"

},

"txnNumber": "###",

"$clusterTime": {

"clusterTime": "###",

"signature": {

"hash": "###",

"keyId": "###"

}

},

"$readPreference": {

"mode": "###"

},

"$db": "###"

}

...



Page 142

The ngram text search algorithm is useful for searching text for a specific string of characters in a field of

a collection. This feature can be used to find exact sub-string matches, which provides an alternative to

parsing text from languages other than the list of European languages already supported by MongoDB

Community’s full text search engine. It may also turn out to be more convenient when working with the

text where symbols like dash(‘-‘), underscore(‘_’), or slash(“/”) are not token delimiters.

Unlike MongoDB full text search engine, ngram search algorithm uses only the following token delimiter

characters that do not count as word characters in human languages:

Horizontal tab

Vertical tab

Line feed

Carriage return

Space

The ngram text search is slower than MongoDB full text search.

Usage
To use ngram, create a text index on a collection setting the default_language  parameter to ngram:

ngram search algorithm treats special characters like individual terms. Therefore, you don’t have to

enclose the search string in escaped double quotes ( \\" ) to query the text index. For example, to search

for documents that contain the date 2021-02-12 , specify the following:

However, both ngram and MongoDB full text search engine treat words with the hyphen-minus -  sign in

front of them as negated (e.g. “-coffee”) and exclude such words from the search results.

Administration

> db.collection.createIndex({name:"text"}, {default_language: "ngram"})

> db.collection.find({ $text: { $search: "2021-02-12" } })

https://en.wikipedia.org/wiki/N-gram


Page 143

Percona Server for MongoDB parameter tuning
guide
Percona Server for MongoDB includes several parameters that can be changed in one of the following

ways:

Parameters
See what parameters you can define in the parameters list.

Configure a systemd unit file for mongos
mongos  provides the entry point for an application to connect to a sharded cluster. To automate the

mongos  process management, you can use a system unit file. This file defines how the mongos  service

should behave when the system boots, shuts down, or encounters an issue.

 Configuration file

Use the setParameter  admonitions in the configuration file for persistent changes in production:

 Command line

Use the --setParameter  command line option arguments when running the mongod  process for

development or testing purposes:

 The setParameter  command

Use the setParameter  command on the admin  database to make changes at runtime:

setParameter:

<parameter>: <value>

$ mongod \

--setParameter <parameter>=<value>

> db = db.getSiblingDB('admin')

> db.runCommand( { setParameter: 1, <parameter>: <value> } )

https://www.mongodb.com/docs/v6.0/reference/parameters/#parameters


Page 144

This document provides a sample configuration for a mongos  systemd unit file that you can use and/or

modify to meet your specific needs. For security considerations, cluster components use a keyfile for

internal authentication.

Before you start

1. Ensure you have a working config server replica set and shards. Refer to the deployment

documentation  for guidelines

2. Check that you have fulfilled all prerequisites in your system:

/var/log/mongo directory is created

If SELinux is in use, /var/run/mongos.pid is added to the policy so mongos process can create it

3. Get the shared key file from any existing member of the cluster. Refer to the MongoDB documentation

 for how to create keyfiles.

Procedure
The steps are the following:

Create a mongos  user and a group. This user will own the mongos  process. Use the following

command:

1

$ groupadd mongos && sudo useradd -r -s /bin/false -g mongos mongos

Create the environment file at the path /etc/sysconfig/mongos  and specify the following

environment variables within:

2

/etc/sysconfig/mongos

OPTIONS="-f /etc/mongos.conf"

STDOUT="/var/log/mongo/mongos.stdout"

STDERR="/var/log/mongo/mongos.stderr"

Create a mongos  configuration file at the path /etc/mongos.conf . In the following example

configuration, replace the security.keyfile  with the path to your keyfile and specify the name of

the config server replica set and its members in the format hostname:port :

3

/etc/mongos.conf

https://www.mongodb.com/docs/manual/tutorial/deploy-sharded-cluster-with-keyfile-access-control/#create-the-config-server-replica-set
https://www.mongodb.com/docs/manual/tutorial/deploy-sharded-cluster-with-keyfile-access-control/#create-the-config-server-replica-set
https://www.mongodb.com/docs/manual/tutorial/deploy-sharded-cluster-with-keyfile-access-control/#create-the-config-server-replica-set
https://www.mongodb.com/docs/manual/tutorial/deploy-sharded-cluster-with-keyfile-access-control/#create-the-config-server-replica-set
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-security.keyFile
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-security.keyFile
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-security.keyFile
https://www.mongodb.com/docs/manual/reference/configuration-options/#mongodb-setting-security.keyFile


Page 145

# where to write logging data.

systemLog:

destination: file

logAppend: true

path: /var/log/mongo/mongos.log

processManagement:

fork: true

pidFilePath: /var/run/mongos.pid

# network interfaces

net:

port: 27017

bindIp: 127.0.0.1

security:

keyFile: /etc/mongos.key

sharding:

configDB:

configRS/cfg1.example.com:27017,cfg2.example.com:27017,cfg3.example.com:27017

Create the systemd unit file at the path /usr/lib/systemd/system/mongos.service . Specify the

following configuration:

4

$ tee /usr/lib/systemd/system/mongos.service <<EOF

[Unit]

Description=High-performance, schema-free document-oriented database

After=time-sync.target network.target    

[Service]

Type=forking

User=mongos

Group=mongos

PermissionsStartOnly=true

LimitFSIZE=infinity

LimitCPU=infinity

LimitAS=infinity

LimitNOFILE=64000

LimitNPROC=64000

EnvironmentFile=/etc/sysconfig/mongos

ExecStart=/usr/bin/env bash -c "/usr/bin/mongos $OPTIONS > ${STDOUT} 2>

${STDERR}"

PIDFile=/var/run/mongos.pid    

[Install]

WantedBy=multi-user.target

EOF



Page 146

Upgrade

Upgrading from Percona Server for MongoDB
5.0 to 6.0

Considerations

1. To upgrade Percona Server for MongoDB to version 6.0, you must be running version 5.0. Upgrades

from earlier versions are not supported.

2. Before upgrading your production Percona Server for MongoDB deployments, test all your

applications in a testing environment to make sure they are compatible with the new version. For

more information, see Compatibility Changes in MongoDB 6.0

3. If you are using data-at-rest-encryption with KMIP server, check the upgrade considerations

Grant read/write access for the mongos  user to the following directories and files:

6. Reload the systemd daemon to apply the changes:

5

$ sudo chown -R mongos:mongos /var/log/mongo \

/var/run/mongos.pid \

/etc/mongos.conf \

/etc/sysconfig/mongos \

<path-to-keyfile>

$ sudo systemctl daemon-reload

Start the mongos  service:6

$ sudo systemctl start mongos

https://www.mongodb.com/docs/v6.0/release-notes/6.0-compatibility/


Page 147

4. If you run Amazon Linux 2023, consider the following:

We build and test Percona Server for MongoDB only on the latest versions of Amazon Linux 2023.

Because of the way Amazon Linux updates their libraries, Percona Server for MongoDB works only on

specific Amazon Linux versions.

The following table shows Percona Server for MongoDB versions that are supported on specific

versions of Amazon Linux 2023:

Percona Server for MongoDB version Amazon Linux 2023 version

6.0.20-17 2023.6.x and earlier

6.0.21-18 2023.7.x

To upgrade Percona Server for MongoDB, make sure that you run a compatible version of Amazon

Linux 2023. Use the update instructions  to update the operating system.

We recommend to upgrade Percona Server for MongoDB from official Percona repositories using

percona-release  repository management tool and the corresponding package manager for your

system.

This document describes this method for the in-place upgrade (where your existing data and configuration

files are preserved).

Perform a full backup of your data and configuration files before upgrading.

Warning

https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.percona.com/percona-software-repositories/index.html
https://docs.percona.com/percona-software-repositories/index.html


Page 148

 Upgrade on Debian and Ubuntu

1. Stop the mongod  service:

2. Enable Percona repository for Percona Server for MongoDB 6.0:

3. Update the local cache:

4. Install Percona Server for MongoDB 6.0 packages:

5. Start the mongod  instance:

For more information, see Installing Percona Server for MongoDB on Debian and Ubuntu.

 Upgrade on Red Hat Enterprise Linux and derivatives

1. Stop the mongod  service:

2. Enable Percona repository for Percona Server for MongoDB 6.0:

3. Install Percona Server for MongoDB 6.0 packages:

4. Start the mongod  instance:

$ sudo systemctl stop mongod

$ sudo percona-release enable psmdb-60

$ sudo apt update

$ sudo apt install percona-server-mongodb

$ sudo systemctl start mongod

$ sudo systemctl stop mongod

$ sudo percona-release enable psmdb-60

$ sudo yum install percona-server-mongodb



Page 149

After the upgrade, Percona Server for MongoDB is started with the feature set of 5.0 version. Assuming

that your applications are compatible with the new version, enable 6.0 version features. Run the following

command against the admin  database:

MongoDB Documentation:

Upgrade a Standalone

Upgrade a Replica Set

Upgrade a Sharded Cluster

Upgrade from MongoDB Community Edition to
Percona Server for MongoDB
This document provides instructions for an in-place upgrade from MongoDB Community Edition to

Percona Server for MongoDB.

An in-place upgrade is done by keeping the existing data in the server and replacing the MongoDB

binaries. Afterwards, you restart the mongod  service with the same dbpath  data directory.

An in-place upgrade is suitable for most environments except the ones that use ephemeral storage and/or

host addresses.

Procedure

MongoDB creates a user that belongs to two groups, which is a potential security risk. This is fixed in Percona Server

for MongoDB: the user is included only in the mongod  group. To avoid problems with current MongoDB setups, existing

user group membership is not changed when you migrate to Percona Server for MongoDB. Instead, a new mongod  user

is created during installation, and it belongs to the mongod  group.

This procedure describes an in-place upgrade of a mongod  instance. If you are using data at rest

encryption, refer to the Upgrading to Percona Server for MongoDB with data at rest encryption enabled

section.

$ sudo systemctl start mongod

> db.adminCommand( { setFeatureCompatibilityVersion: "6.0" } )

See also

Note

https://docs.mongodb.com/manual/release-notes/6.0-upgrade-standalone/
https://docs.mongodb.com/manual/release-notes/6.0-upgrade-replica-set/
https://docs.mongodb.com/manual/release-notes/6.0-upgrade-sharded-cluster/


Page 150

Before starting the upgrade, we recommend to perform a full backup of your data.

Important



Page 151

 Upgrade on Debian and Ubuntu

1. Save the current configuration file as the backup:

2. Stop the mongod  service:

3. Check for installed packages:

Output:

4. Remove the installed packages:

5. Install Percona Server for MongoDB. If you a Percona Customer, you can install Percona Server for

MongoDB Pro

6. Verify that the configuration file includes correct options:

$ sudo mv /etc/mongod.conf /etc/mongod.conf.bkp

$ sudo systemctl stop mongod

$ sudo dpkg -l | grep mongod

ii  mongodb-org                      6.0.2                       amd64

MongoDB open source document-oriented database system (metapackage)

ii  mongodb-org-database             6.0.2                       amd64

MongoDB open source document-oriented database system (metapackage)

ii  mongodb-org-database-tools-extra 6.0.2                       amd64

Extra MongoDB database tools

ii  mongodb-org-mongos               6.0.2                       amd64

MongoDB sharded cluster query router

ii  mongodb-org-server               6.0.2                       amd64

MongoDB database server

ii  mongodb-org-shell                6.0.2                       amd64

MongoDB shell client

ii  mongodb-org-tools                6.0.2                       amd64

MongoDB tools

$ sudo apt remove \

mongodb-org \

mongodb-org-mongos \

mongodb-org-server \

mongodb-org-shell \

mongodb-org-tools



Page 152

Copy the required configuration options like custom dbPath/system log path, additional

security/replication or sharding options from the backup configuration file ( /etc/mongod.conf ) to

the current one /etc/mongodb.conf .

Make sure that the mongod  user has access to your custom paths. If not, provide it as follows:

Make sure the configuration file includes the following configuration:

Troubleshooting tip: The pidFilePath  setting in mongod.conf  must match the PIDFile  option

in the systemd mongod  service unit. Otherwise, the service will kill the mongod  process after a

timeout.

7. Restart the mongod  service:

 Upgrade on Red Hat Enterprise Linux and derivatives

1. Stop the mongod  service:

2. Check for installed packages:

Output:

$ sudo chown -R mongod:mongod <custom-dbPath>

$ sudo chown -R mongod:mongod <custom-systemLog.path>

processManagement:

fork: true

pidFilePath: /var/run/mongod.pid

$ sudo systemctl start mongod

$ sudo systemctl stop mongod

$ sudo rpm -qa | grep mongo

mongodb-org-shell-6.0.2-1.el8.x86_64

mongodb-org-database-6.0.0-1.el8.x86_64

mongodb-org-6.0.0-1.el8.x86_64

mongodb-database-tools-100.4.1-1.x86_64

mongodb-org-server-6.0.2-1.el8.x86_64

mongodb-org-mongos-6.0.2-1.el8.x86_64

mongodb-org-tools-6.0.0-1.el8.x86_64



Page 153

To upgrade a replica set or a sharded cluster, use the rolling restart method. It allows you to perform the

upgrade with minimum downtime. You upgrade the nodes one by one, while the whole cluster / replica set

remains operational.

3. Remove the installed packages:

4. Install Percona Server for MongoDB. If you a Percona Customer, you can install Percona Server for

MongoDB Pro

5. Verify that the configuration file includes correct options:

When you remove old packages, your existing configuration file is saved as

/etc/mongod.conf.rpmsave . Copy the required configuration options like custom dbPath/system

log path, additional security/replication or sharding options from the backup configuration file

( /etc/mongod.conf.rpmsave ) to the current one /etc/mongodb.conf .

Make sure that the mongod  user has access to your custom paths. If not, provide it as follows:

Make sure the configuration file includes the following configuration:

Troubleshooting tip: The pidFilePath  setting in mongod.conf  must match the PIDFile  option

in the systemd mongod  service unit. Otherwise, the service will kill the mongod  process after a

timeout.

6. Restart the mongod  service:

$ sudo yum remove \

mongodb-org-shell-6.0.2-1.el8.x86_64

mongodb-org-database-6.0.0-1.el8.x86_64

mongodb-org-6.0.0-1.el8.x86_64

mongodb-database-tools-100.4.1-1.x86_64

mongodb-org-server-6.0.2-1.el8.x86_64

mongodb-org-mongos-6.0.2-1.el8.x86_64

mongodb-org-tools-6.0.0-1.el8.x86_64

$ sudo chown -R mongod:mongod <custom-dbPath>

$ sudo chown -R mongod:mongod <custom-systemLog.path>

processManagement:

fork: true

pidFilePath: /var/run/mongod.pid

$ sudo systemctl start mongod



Page 154

MongoDB Documentation:

Upgrade a Replica Set

Upgrade a Sharded Cluster

Upgrading to Percona Server for MongoDB with data at rest
encryption enabled
Steps to upgrade from MongoDB 6.0 Community Edition with data encryption enabled to Percona Server

for MongoDB are different. mongod  requires an empty dbPath  data directory because it cannot encrypt

data files in place. It must receive data from other replica set members during the initial sync. Please refer

to the Switching storage engines for more information on migration of encrypted data. Contact us for

working at the detailed migration steps, if further assistance is needed.

Upgrade to Percona Server for MongoDB Pro
Are you a Percona Customer already and are you ready to enjoy all the benefits of Percona Server for

MongoDB Pro?

This document provides instructions how you can upgrade from Percona Server for MongoDB to Percona

Server for MongoDB Pro.

Get the access token to the Pro repository
As a Percona Customer, you have the access to the ServiceNow portal. To request the access token, do

the following:

1. In ServiceNow, click My Account and select Entitlements.

2. Select your entitlement.

3. If you are entitled for Pro builds, you will see the Token Management widget. Click the Get Percona

Builds Token button.

If you don’t see the widget, contact Percona Support.

4. Click Request Token button in the Request a Percona Pro Builds Token dialog window.

5. A token will be generated for you. You will also see the Customer ID. Copy both the Customer ID and

the token as you will use them to configure the Pro repository and install the software.

Procedure

See also

https://docs.mongodb.com/manual/release-notes/6.0-upgrade-replica-set/
https://docs.mongodb.com/manual/release-notes/6.0-upgrade-sharded-cluster/
https://www.percona.com/about-percona/contact#us


Page 155

 On Debian and Ubuntu

1. Stop the mongod  service

2. Install percona-release . If you have installed it before, upgrade  it to the latest version

3. Enable the repository. Choose your preferable method:

4. Install Percona Server for MongoDB Pro packages

5. Start the server

 On RHEL and derivatives

$ sudo systemctl stop mongod

 Command line

Run the following command and pass your credentials to the Pro repository:

 Configuration file

a. Create the /root/.percona-private-repos.config  configuration file with the following

content:

b. Enable the repository

$ sudo percona-release enable psmdb-60-pro release --user_name=<Your Customer

ID> --repo_token=<Your PRO repository token>

/root/.percona-private-repos.config

[psmdb-60-pro]

USER_NAME=<Your Customer ID>

REPO_TOKEN=<Your PRO repository token>

$ sudo percona-release enable psmdb-60-pro release

$ sudo apt install -y percona-server-mongodb-pro

$ sudo systemctl start mongod

https://docs.percona.com/percona-software-repositories/installing.html#__tabbed_1_1
https://docs.percona.com/percona-software-repositories/installing.html#__tabbed_1_1
https://docs.percona.com/percona-software-repositories/installing.html#__tabbed_1_1
https://docs.percona.com/percona-software-repositories/updating.html#__tabbed_1_1
https://docs.percona.com/percona-software-repositories/updating.html#__tabbed_1_1
https://docs.percona.com/percona-software-repositories/updating.html#__tabbed_1_1


Page 156

1. Stop the mongod  service

2. Install percona-release . If you have installed it before, upgrade  it to the latest version.

3. Enable the repository. Choose your preferable method:

4. Install Percona Server for MongoDB Pro packages

$ sudo systemctl stop mongod

 Command line

Run the following command and pass your credentials to the Pro repository:

 Configuration file

a. Create the /root/.percona-private-repos.config  configuration file with the following

content:

b. Enable the repository

$ sudo percona-release enable psmdb-60-pro release --user_name=<Your Customer

ID> --repo_token=<Your PRO repository token>

/root/.percona-private-repos.config

[psmdb-60-pro]

USER_NAME=<Your Customer ID>

REPO_TOKEN=<Your PRO repository token>

$ sudo percona-release enable psmdb-60-pro release

https://docs.percona.com/percona-software-repositories/installing.html#__tabbed_1_2
https://docs.percona.com/percona-software-repositories/installing.html#__tabbed_1_2
https://docs.percona.com/percona-software-repositories/installing.html#__tabbed_1_2
https://docs.percona.com/percona-software-repositories/updating.html#__tabbed_1_2
https://docs.percona.com/percona-software-repositories/updating.html#__tabbed_1_2
https://docs.percona.com/percona-software-repositories/updating.html#__tabbed_1_2


Page 157

Downgrade considerations on RHEL and derivatives
The downgrade to the basic build of Percona Server for MongoDB of version 6.0.12 and higher is done

automatically by installing the basic packages.

If you wish to downgrade from Percona Server for MongoDB Pro to the basic build of Percona Server for

MongoDB version lower than 6.0.12, do the following:

1. Remove the Pro packages

2. Install Percona Server for MongoDB basic packages of the desired version

Minor upgrade of Percona Server for MongoDB

5. Start the server

 On RHEL 8+ and derivatives

 On RHEL 7 and derivatives

a. Back up the /etc/mongod.conf  configuration file

b. Remove basic packages of Percona Server for MongoDB

c. Install Percona Server for MongoDB Pro packages

d. Restore the configuration file from the backup

$ sudo yum install -y percona-server-mongodb-pro --allowerasing

$ sudo cp /etc/mongod.conf /etc/mongod.conf.bkp

$ sudo yum remove percona-server-mongodb*

$ sudo yum install -y percona-server-mongodb-pro

$ sudo cp /etc/mongod.conf.bkp /etc/mongod.conf

$ sudo systemct start mongod

$ sudo yum remove percona-server-mongodb-pro*



Page 158

Upgrade considerations

1. If you are using data-at-rest-encryption with KMIP server, check the upgrade considerations

2. If you run Amazon Linux 2023, consider the following:

We build and test Percona Server for MongoDB only on the latest versions of Amazon Linux 2023.

Because of the way Amazon Linux updates their libraries, Percona Server for MongoDB works only on

specific Amazon Linux versions.

The following table shows Percona Server for MongoDB versions that are supported on specific

versions of Amazon Linux 2023:

Percona Server for MongoDB version Amazon Linux 2023 version

6.0.20-17 2023.6.x and earlier

6.0.21-18 2023.7.x

To upgrade Percona Server for MongoDB, make sure that you run a compatible version of Amazon

Linux 2023. Use the update instructions  to update the operating system.

Procedure
To upgrade Percona Server for MongoDB to the latest version, follow these steps:

To upgrade a replica set or a sharded cluster, use the rolling restart method. It allows you to perform the

upgrade with minimum downtime. You upgrade the nodes one by one, while the whole cluster / replica set

remains operational.

Uninstall Percona Server for MongoDB

Stop the mongod  service:1

$ sudo systemctl stop mongod

Install the latest version packages. Use the command relevant to your operating system.2

Start the mongod  service:3

$ sudo systemctl start mongod

https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html


Page 159

To completely remove Percona Server for MongoDB you need to remove all the installed packages, data

and configuration files. If you need the data, consider making a backup before uninstalling Percona Server

for MongoDB.

Follow the instructions, relevant to your operating system:



Page 160

 Uninstall on Debian and Ubuntu

You can remove Percona Server for MongoDB packages with one of the following commands:

apt remove  will only remove the packages and leave the configuration and data files.

apt purge  will remove all the packages with configuration files and data.

Choose which command better suits you depending on your needs.

1. Stop the mongod  server:

2. Remove the packages. There are two options.

 Uninstall on Red Hat Enterprise Linux and derivatives

1. Stop the mongod  service:

2. Remove the packages:

3. Remove the data and configuration files:

$ sudo systemctl stop mongod

 Keep the configuration and data files

 Delete configuration and data files

$ sudo apt remove percona-server-mongodb*

$ sudo apt purge percona-server-mongodb*

$ sudo systemctl stop mongod

$ sudo yum remove percona-server-mongodb*

$ sudo rm -rf /var/lib/mongodb

$ sudo rm -f /etc/mongod.conf



Page 161

Release notes

Percona Server for MongoDB 6.0 Release Notes

Percona Server for MongoDB 6.0.24-19 (2025-06-12)

Percona Server for MongoDB 6.0.21-18 (2025-04-22)

Percona Server for MongoDB 6.0.20-17 (2025-02-19)

Percona Server for MongoDB 6.0.19-16 (2024-11-28)

Percona Server for MongoDB 6.0.18-15 (2024-11-05)

Percona Server for MongoDB 6.0.17-14 (2024-09-18)

Percona Server for MongoDB 6.0.16-13 (2024-07-30)

Percona Server for MongoDB 6.0.15-12 (2024-04-30)

Percona Server for MongoDB 6.0.14-11 (2024-03-26)

Percona Server for MongoDB 6.0.13-10 (2024-02-20)

Percona Server for MongoDB 6.0.12-9 (2023-12-14)

Percona Server for MongoDB 6.0.11-8 (2023-10-19)

Percona Server for MongoDB 6.0.9-7 (2023-09-14)

Percona Server for MongoDB 6.0.8-6 (2023-08-08)

Percona Server for MongoDB 6.0.6-5 (2023-05-25)

Percona Server for MongoDB 6.0.5-4 (2023-03-29)

Percona Server for MongoDB 6.0.4-3 (2023-01-30)

This will remove all the packages and delete all the data files (databases, tables, logs, etc.). You might want to

back up your data before doing this in case you need the data later.

Warning



Page 162

Percona Server for MongoDB 6.0.3-2 (2022-12-07)

Percona Server for MongoDB 6.0.2-1 (2022-10-31)

Percona Server for MongoDB 6.0.24-19 (2025-
06-12)

Installation Upgrade from MongoDB Community

Percona Server for MongoDB 6.0.24-19 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition.

It is based on MongoDB 6.0.22 Community Edition through MongoDB 6.0.24 Community Edition and

supports the upstream protocols and drivers of all these versions.

Release Highlights

Packaging changes

Regular builds of Percona Server for MongoDB 6.0.24-19 are no longer supported on Ubuntu 20.04 (Focal

Fossa) as this operating system has reached end of life. However, if for some reason you’re not yet able to

upgrade to a newer Ubuntu OS and you’d like to still upgrade your Percona Server for MongoDB, contact us

- we’re here to make your databases run better!

Upstream Improvements

The bug fixes, provided by MongoDB Community Edition and included in Percona Server for MongoDB, are

the following:

SERVER-93120 - Fixed the issue with blocking Full Time Diagnostic Data Capture (FTDC) collection

when checking the state of the bacupCursor by using atomic mode instead of a lock

SERVER-82037 - Fixed the issue with exceeding the amount of memory allocated for index creation by

limiting the number of file iterators a sorter can create

SERVER-88400 - Fixed the issue with the shardedDataDistribution  aggregation stage returning null

value for timeseries when executed against bucket collections by computing metrics based on

timeseries.bucketCount  and timeseries.avgBucketSize

SERVER-92806 - Tracked nested paths through MatchExpression trees while encoding indexability for

plan cache entries

SERVER-95976 - Introduced the “matchCollectionUUIDForUpdateLookup” parameter to enforce

updateLookup  to only return a document from the correct collection in the changestream stage

https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.22---apr-14--2025
https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.24---may-17--2025
https://hubs.ly/Q03rRtDg0
https://jira.mongodb.org/browse/SERVER-93120
https://jira.mongodb.org/browse/SERVER-82037
https://jira.mongodb.org/browse/SERVER-88400
https://jira.mongodb.org/browse/SERVER-92806
https://jira.mongodb.org/browse/SERVER-95976


Page 163

WT-13283 - Fixed the bug where WiredTiger “cache aggressive mode” for better cache usage showed

the “garbage values” by applying the compare-and-swap operation to the code to avoid the value

dropping to -1(which is int_max  as evict_aggressive_score  is an unsigned int)

Find the full list of changes in the release notes of MongoDB 6.0.22 Community Edition through MongoDB

6.0.24 Community Edition.

Percona Server for MongoDB 6.0.21-18 (2025-
04-22)

Installation Upgrade from MongoDB Community

Percona Server for MongoDB 6.0.21-18 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition.

It is based on MongoDB 6.0.21 Community Edition and supports the upstream protocols and drivers.

Release Highlights

Improved compatibility for data-at-rest encryption using KMIP between
Percona Server for MongoDB with MongoDB Enterprise Advanced

We have added the security.kmip.useLegacyProtocol  configuration option to improve compatibility

of Percona Server for MongoDB with MongoDB Enterprise Edition. This enables you to migrate from

MongoDB Enterprise Advanced to Percona Server for MongoDB without having to modify the

configuration file. Since Percona Server for MongoDB uses KMIP protocol version 1.0 by default, it ignores

this option and prints the log message about it.

Audit log improvements

Enjoy a better user experience with these improvements to audit logging:

You can output logging information either to a syslog, a file or to print in the console. Now Percona

Server for MongoDB correctly parses the specified destination and creates a logging file only if you

explicitly defined the file  as its value. This helps keep the system clean from unnecessary files

By default, Percona Server for MongoDB saves the log file at the server’s configured log path or to a

directory from where mongod  was started if the server’s log path is undefined. You can also set a

custom path to output a log file. For both cases, Percona Server for MongoDB checks if the audit log

file can be opened for writing to ensure that logging information is written and available.

https://jira.mongodb.org/browse/WT-13283
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.22---apr-14--2025
https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.24---may-17--2025
https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.24---may-17--2025
https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.21---mar-17--2025


Page 164

Debug symbols added in Percona Server for MongoDB Pro
binaries
With this release, Percona Server for MongoDB Pro packages and binary tarballs include binaries that

contain debug symbols. This changes makes Percona Server for MongoDB Pro compatible for runtime

instrumentation to collect more detailed telemetry data and have improved monitoring.

By integrating Percona Server for MongoDB Pro with advanced monitoring tools that use debug symbols,

you have a deeper visibility into the server and receive detailed diagnostic data and logs.

Compatibility with Amazon Linux 2023
We build and test Percona Server for MongoDB only on the latest versions of Amazon Linux 2023.

Because of the way Amazon Linux updates their libraries, Percona Server for MongoDB 6.0.21-18 is

compatible only with Amazon Linux 2023.7.x and won’t work on Amazon Linux 2023.6.x and older.

To upgrade to 6.0.21-18, make sure that you run Amazon Linux 2023.7.x. Use the update instructions 

Upstream Improvements

The bug fixes, provided by MongoDB Community Edition and included in Percona Server for MongoDB, are

the following:

SERVER-94405 - Re-enable autosplitting on the sessions collection when downgrading to version 5.0.x

and setting the Feature Compatibility Version (FCV) to 5.0

SERVER-96252 - Fixed the issue with upgrading to a new FCV when there are range deletion tasks and

no hashed shard key index by setting the number of orphan documents to zero

SERVER-98720 - Added redaction of the BSON command for “Plan executor error” warning logs to

prevent the entire command text (possibly including PII) to end up in the logs

SERVER-100594 - Limited JSON recursion to 200 levels

SERVER-101298 - Removed acquisition of database and collection locks when acquiring the global lock

in compaction

SERVER-97842 - Fixed the issue with MongoDB CPU usage spikes with a newer version of OpenSSL on

RHEL 9

Find the full list of changes in the MongoDB 6.0.21 Community Edition release notes.

Changelog

New Features

https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://docs.aws.amazon.com/linux/al2023/ug/updating.html
https://jira.mongodb.org/browse/SERVER-94405
https://jira.mongodb.org/browse/SERVER-96252
https://jira.mongodb.org/browse/SERVER-98720
https://jira.mongodb.org/browse/SERVER-100594
https://jira.mongodb.org/browse/SERVER-101298
https://jira.mongodb.org/browse/SERVER-97842
https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.21---mar-17--2025


Page 165

PSMDB-1282 - Add the security.kmip.useLegacyProtocol  config file option to simplify migration

from MongoDB Enterprise Edition to Percona Server for MongoDB

Improvements

PSMDB-1620 - Do not create an empty audit log file if the log destination is not file

PSMDB-1621 - Check if an audit log file can be opened for writing at default path

Bugs Fixed

PSMDB-118 - Fixed the audit log file extension to be created based on the specified audit log format.

PSMDB-121 - Fixed the issue with the server failing to create an audit log file at the user provided path

when the process is forked and the relative path is given by converting it to an absolute path

PSMDB-1227 - Allowed setting a Distinguished Name(DN) value in attributes part of the LDAP query

PSMDB-1392 - Ensured that $backupCursor  returns oplogEnd  without holes (Thank you MingTotti

Guoming He for reporting this issue)

PSMDB-1614 - Replaced a hard-coded port number with a placeholder in percona-server-enable-

authentication.sh

PSMDB-1617 - Improved error messages when there are insufficient permissions to access client/CA

certificates for KMIP authentication

Percona Server for MongoDB 6.0.20-17 (2025-
02-19)

Installation Upgrade from MongoDB Community

Percona Server for MongoDB 6.0.20-17 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition.

It is based on MongoDB 6.0.20 Community Edition and supports the upstream protocols and drivers.

Release Highlights

Improved security for Docker images

Percona Server for MongoDB Docker image is now based on Universal Base Image (UBI) version 9, which

includes the latest security fixes. This makes the image compliant with the Red Hat certification and

ensures the seamless work of containers on Red Hat OpenShift Container Platform.

https://perconadev.atlassian.net/browse/PSMDB-1282
https://perconadev.atlassian.net/browse/PSMDB-1620
https://perconadev.atlassian.net/browse/PSMDB-1621
https://perconadev.atlassian.net/browse/PSMDB-118
https://perconadev.atlassian.net/browse/PSMDB-121
https://perconadev.atlassian.net/browse/PSMDB-1227
https://perconadev.atlassian.net/browse/PSMDB-1392
https://perconadev.atlassian.net/browse/PSMDB-1614
https://perconadev.atlassian.net/browse/PSMDB-1617
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.20---jan-15--2025


Page 166

Amazon Linux 2023 support

Percona Server for MongoDB is now available and fully supported on Amazon Linux 2023 (AL23),

simplifying its AWS deployment. You can safely run Percona Server for MongoDB on AL23 to build a

secure, stable, high-performance environment for developing and running cloud applications, with

seamless integration with various AWS services and development tools. You can download tarballs from

our Percona Software Downloads page. Navigate to the Percona Server for MongoDB page, select the

latest version, and Generic  Platform.

Upstream Improvements

The bug fixes, provided by MongoDB and included in Percona Server for MongoDB, are the following:

SERVER-93205 - Exposed number of prepareUnique indexes in serverStatus

SERVER-94144 - Fixed the behavior for the $documents pipeline by ensuring that enabled query stats

don’t change the validation rules.

SERVER-94592 - Checked that a sharded explain command with a value set for the lsid’s uid field in the

inner command invocation will ignore the lsid field and succeed so long as the user is authorized to run

the command being explained

SERVER-94635 - Made session refresh parameters configurable

SERVER-95445 - Enable CRL (Certificate Revocation List) checking for the entire certificate chain when

establishing an SSL connection.

Find the full list of changes in the MongoDB 6.0.20 Community Edition release notes.

Changelog

Bugs Fixed
PSMDB-1243 - Fixed the issue with starting Percona Server for MongoDB Docker container with data-

at-rest encryption configured via the configuration file

PSMDB-1573 - Added escaping of special characters when building LDAP queries

PSMDB-1567 - Fixed the issue with the crashing server during LDAP authentication when the LDAP

server is down

https://www.percona.com/downloads
https://jira.mongodb.org/browse/SERVER-93205
https://jira.mongodb.org/browse/SERVER-94144
https://jira.mongodb.org/browse/SERVER-94592
https://jira.mongodb.org/browse/SERVER-94635
https://jira.mongodb.org/browse/SERVER-95445
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.20---oct-24--2024
https://perconadev.atlassian.net/browse/PSMDB-1243
https://perconadev.atlassian.net/browse/PSMDB-1573
https://perconadev.atlassian.net/browse/PSMDB-1567


Page 167

2024 (versions 6.0.13-10 through
6.0.19-16)

Percona Server for MongoDB 6.0.19-16 (2024-
11-28)

Installation Upgrade from MongoDB Community

Percona Server for MongoDB 6.0.19-16 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition.

It is based on MongoDB 6.0.19 Community Edition and supports the upstream protocols and drivers.

Release Highlights

This release of Percona Server for MongoDB includes a fix for a security vulnerability CVE-2024-10921. This

vulnerability allowed an authorized user to trigger server crashes or receive the contents of the buffer over-reads of the

server memory by sending specially crafted requests that constructed malformed BSON in MongoDB. The issue is fixed

and included in Percona Server for MongoDB 6.0.19-16. If you wish to upgrade to the following major version, the fix is

also included in Percona Server for MongoDB 7.0.15-9.

Users running any minor version of Percona Server for MongoDB 6.0.x before 6.0.19-16 should upgrade to this version

as soon as possible.

Upstream Improvements

The bug fixes, provided by MongoDB and included in Percona Server for MongoDB, are the following:

Important

https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.19---oct-24--2024
https://nvd.nist.gov/vuln/detail/CVE-2024-10921


Page 168

SERVER-96419 - Fixed the issue with improper neutralization of null bytes that may have led to buffer

over-reads in MongoDB Server.

SERVER-95279 - Use a new C++ type for BSON field names to ensure validity.

Find the full list of changes in the MongoDB 6.0.19 Community Edition release notes.

Percona Server for MongoDB 6.0.18-15 (2024-
11-05)

Installation

Percona Server for MongoDB 6.0.18-15 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition 6.0.18.

It is based on MongoDB 6.0.18 Community Edition and supports the upstream protocols and drivers.

Release Highlights

Prevent master encryption key loss on the Vault server

Before Percona Server for MongoDB puts a new master encryption key to the Vault server as the versioned

secret, it now checks if the secret’s version reached the defined maximum (10 by default). This prevents

the loss of the old secret and the master encryption key it stores on the Vault server.

Make sure Percona Server for MongoDB has read permissions for the secret’s metadata and the secrets

engine configuration. To learn more, refer to the documentation.

Join Percona Squad

Participate in monthly SWAG raffles, get an early access to new product features and invite-only “ask me

anything” sessions with database performance experts. Interested? Fill in the form at

squad.percona.com/mongodb.

Upstream Improvements

SERVER-70508 - Added current thread count to extra_info in serverStatus on Linux

SERVER-94166 - Disabled slot-based query execution engine (SBE query engine) in v6.0

SERVER-74072 - Ensured that JournalFlusher is run on ServiceContext it is bound to

Changelog

https://jira.mongodb.org/browse/SERVER-96419
https://jira.mongodb.org/browse/SERVER-95279
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.19---oct-24--2024
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.18---sep-30--2024
https://jira.mongodb.org/browse/SERVER-70508
https://jira.mongodb.org/browse/SERVER-94166
https://jira.mongodb.org/browse/SERVER-74072


Page 169

Improvements

PSMDB-1441 - Fixed the issue with master encryption keys getting lost when the number of created

secrets exceeds the threshold by preventing a new secret creation and alerting users about it.

Percona Server for MongoDB 6.0.17-14 (2024-
09-18)

Installation

Percona Server for MongoDB 6.0.17-14 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition 6.0.17.

It is based on MongoDB 6.0.17 Community Edition and supports the upstream protocols and drivers.

Release Highlights

Reduce mean time to resolve (MTTR) compromised encryption key
incidents in KMIP

Starting with this release, Percona Server for MongoDB automatically activates all new master encryption

keys at startup and periodically checks (polls) their status in a KMIP server. If a master encryption key for

a node transitions to the state other than Active, the node reports an error and shuts down. This method

allows security engineers to quickly identify which nodes require out-of-schedule master key rotation, such

as in the case of compromised keys, without needing to rotate keys for the entire cluster.

Learn more about key state polling from the documentation

Upstream Improvements

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-85892 - Fixed the error in the $merge  operation produced by the pipeline after the

$documents  stage by correcting the namespace for pipeline validation

SERVER-91195 - Provided a generic backportable solution not to miss top-level timeseries collection

options

SERVER-91362 - Fixed performance issues by not copying a JavaScript “scope” object if a cached

JsExecution object already exists in a query thread

SERVER-91406 - Allowed the $match  aggregation stage to move ahead of mongoS change stream

stages

https://perconadev.atlassian.net/browse/PSMDB-1441
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.17---aug-21--2024
https://jira.mongodb.org/browse/SERVER-85892
https://jira.mongodb.org/browse/SERVER-91195
https://jira.mongodb.org/browse/SERVER-91362
https://jira.mongodb.org/browse/SERVER-91406


Page 170

WT-12708 - Fixed the issue with ineffective queuing of the pages by the eviction server in WoredTiger

by introducing retries to find the ref in memory and thus avoiding returning NULL from the random

descent function.

Find the full list of new features and improvements in the release notes for MongoDB 6.0.17 Community

Edition.

Packaging Notes
Percona Server for MongoDB 6.0.17-14 is no longer supported for Ubuntu 18.04 (Bionic Beaver), Debian

10 and Red Hat Enterprise 7 and derivatives as these operating systems reached End-Of-Life.

Changelog

Improvements

PSMDB-1283 - Add the ability to activate master encryption keys in KMIP server and check their state.

Percona Server for MongoDB 6.0.16-13 (2024-
07-30)

Installation

Percona Server for MongoDB 6.0.16-13 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition 6.0.16.

It is based on MongoDB 6.0.16 Community Edition and supports the upstream protocols and drivers.

Release Highlights
This release of Percona Server for MongoDB includes the enhanced telemetry feature and provides

comprehensive information about how telemetry works, its components and metrics as well as

updated methods how to disable telemetry. Read more in Telemetry on Percona Server for MongoDB

Tarballs are now available for each supported operating system individually and no longer include built-

in libraries. This change reduces the tarball download size and increases their security by simplifying

updates for required dependencies.

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-79637 - Fixed the issue with the aggregation pipeline in MongoDB when using the $lookup

stage  with a time series foreign collection using a correlated predicate

https://jira.mongodb.org/browse/WT-12708
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.17---aug-21--2024
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.17---aug-21--2024
https://perconadev.atlassian.net/browse/PSMDB-1283
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.16---jun-28--2024
https://jira.mongodb.org/browse/SERVER-79637


Page 171

SERVER-86474 - Fixed the bug with the replaying oplog updates during mongosync by preserving the

zero-valued timestamps.

SERVER-89625 - Improve handling of directoryPerDb and wiredTigerDirectoryForIndexes to not insert

directories as key when reporting namespaces and UUIDs during a backup

WT-10807 - Fixed the issue with performance regression by skipping in-memory deleted pages as part

of the tree walk on each execution.

WT-12609 - Improved checkpoint cleanup and page eviction logic to prevent their unnecessary

slowdown by evicting the internal pages read by the checkpoint like a regular page.

Find the full list of new features and improvements in the release notes for MongoDB 6.0.16 Community

Edition.

Packaging notes
Percona Server for MongoDB 6.0.16-13 is available on Ubuntu 24.04 (Noble Numbat)

Percona Server for MongoDB 6.0.15-12 (2024-
04-30)

Installation

Percona Server for MongoDB 6.0.15-12 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition 6.0.15

It is based on MongoDB 6.0.15 Community Edition and supports the upstream protocols and drivers.

Release Highlights
A number of issues with sharded multi-document transactions in sharded clusters of 2 or more shards

have been identified that result in returning incorrect results and missing reads and writes. The issues

occur when the transactions’ metadata is being concurrently modified by using the following operations:

moveChunk , moveRange , movePrimary , renameCollection , drop , and reshardCollection .

The data is affected when using the following functionalities:

Sharded multi-document transactions

Queryable encryption

https://jira.mongodb.org/browse/SERVER-86474
https://jira.mongodb.org/browse/SERVER-89625
https://jira.mongodb.org/browse/WT-10807
https://jira.mongodb.org/browse/WT-12609
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.16---jun-28--2024
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.16---jun-28--2024
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.15---apr-18--2024


Page 172

The issues are fully fixed in MongoDB 4.4.29, 5.0.25, 6.0.14, 7.0.8, and are included in Percona Server for

MongoDB 4.4.29-28, 5.0.26-22,6.0.14-11 and 7.0.8-5. If you are using sharded multi-document

transactions or queryable encryption, upgrade to Percona Server for MongoDB 6.0.14-11 or later versions

as soon as possible. Please follow closely the upstream recommendations for mitigation and remediation

outlined in Sharded multi-document transactions may perform operations using inconsistent sharding

metadata alert.

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-72703 - Changed the requirement to use exclusive write lock to intent exclusive write lock that

doesn’t prevent reading from a collection during the $out stage when running the rename collection

command.

SERVER-78556 - Fixed the issue with the replication lag by changing the

internalInsertMaxBatchSize  default value to 64.

SERVER-83602 - Fixed the issue with the match expression optimization for the $or to an $in rewrite by

avoiding creating directly nested $or.

SERVER-80363 - Explicitly stated that the missing w field from write concern object will be filled with

default write concern value

Find the full list of new features and improvements in the release notes for MongoDB 6.0.15 Community

Edition.

Bugs Fixed
PSMDB-1528 - Fixed the issue with the server crash when using LDAP authentication by ensuring that

LDAP connections borrowed by a client thread are not disposed.

Percona Server for MongoDB 6.0.14-11 (2024-
03-26)

Installation

Percona Server for MongoDB 6.0.14-11 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition 6.0.14

It is based on MongoDB 6.0.14 Community Edition and supports the upstream protocols and drivers.

https://www.mongodb.com/alerts/critical-alert-sharding-txn-issues-apr-2024
https://www.mongodb.com/alerts/critical-alert-sharding-txn-issues-apr-2024
https://jira.mongodb.org/browse/SERVER-72703
https://jira.mongodb.org/browse/SERVER-78556
https://jira.mongodb.org/browse/SERVER-83602
https://jira.mongodb.org/browse/SERVER-80363
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.15---apr-18--2024
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.15---apr-18--2024
https://perconadev.atlassian.net/browse/PSMDB-1528
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.14---feb-28--2024


Page 173

Due to CVE-2024-1351, in all MongoDB versions prior to 4.4.29, the mongod  server allows incoming connections to skip

peer certificate validation which results in untrusted connections to succeed. This issue occurs when the mongod  is

started with TLS enabled ( net.tls.mode  set to allowTLS , preferTLS , or requireTLS ) and without a

net.tls.CAFile  configured. For details, see SERVER-72839.

The issue is fixed upstream in versions 4.4.29, 5.0.25, 6.0.14 and 7.0.6 and in Percona Server for MongoDB 4.4.29-28,

5.0.25-22, 6.0.14-11 and 7.0.7-4. Now, configuring MongoDB to use TLS requires specifying the value for the --

tlsCAFile  flag, the net.tls.CAFile configuration option, or the tlsUseSystemCA  parameter.

If you are using TLS in your deployment, it is strongly recommended to upgrade to the latest versions of Percona Server

for MongoDB.

Release Highlights
Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-72839 - Fixed the issue with missing peer certificate validation if neither CAFile nor

clusterCAFile is provided.

SERVER-82353 - Fixed the issue with multi-document transactions missing documents when the

movePrimary operation runs concurrently by detecting placement conflicts in multi-document

transactions.

SERVER-83119 - Allow a clustered index scan in a clustered collection if a notablescan option is

enabled.

SERVER-83145 - Fixed tracking memory usage in SharedBufferFragment to prevent out of memory

issues in the WiredTiger storage engine.

SERVER-83564 - Add an index on the process field for the config.locks  collection to ensure update

operations on it are completed even in heavy loaded deployments.

WT-12077 - Fixed the Incorrect hardware checksum calculation on zSeries for buffers on stack.

Find the full list of new features and improvements in the release notes for MongoDB 6.0.14 Community

Edition.

Bugs Fixed
PSMDB-1434 - Fixed the auditing behavior by removing excessive logging for CRUD operations

Percona Server for MongoDB 6.0.13-10 (2024-
02-20)

Warning

https://www.cve.org/CVERecord?id=CVE-2024-1351
https://jira.mongodb.org/browse/SERVER-72839
https://jira.mongodb.org/browse/SERVER-72839
https://jira.mongodb.org/browse/SERVER-82353
https://jira.mongodb.org/browse/SERVER-83119
https://jira.mongodb.org/browse/SERVER-83145
https://jira.mongodb.org/browse/SERVER-83564
https://jira.mongodb.org/browse/WT-12077
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.14---feb-28--2024
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.14---feb-28--2024
https://perconadev.atlassian.net/browse/PSMDB-1434


Page 174

Installation

Percona Server for MongoDB 6.0.13-10 is an enhanced, source-available, and highly-scalable database

that is a fully-compatible, drop-in replacement for MongoDB Community Edition 6.0.13

It is based on MongoDB 6.0.13 Community Edition and supports the upstream protocols and drivers.

Release Highlights

Percona Server for MongoDB packages are available for ARM64 architectures, enabling users to install

it on premises. The ARM64 packages are available for the following operating systems:

Ubuntu 20.04 (Focal Fossa)

Ubuntu 22.04 (Jammy Jellyfish)

Red Hat Enterprise Linux 8 and compatible derivatives

Red Hat Enterprise Linux 9 and compatible derivatives

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-33494 - Removed size storer entries upon collection drop

SERVER-50792 - Improved shard key index error messages by adding detailed information about an

invalid index.

SERVER-70155 - Improved slow query logging by adding the duration between a write operation getting

a commit timestamp and actually committing. This helps identify issues where operations are

committing slowly and are slowing down replication.

SERVER-77506 - Fixed the issue with data and ShardVersion mismatch on sharded multi-document

transactions by exposing the maxValidAfter timestamp alongside the shardVersion

SERVER-83091 - Fixed the issue with infinite loop during plan enumeration triggered by the $or  queries

Find the full list of new features and improvements in the release notes for MongoDB 6.0.13 Community

Edition.

Packaging changes
Percona Server for MongoDB 6.0.13-10 is no longer available on Ubuntu 18.04 (Bionic Beaver).

https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.13---jan-18--2024
https://jira.mongodb.org/browse/SERVER-33494
https://jira.mongodb.org/browse/SERVER-50792
https://jira.mongodb.org/browse/SERVER-70155
https://jira.mongodb.org/browse/SERVER-77506
https://jira.mongodb.org/browse/SERVER-83091
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.13---jan-18--2024
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.13---jan-18--2024


Page 175

2023 (versions 6.0.5-4 through
6.0.12-9)

Percona Server for MongoDB 6.0.12-9 (2023-12-
14)

Installation

Percona Server for MongoDB 6.0.12-9 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB Community Edition 6.0.12

It is based on [MongoDB 6.0.12 Community Edition and supports the upstream protocols and drivers.

Release Highlights

AWS IAM authentication is now generally available, enabling you to use this functionality in production

environments.

Percona Server for MongoDB now includes telemetry that fills in the gaps in our understanding of how

you use Percona Server for MongoDB to improve our products. Participation in the anonymous program

is optional. You can opt-out if you prefer not to share this information. Read more about Telemetry.

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-80203 - Fixed the routing issue with sharded time series collections which could result in

metadata inconsistency. The issue occurred when the documents that have the shard key containing

the embedded object composed of multiple fields are routed to an incorrect shard and become

orphanated. As a result orphanated documents may not be returned when queried through the mongos

https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.12---nov-13--2023
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203


Page 176

and/or may be deleted. The issue affects time series sharded collections starting in MongoDB version

5.0.6 through versions 5.0.21, 6.0.11 and 7.0.2.

If you are using time series collections, upgrade to MongoDB 6.0.12 or Percona Server for MongoDB

6.0.12-9 as soon as possible. Please follow closely the upstream recommendations to identify and

preserve orphanated documents.

SERVER-69244 - Fixed the behaviour of the $merge  aggregation stage on sharded clusters when the

default read concern has been set to “majority”

SERVER-81295 - Fixed the issue with the migration of change stream pipelines to use v2 resume tokens

instead of v1

SERVER-81966 - Fixed the issue that caused the modification of the original ChunkMap vector during

the chunk migration and that could lead to data loss. The issue affects MongoDB versions 4.4.25,

5.0.21, 6.0.10 through 6.0.11 and 7.0.1 through 7.0.2. Requires stopping all chunk merge activities and

restarting all the binaries in the cluster (both mongod  and mongos ).

WT-11564 - Fixed the rollback-to-stable behavior to read the newest transaction value only when it

exists in the checkpoint.

Find the full list of new features and improvements in the release notes for MongoDB 6.0.12 Community

Edition.

Percona Server for MongoDB 6.0.11-8 (2023-10-
19)

Installation

Percona Server for MongoDB 6.0.11-8 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB 6.0.10 Community Edition and MongoDB 6.0.11

Community Edition.

It supports protocols and drivers of both MongoDB 6.0.10 and MongoDB 6.0.11

https://jira.mongodb.org/browse/SERVER-69244
https://jira.mongodb.org/browse/SERVER-81295
https://jira.mongodb.org/browse/SERVER-81966
https://jira.mongodb.org/browse/WT-11564
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.12---nov-13--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.12---nov-13--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.10---sep-14--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.11---oct-11--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.11---oct-11--2023


Page 177

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Release Highlights
You can now configure the retry behavior for Percona Server for MongoDB to connect to the KMIP

server when using data-at-rest encryption.

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-71627 - Improved performance of updating the routing table and prevented blocking client

requests during refresh for clusters with 1 million of chunks.

SERVER-73394 - Removed the operationBlockedByRefresh  metric from the serverStatus

command output.

SERVER-77183 - Fixed incorrect results when $project  is followed by $group  and the group doesn’t

require full document

SERVER-79771 - Made Resharding Operation Resilient to NetworkInterfaceExceededTimeLimit

SERVER-58534 - Collect the Feature Compatibility Version (FCV) in Full Time Diagnostic Data Capture

(FTDC) to simplify diagnostics.

SERVER-69244 - Fixed the issue with the $merge  operation failing when used in sharding clusters with

the read concern set to “majority”.

SERVER-79498 - Introduced vectorSearch  aggregation stage

SERVER-80021 - Fixed the conversion form string to doubleValue to not lose precision and be able to

rountrip and retrieve the same value back.

Find the full list of new features and improvements in the release notes for MongoDB 6.0.10 Community

Edition and [https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.11—oct-11–2023).

New Features
PSMDB-1241 - Implement the connectRetries  and the connectTimeoutMS  configuration file options

Warning

https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-71627
https://jira.mongodb.org/browse/SERVER-73394
https://jira.mongodb.org/browse/SERVER-77183
https://jira.mongodb.org/browse/SERVER-79771
https://jira.mongodb.org/browse/SERVER-58534
https://jira.mongodb.org/browse/SERVER-69244
https://jira.mongodb.org/browse/SERVER-79498
https://jira.mongodb.org/browse/SERVER-80021
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.10---sep-14--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.10---sep-14--2023
https://jira.percona.com/browse/PSMDB-1241


Page 178

Percona Server for MongoDB 6.0.9-7 (2023-09-
14)

Installation

Percona Server for MongoDB 6.0.9-7 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB 6.0.9 Community Edition.

It is based on MongoDB 6.0.9 Community edition and supports the upstream protocols and drivers.

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Release Highlights
Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-60466 - Fixed the flow for converting a replica set into a sharded cluster b adding support for

the drivers to communicate the signed $clusterTimes to shardsvr replica set before and after the

addShard  command is run

SERVER-74954 - Fixed the issue with the incorrect output for the query where the $or operator rewrites

the $elemMatch extra condition.

SERVER-79136 - Blocked the $group min/max rewrite in timestamp if there is a non-meta filter.

WT-10759 - During reconciliation do not retry to forcibly evict the page.

Find the full list of new features and improvements in the release notes for MongoDB 6.0.9 Community

edition.

Percona Server for MongoDB 6.0.8-6 (2023-08-
08)

Warning

https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.9---aug-14--2023
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-60466
https://jira.mongodb.org/browse/SERVER-74954
https://jira.mongodb.org/browse/SERVER-79136
https://jira.mongodb.org/browse/WT-10759
https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.9---aug-14--2023
https://www.mongodb.com/docs/v6.0/release-notes/6.0/#6.0.9---aug-14--2023


Page 179

Release date August 8, 2023

Installation Installing Percona Server for MongoDB

Percona Server for MongoDB 6.0.8-6 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB 6.0.7 and 6.0.8 Community Edition.

It supports protocols and drivers of both MongoDB 6.0.7 and 6.0.8.

This release of Percona Server for MongoDB includes the improvements and bug fixes of MongoDB 6.0.7

Community edition and MongoDB 6.0.8 Community edition.

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Changes to Chunk Management and Balancing

Several changes have been incrementally introduced within 6.0.x releases.

The name of a subset of data has changed from a chunk  to a range .

The data size has changed from 64 MB for a chunk to 128 MB for a range.

The balancer now distributes ranges based on the actual data size of collections. Formerly the balancer migrated

and balanced data across shards based strictly on the number of chunks of data that exist for a collection across

each shard. This, combined with the auto-splitter process could cause quite a heavy performance impact to heavy

write environments.

Ranges (formerly chunks) are no longer auto-split and will be split only when they move across shards for

distribution purposes. The auto-splitter process is currently still available but it serves no purpose and does nothing

active to the data. This also means that the Enable/Disable AutoSplit helpers should no longer be used.

The above changes are expected to lead to better performance overall going forward.

Release Highlights

Warning

Important

https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.7---jun-28--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.7---jun-28--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.8---jul-13--2023
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203


Page 180

The ability to configure AWS STS endpoint improves authentication and connectivity with AWS services.

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-71985 - Automatically retry time series insert on DuplicateKey error.

SERVER-73007 - Added the CURL_OPT_SEEKFUNCTION to resend the data during multi-pass

authentication

SERVER-74551 - Prevented unnecessary logging of WriteConflictExceptions  during the execution

of a findAndModify  command.

SERVER-77018 - Changed the index build behavior so that in-progress index builds are no longer

accounted for indexFreeStorageSize  when running dbStats.

WT-10449 - Do not save update chain when there are no updates to be written to the history store.

WT-11031 - Fixed the Rollback to Stable behavior to skip tables with no time window information in the

checkpoint.

SERVER-61127 - Retry multi-writes that hit StaleConfig due to critical section on the shard

SERVER-77005 - Improve LDAP authentication by leaving authenticated users logged-in during LDAP

server downtime.

SERVER-78414 - Fixed the issue with lost writes that occurred if recipient shard in chunk migration

skips changes by having recipient shard to run the transferMods command on the donor shard primary

until it learns there are no further changes.

SERVER-77169 - Fixed the issue with the server crash when restoring time series collection with

authentication enabled by validating the system.buckets.  namespace.

Find the full list of new features and improvements in the release notes for MongoDB 6.0.7 Community

edition and MongoDB 6.0.8 Community edition.

New Features
PSMDB-1291 - Add the ability to specify the AWS Security Token Service (STS) endpoint for

authentication

Bugs Fixed
PSMDB-1280 - Improve PSMDB behavior on client disconnect when the $backupCursorExtend  is

opened

PSMDB-1289 - Fixed the issue with the server crash during LDAP authentication by retrying sending

requests to the LDAP server and gracefully report errors.

https://jira.mongodb.org/browse/SERVER-71985
https://jira.mongodb.org/browse/SERVER-73007
https://jira.mongodb.org/browse/SERVER-74551
https://jira.mongodb.org/browse/SERVER-77018
https://jira.mongodb.org/browse/WT-10449
https://jira.mongodb.org/browse/WT-11031
https://jira.mongodb.org/browse/SERVER-61127
https://jira.mongodb.org/browse/SERVER-77005
https://jira.mongodb.org/browse/SERVER-78414
https://jira.mongodb.org/browse/SERVER-77168
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.7---jun-28--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.7---jun-28--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.8---jul-13--2023
https://jira.percona.com/browse/PSMDB-1291
https://jira.percona.com/browse/PSMDB-1280
https://jira.percona.com/browse/PSMDB-1289


Page 181

Percona Server for MongoDB 6.0.6-5 (2023-05-
25)

Release date May 25, 2023

Installation Installing Percona Server for MongoDB

Percona Server for MongoDB 6.0.6-5 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB 6.0.6 Community Edition.

It is based on MongoDB 6.0.6 Community edition and supports the upstream protocols and drivers.

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Release Highlights
Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-51835 - Fixed the handling of the read preference tags to respect their order and ignore other

tags when all eligible replica set members are found.

SERVER-67105 - Allowed usage of clustered index in queries.

SERVER-72774 - Prevented a node in quiesce mode to win election.

SERVER-74930 - Fixed the issue with the $avg  operator to return the sum instead of the average within

a $group  stage

SERVER-75205 - Fixed deadlock between stepdown  and restoring  locks after yielding when all read

tickets exhausted

Warning

https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.6---may-12--2023
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-51835
https://jira.mongodb.org/browse/SERVER-67105
https://jira.mongodb.org/browse/SERVER-72774
https://jira.mongodb.org/browse/SERVER-74930
https://jira.mongodb.org/browse/SERVER-75205


Page 182

WT-10551 - Fixed the bug with WiredTiger failing to load the incremental backup change bitmap for a

file. The issue affects MongoDB versions 4.4.8 through 4.4.21, 5.0.2 through 5.0.17, and 6.0.0 through

6.0.5 causing the server to crash with the checksum error if the affected incremental backup was

restored and the affected data is accessed.

If you are using incremental backups, upgrade to the fixed upstream version 6.0.6 / Percona Server for

MongoDB 6.0.6-5 as soon as possible. Follow closely the upstream recommendations to remediate the

negative impact.

Find the full list of new features and improvements in MongoDB 6.0.6 Community edition release notes.

Bugs Fixed
PSMDB-1211: Improved the master key rotation handling in case of failure

PSMDB-1231: Register a master key for data-at-rest encryption on the KMIP server in the raw-bytes

form

PSMDB-1239: Fixed the issue with PSMDB failing to restart when wrong data-at-rest encryption options

were used during the previous start

Percona Server for MongoDB 6.0.5-4 (2023-03-
29)

Release date March 29, 2023

Installation Installing Percona Server for MongoDB

Percona Server for MongoDB 6.0.5-4 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB 6.0.5 Community Edition.

It is rebased on MongoDB 6.0.5 Community edition and supports the upstream protocols and drivers.

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Warning

https://jira.mongodb.org/browse/WT-10551
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.6---may-12--2023
https://jira.percona.com/browse/PSMDB-1211
https://jira.percona.com/browse/PSMDB-1231
https://jira.percona.com/browse/PSMDB-1239
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.5---mar-13--2023
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203


Page 183

Release Highlights
Added support for authentication using AWS IAM enables you to natively integrate Percona Server for

MongoDB with AWS services, increase security of your infrastructure by setting up password-less

authentication and offload your DBAs from managing different sets of secrets. This is a technical

preview feature

Improved master key rotation for data at rest encrypted with HashiCorp Vault enables you to use the

same secret key path on every server in your entire deployment thus significantly simplifying the

secrets management and key rotation process.

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-61909 - Fixed a hang when inserting or deleting a document with large number of index entries

SERVER-66469 - Fixed the issue with filtering time-series collections that contain the date values earlier

than Unix epoch (1970)

SERVER-68122 - Fixed the issue with adding a new unencrypted node into an encrypted replica set by

removing options which might not apply for this node.

SERVER-73232 - Changed the default log verbosity level for _killOperations  to D2.

SERVER-73266 - Fixed deadlock that can occur during index creation

SERVER-73009 - Resolved the issue with the sort order on clustered collections where requested

decreasing order returned returned results in increasing order

SERVER-72512 - Fixed the issue with indexes reported as valid while being inconsistent by improving

the validation of those indexes

SERVER-71219 - Fixed the migration of distributed transactions by registering the migration source

operation observer hook in all paths where transactions transition into the prepared state.

Find the full list of new features and improvements in MongoDB 6.0.5 Community edition release notes.

New Features
PSMDB-1033: Add authentication with AWS IAM

Improvements
PSMDB-1148: Improve the master key rotation when using a single master key for data-at-rest

encryption with Vault in the entire deployment

Bugs Fixed

https://jira.mongodb.org/browse/SERVER-61909
https://jira.mongodb.org/browse/SERVER-66469
https://jira.mongodb.org/browse/SERVER-68122
https://jira.mongodb.org/browse/SERVER-73232
https://jira.mongodb.org/browse/SERVER-73266
https://jira.mongodb.org/browse/SERVER-73009
https://jira.mongodb.org/browse/SERVER-72512
https://jira.mongodb.org/browse/SERVER-71219
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.5---mar-13--2023
https://jira.percona.com/browse/PSMDB-1033
https://jira.percona.com/browse/PSMDB-1148


Page 184

PSMDB-1201: Improved the error message if the attempt to save an encryption key to a KMIP server

failed

PSMDB-1203: Gracefully terminate mongod if the master encryption key can’t be saved to a KMIP

server

PSMDB-1204: Fixed the handling of attributes list for LDAP authentication with OpenLDAP during the

user to DN mapping stage

2022 (versions 6.0.2-1 through 6.0.4-
3)

Percona Server for MongoDB 6.0.4-3 (2023-01-
30)

Release date January 30, 2023

Installation Installing Percona Backup for MongoDB

Percona Server for MongoDB 6.0.4-3 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB 6.0.4 Community Edition.

It is rebased on MongoDB 6.0.4 Community edition and supports the upstream protocols and drivers.

https://jira.percona.com/browse/PSMDB-1201
https://jira.percona.com/browse/PSMDB-1203
https://jira.percona.com/browse/PSMDB-1204
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.4-rc0---jan-12--2023


Page 185

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Release Highlights
Percona Server for MongoDB is now available on Red Hat Enterprise Linux 9 and compatible derivatives

A Docker image for Percona Server for MongoDB (Release candidate) is now available for ARM64

architectures. The support of ARM64 will be extended in subsequent releases.

Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-72416 - Fixed the issue with incorrect projection parsing when a collection level collation is

specified

SERVER-71759 - Changed the yielding policy of dataSize  command to YIELD_AUTO  for both when the

command is called with estimate:true  or false

SERVER-70237 - Fixed the issue with a BSON object exceeding the max allowed size during chunks

merge in a shard

SERVER-72222 - Fixed the incorrect behavior of the mapReduce  command with single reduce

optimization in sharded clusters

Find the full list of new features and improvements in MongoDB 6.0.4 Community edition release notes.

Percona Server for MongoDB 6.0.3-2 (2022-12-
07)

Release date December 7, 2022

Installation Installing Percona Backup for MongoDB

Percona Server for MongoDB 6.0.3-2 is an enhanced, source-available, and highly-scalable database that

is a fully-compatible, drop-in replacement for MongoDB 6.0.3 Community edition.

Warning

https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-72416
https://jira.mongodb.org/browse/SERVER-71759
https://jira.mongodb.org/browse/SERVER-70237
https://jira.mongodb.org/browse/SERVER-72222
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.4-rc0---jan-12--2023
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.3---nov-21--2022


Page 186

Percona Server for MongoDB 6.0.3-2 fully supports MongoDB 6.0 protocols and drivers and does not

require any code modifications.

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Release Highlights
Improvements and bug fixes, provided by MongoDB and included in Percona Server for MongoDB are the

following:

SERVER-66289 - Fixed the issue with how the server handles batches of writes when running $out with

secondary read preference by updating write size estimation logic in DocumentSourceWriter

SERVER-68371 - Allowed search queries to pass through query analysis when Client-Side Field Level

Encryption is enabled for the MongoClient

SERVER-68115 - Prevented dropping empty path component from elemMatch  path during index

selection

SERVER-68394 - Prevented yielding strong locks upon startup recovery when _id  index is missing

Find the full list of new features and improvements in MongoDB 6.0.3 Community edition release notes.

Improvements
PSMDB-1181: Add backup cursor parameters to cursor’s metadata

Bugs Fixed
PSMDB-1175: Fixed Percona Server for MongoDB behavior when calling $backupCursor  with

disableIncrementalBackup  option

Percona Server for MongoDB 6.0.2-1 (2022-10-
31)

Warning

https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-66289
https://jira.mongodb.org/browse/SERVER-68371
https://jira.mongodb.org/browse/SERVER-68115
https://jira.mongodb.org/browse/SERVER-68394
https://www.mongodb.com/docs/manual/release-notes/6.0/#6.0.3---nov-21--2022
https://jira.percona.com/browse/PSMDB-1181
https://jira.percona.com/browse/PSMDB-1175


Page 187

Release date October 31, 2022

Installation Installing Percona Backup for MongoDB

We are pleased to announce the availability of Percona Server for MongoDB (PSMDB) 6.0.2-1 – the new

major version of the source available, drop-in replacement of MongoDB 6.0 Community edition. It is

available for download from Percona website and for installation from Percona Software Repositories.

Percona Server for MongoDB 6.0.2-1 fully supports MongoDB 6.0 protocols and drivers and does not

require any code modifications.

We don’t recommend this version for production use due to the issue with routing sharding time series collections

SERVER-80203 which could result in metadata inconsistency. The routing issue is observed when documents have the

shard key containing the embedded object composed of multiple fields.

The issue affects time series sharded collections starting in MongoDB version 5.0.6 through versions 5.0.21, 6.0.11 and

7.0.2. It is fixed upstream in versions 5.0.22, 6.0.12 and 7.0.4 and included in Percona Server for MongoDB 5.0.22-19,

6.0.12-9 and 7.0.4-2.

If you are using time series collections, upgrade to the fixed version of MongoDB / Percona Server for MongoDB as

soon as possible and follow closely the upstream recommendations outlined in SERVER-80203 for remediation steps.

Release Highlights

Data-at-rest encryption using the Key Management Interoperability Protocol (KMIP) is generally

available enabling you to use it in your production environment

$backupCursor and $backupCursorExtend aggregation stages functionality is generally available,

enabling your application developers to use it for building custom backup solutions.

Percona provides Percona Backup for MongoDB - the open source tool for consistent backups and restores in

MongoDB sharded clusters.

Percona Server for MongoDB packages now include mongosh  of the previous mongo shell. The

previous legacy mongo  shell was deprecated in MongoDB 5.0 and has been removed in version 6.0.

Some older methods are unavailable or have been replaced with newer ones for the new mongosh .

Please review any methods for compatibility.

If you install Percona Server for MongoDB from tarballs, you must install mongosh  from a separate tarball.

Warning

Note

https://www.mongodb.com/docs/manual/release-notes/6.0/
https://www.percona.com/downloads/percona-server-mongodb-6.0/#
https://jira.mongodb.org/browse/SERVER-80203
https://jira.mongodb.org/browse/SERVER-80203
https://docs.percona.com/percona-backup-mongodb/index.html


Page 188

Percona Server for MongoDB 6.0.2-1 includes all the features of MongoDB 6.0.2 Community Edition,

among which are the following:

Enhanced time series collections enable you to:

Get deeper data analysis insights by building compound and secondary indexes on time, metadata

and measurement fields.

Distribute the load among nodes in the cluster by sharding new and existing time series collections.

Benefit from faster reads and improved performance by applying the sorting on the most recent

entry instead of the whole collection.

The following change streams optimizations help you enhance your event-driven solutions:

Improve in-app notifications, reference deleted documents or feed the updated version of the entire

doc to the downstream system using the before and after states of a document that was changed.

React not only to data changes but also to database change events like creating or dropping of

collections with the Data Definition Language (DDL) support.

New aggregation stages like $densify , $documents , $fill  and operators like $bottom , $firstN ,

$lastN , $maxN  / $minN  and others enable you to off load work from your developers to the database.

These operators allow automating key commands, getting required data insights by combining

individual operators into aggregation pipelines. As a result, your developers spend less time on writing

complex code or manipulating data manually and can focus on other activities.

Cluster-wide configuration parameters and commands save your DBAs’ time on cluster administration.

The Stable API (formerly known as versioned API) features the extended set of new database

commands and aggregation operators which enables you to improve communication of your apps and

MongoDB.

Speed up data processing and save on storage costs with clustered collections. Clustered collections

don’t require secondary indexes and thus, result in faster queries. A single read/write for the index and

the document improves performance for inserts, updates, deletes and queries. With less storage space

required by clustered connections, bulk updates and inserts are performed faster. And by turning

clustered indexes to TTL indexes with a single field, you benefit from simplified delete operations and

reduced storage costs.

Percona Server for MongoDB also includes the following bug fixes and enhancements provided upstream:

SERVER-68511 - Fixed the issue that caused inconsistency in sharding metadata when running the

movePrimary  command on the database that has the Feature Compatibility Version (FCV) set to 4.4 or

earlier. Affects MongoDB versions 5.0.0 through 5.0.10 and MongoDB 6.0.0. Upgrade to the the fixed

version of MongoDB 6.0.2 / Percona Server for MongoDB 6.0.2-1 as soon as possible.

SERVER-66072 - Fixed dependency analysis for $match  aggregation stage with aggregation

expressions with the $rand  operator

https://www.mongodb.com/docs/v6.0/core/timeseries-collections/#std-label-manual-timeseries-collection
https://www.mongodb.com/docs/v6.0/core/timeseries/timeseries-secondary-index/#std-label-timeseries-add-secondary-index-mongodb-6.0
https://www.mongodb.com/docs/v6.0/core/timeseries/timeseries-shard-collection/#std-label-manual-timeseries-shard-collection
https://www.mongodb.com/docs/v6.0/changeStreams/#std-label-changeStreams
https://www.mongodb.com/docs/v6.0/reference/method/db.collection.watch/#std-label-db.collection.watch-change-streams-pre-and-post-images-example
https://www.mongodb.com/docs/v6.0/reference/cluster-parameters/#std-label-cluster-parameters
https://www.mongodb.com/docs/v6.0/reference/stable-api/#std-label-stable-api
https://www.mongodb.com/docs/v6.0/core/clustered-collections/#std-label-clustered-collections
https://jira.mongodb.org/browse/SERVER-68511
https://jira.mongodb.org/browse/SERVER-66072


Page 189

SERVER-68130 - Fixed the AutoSplitVector’s behavior to predict the BSON object size when generating

the response

WT-9870 - Fixed the global time window state before performing the rollback to stable operation by

updating the pinned timestamp as part of the transaction setup.

SERVER-68628 - Fixed the issue when retrying a failed resharding operation after a primary failover

could lead to server crash or lost writes.

SERVER-68925 - Detect and resolve table logging inconsistencies for WiredTiger tables at startup

Find the full list of new features and improvements in MongoDB 6.0 Community Edition release notes.

Percona Server for MongoDB 6.0.2-1 extends this feature set by providing enterprise-level enhancements

for free.

To upgrade to PSMDB, see our upgrade instructions.

FAQ

How to check Percona Server for MongoDB version?
To see which version of Percona Server for MongoDB you are using, check the value of the

psmdbVersion  key in the output of the buildInfo database command. If this key does not exist, Percona

Server for MongoDB is not installed on the server.

Where is the location of the configuration and data files?
By default, Percona Server for MongoDB stores data files in /var/lib/mongodb/  and configuration

parameters in /etc/mongod.conf .

Reference

Glossary

https://jira.mongodb.org/browse/SERVER-68130
https://jira.mongodb.org/browse/WT-9870
https://jira.mongodb.org/browse/SERVER-68628
https://jira.mongodb.org/browse/SERVER-68925
https://www.mongodb.com/docs/v6.0/release-notes/6.0/
https://docs.mongodb.com/manual/reference/command/buildInfo/#dbcmd.buildInfo


Page 190

ACID
Set of properties that guarantee database transactions are processed reliably. Stands for Atomicity,

Consistency, Isolation, Durability.

Atomicity
Atomicity means that database operations are applied following a “all or nothing” rule. A transaction is

either fully applied or not at all.

Consistency
Consistency means that each transaction that modifies the database takes it from one consistent state to

another.

Durability
Once a transaction is committed, it will remain so.

Foreign Key
A referential constraint between two tables. Example: A purchase order in the purchase_orders table must

have been made by a customer that exists in the customers table.

Isolation
The Isolation requirement means that no transaction can interfere with another.

Jenkins
Jenkins is a continuous integration system that we use to help ensure the continued quality of the

software we produce. It helps us achieve the aims of:

no failed tests in trunk on any platform,

aid developers in ensuring merge requests build and test on all platforms,

no known performance regressions (without a damn good explanation).

Kerberos

http://www.jenkins-ci.org/


Page 191

Kerberos is an authentication protocol for client/server authentication without sending the passwords

over an insecure network. Kerberos uses symmetric encryption in the form of tickets - small pieces of

encrypted data used for authentication. A ticket is issued for the client and validated by the server.

Rolling restart
A rolling restart (rolling upgrade) is shutting down and upgrading nodes one by one. The whole cluster

remains operational. There is no interruption to clients assuming the elections are short and all writes

directed to the old primary use the retryWrite mechanism.# Glossary

Technical preview feature
Technical preview features are not yet ready for enterprise use and are not included in support via SLA.

They are included in this release so that users can provide feedback on their experience with the feature

prior to its full release in a future GA release (or removal of the feature if it is deemed not useful). This

functionality can change (APIs, CLIs, etc.) from tech preview to GA.

Telemetry and data collection
Percona collects usage data to improve its software. The telemetry feature helps us identify popular

features, detect problems, and plan future improvements.

Currently, telemetry is added only to the Percona packages for both basic and Pro builds and to Docker

images.

What information is collected
Telemetry collects the following information:

The information about the installation environment when you install the software.

The information about the operating system such as OS name, the architecture, the list of Percona

packages. See more in the Telemetry Agent section.

The metrics from the database instance. See more in the Telemetry Subsystem section.

What is NOT collected
Percona protects your privacy and doesn’t collect any personal information about you like database

names, user names or credentials or any user-entered values.

All collected data is anonymous, meaning it can’t be traced back to any individual user. To learn more

about how Percona handles your data, read the Percona Privacy statement.

https://www.percona.com/privacy-policy


Page 192

You control whether to share this information. Participation in this program is completely voluntary. If

don’t want to share anonymous data, you can disable telemetry.

Why telemetry matters
Benefits for Percona:

Advantages Description

See how people use

your software

Telemetry collects anonymous data on how users interact with our software. This tells

developers which features are popular, which ones are confusing, and if anything is

causing crashes.

Identify issues early Telemetry can catch bugs or performance problems before they become widespread.

Benefits for users in the long run:

Advantages Description

Faster bug fixes With telemetry data, developers can pinpoint issues affecting specific users and prioritize

fixing them quickly.

Improved features Telemetry helps developers understand user needs and preferences. This allows them to

focus on features that will be genuinely useful and improve your overall experience.

Improved user

experience

By identifying and resolving issues early, telemetry helps create a more stable and reliable

software experience for everyone.

Telemetry components
Percona collects information using the following components:

Telemetry script that sends the information about the software and the environment where it is

installed. This information is collected only once during the installation.

The Telemetry Subsystem collects the necessary metrics directly from the database and stores them in

a Metrics File.

The Metrics File stores the metrics and is a standalone file located on the database host’s file system.

The Telemetry Agent is an independent process running on your database host’s operating system and

carries out the following tasks:

Collects OS-level metrics



Page 193

Reads the Metrics File, adds the OS-level metrics

Sends the full set of metrics to the Percona Platform

Collects the list of installed Percona packages using the local package manager

The telemetry also uses the Percona Platform with the following components:

Telemetry Service - offers an API endpoint for sending telemetry. The service handles incoming

requests. This service saves the data into Telemetry Storage.

Telemetry Storage - stores all telemetry data for the long term.

Telemetry Subsystem

The Telemetry Subsystem extends the functionality of the database. It is built-in in Percona Server for

MongoDB and is implemented separately for mongod  and mongos  instances. The Telemetry Subsystem is

enabled by default during the initial database deployment.

The Telemetry Subsystem collects metrics from the database instance daily to the Metrics File. It creates

a new Metrics File for each collection. Before generating a new file, the Telemetry Subsystem deletes the

Metrics Files that are older than seven days. This process ensures that only the most recent week’s data is

maintained.

The Telemetry Subsystem creates a file in the local file system using a timestamp as the name with a

.json  extension.

Metrics File

The Metrics File is a JSON file with the metrics collected by the Telemetry Subsystem.

Locations

Percona stores the Metrics File in one of the following directories on the local file system. The location

depends on the product.

Telemetry root path - /usr/local/percona/telemetry

Percona Server for MongoDB has two root paths since the telemetry Subsystem is enabled both for the

mongod  and mongos  instances. The paths are the following:

mongod  root path - ${telemetry root path}/psmdb/

mongos  root path - ${telemetry root path}/psmdbs/

PS root path - ${telemetry root path}/ps/

PXC root path - ${telemetry root path}/pxc/



Page 194

PG root path - ${telemetry root path}/pg/

Percona archives the telemetry history in ${telemetry root path}/history/ .

Metrics File format

The Metrics File uses the Javascript Object Notation (JSON) format. Percona reserves the right to extend

the current set of JSON structure attributes in the future.

Telemetry Agent

mongod  Metrics File

The following is an example of the collected data generated by the mongod  instance of the config server

replica set of the sharded cluster:

mongos  Metrics File

The following is an example of the collected data generated by the mongos  instance.

{

"source": "mongod",

"pillar_version": "6.0.0",

"pro_features": [],

"db_instance_id": "65e9977d58deb2f66faa591c",

"db_internal_id": "65e9977d58deb2f66faa591c",

"db_cluster_id": "65e997cb58deb2f66faa5954",

"shard_svr": "true",

"config_svr": "true",

"uptime": "102",

"storage_engine": "wiredTiger",

"db_replication_id": "65e997cb58deb2f66faa5944",

"replication_state": "PRIMARY"

}

{

"source": "mongos",

"pillar_version": "6.0.0",

"pro_features": [],

"db_instance_id": "6690fea9066216c6d9d77044",

"uptime": "4",

"db_cluster_id": "6690fea65d86eb061c0bd728"

}



Page 195

The Percona Telemetry Agent runs as a dedicated OS daemon process percona-telemetry-agent . It

creates, reads, writes, and deletes JSON files in the ${telemetry root path} . You can find the agent’s

log file at /var/log/percona/telemetry-agent.log .

The agent does not send anything if there are no Percona-specific files in the target directory.

The following is an example of a Telemetry Agent payload:

The agent sends information about the database and metrics.

Key Description

“id” A generated Universally Unique Identifier (UUID) version 4

“createTime” UNIX timestamp

“instanceId” The DB Host ID. The value can be taken from the instanceId , the

/usr/local/percona/telemetry_uuid  or generated as a UUID version 4 if the file is absent.

“productFamily” The value from the file path

“metrics” An array of key:value pairs collected from the Metrics File.

The following operating system-level metrics are sent with each check:

{

"reports": [

{

"id": "B5BDC47B-B717-4EF5-AEDF-41A17C9C18BB",

"createTime": "2023-09-01T10:56:49Z",

"instanceId": "B5BDC47B-B717-4EF5-AEDF-41A17C9C18BA",

"productFamily": "PRODUCT_FAMILY",

"metrics": [

{

"key": "OS",

"value": "Ubuntu"

},

{

"key": "pillar_version",

"value": "6.0.0"

}

]

}

]

}



Page 196

Key Description

“OS” The name of the operating system

“hardware_arch” The type of process used in the environment

“deployment” How the application was deployed.

The possible values could be “PACKAGE” or “DOCKER”.

“installed_packages” A list of the installed Percona packages.

The information includes the following:

Package name

Package version - the same format as Red Hat Enterprise Linux or Debian

Package repository - if possible

The package names must fit the following pattern:

percona-*

Percona-*

proxysql*

pmm

etcd*

haproxy

patroni

pg*

postgis

wal2json

Disable telemetry
Telemetry is enabled by default when you install the software. It is also included in the software packages

(Telemetry Subsystem and Telemetry Agent) and enabled by default.

If you don’t want to send the telemetry data, here’s how:



Page 197

Disable the telemetry collected during the installation

If you decide not to send usage data to Percona when you install the software, you can set the

PERCONA_TELEMETRY_DISABLE=1  environment variable for either the root user or in the operating system

prior to the installation process.

Disable telemetry for the installed software

Debian-derived distribution

Add the environment variable before the installation process.

Red Hat-derived distribution

Add the environment variable before the installation process.

Docker

Add the environment variable when running a command in a new container.

The command does the following:

docker run  - This is the command to run a Docker container.

-d  - This flag specifies that the container should run in detached mode (in the background).

--name psmdb  - Assigns the name “psmdb” to the container.

--restart always  - Configures the container to restart automatically if it stops or crashes.

-e PERCONA_TELEMETRY_DISABLE=1  - Sets an environment variable within the container. In this case,

it disables telemetry for Percona Server for MongoDB.

percona/percona-server-mongodb:<TAG>-multi  - Specifies the image to use for the container. For

example, 6.0.24-19-multi . The multi  part of the tag serves to identify the architecture (x86_64 or

ARM64) and use the respective image.

$ sudo PERCONA_TELEMETRY_DISABLE=1 apt install percona-server-mongodb

$ sudo PERCONA_TELEMETRY_DISABLE=1 yum install percona-server-mongodb

$ docker run -d --name psmdb --restart always \

-e PERCONA_TELEMETRY_DISABLE=1 \

percona/percona-server-mongodb:<TAG>



Page 198

Percona software you installed includes the telemetry feature that collects information about how you use

this software. It is enabled by default. To turn off telemetry, you need to disable both the Telemetry Agent

and the Telemetry Subsystem.

Disable Telemetry Agent

In the first 24 hours, no information is collected or sent.

You can either disable the Telemetry Agent temporarily or permanently.

Even after stopping the Telemetry Agent service, a different part of the software (Telemetry Subsystem)

continues to create the Metrics File related to telemetry every day and saves that file for seven days.

Telemetry Agent dependencies and removal considerations

If you decide to remove the Telemetry Agent, this also removes the database. That’s because the

Telemetry Agent is a mandatory dependency for Percona Server for MongoDB.

On YUM-based systems, the system removes the Telemetry Agent package when you remove the last

dependency package.

On APT-based systems, you must use the ‘–autoremove’ option to remove all dependencies, as the system

doesn’t automatically remove the Telemetry Agent when you remove the database package.

The ‘–autoremove’ option only removes unnecessary dependencies. It doesn’t remove dependencies

required by other packages or guarantee the removal of all package-associated dependencies.

Disable the Telemetry Subsystem

Disable temporarily

Turn off Telemetry Agent temporarily until the next server restart with this command:

Disable permanently

Turn off Telemetry Agent permanently with this command:

$ systemctl stop percona-telemetry-agent

$ systemctl disable percona-telemetry-agent



Page 199

To disable the Telemetry Subsystem, set the perconaTelemetry  server parameter to false . You can do

this in one of the following ways:

If you wish to re-enable the Telemetry Subsystem, set the perconaTelemetry  to true  for the setParameter

command.

Copyright and licensing information

Documentation licensing
Percona Server for MongoDB documentation is (C)2016-2025 Percona LLC and/or its affiliates and is

distributed under the Creative Commons Attribution 4.0 International License.

Software license

 Configuration file

Use the setParameter.perconaTelemetry  parameter in the configuration file for persistent changes:

 Command line

Use the --setParameter  command line option arguments for both mongod  and mongos  processes. The

server starts with the telemetry Subsystem disabled:

setParameter  command

Use the setParameter  command on the admin  database to make changes at runtime. The changes

apply until the server restart.

setParameter:

perconaTelemetry: false

$ mongod \

--setParameter perconaTelemetry=false

$ mongos \

--setParameter perconaTelemetry=false

> db.adminCommand({setParameter: 1, "perconaTelemetry": false})

Tip

https://creativecommons.org/licenses/by/4.0/


Page 200

Percona Server for MongoDB is source-available software.

Trademark policy
This Trademark Policy is to ensure that users of Percona-branded products or services know that what

they receive has really been developed, approved, tested and maintained by Percona. Trademarks help to

prevent confusion in the marketplace, by distinguishing one company’s or person’s products and services

from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB,

XtraBackup, Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and

logos associated with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service,

website, or other use is not permitted without Percona’s written permission with the following three limited

exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona

fide Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL”),

you may use the appropriate Percona mark when distributing a verbatim copy of that product in

accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona

software that has been modified with minor changes for the sole purpose of allowing the software to

operate on an operating system or hardware platform for which Percona has not yet released the

software, provided that those third party changes do not affect the behavior, functionality, features, design

or performance of the software. Users who acquire this Percona-branded software receive substantially

exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if

Percona believes that your modification is beyond the scope of the limited license granted in this Policy or

that your use of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon

revocation, you must immediately cease using the applicable Percona mark. If you do not immediately

cease using the Percona mark upon revocation, Percona may take action to protect its rights and interests

in the Percona mark. Percona does not grant any license to use any Percona mark for any other modified

versions of Percona software; such use will require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate,

modify or otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a

modified version of the Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or

“Percona XYZ Server”, even if that modification otherwise complies with the third exception noted above.

https://en.wikipedia.org/wiki/Source-available_software
https://www.percona.com/trademark-policy


Page 201

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as

amended from time to time. For instance, any mention of Percona trademarks should include the full

trademarked name, with proper spelling and capitalization, along with attribution of ownership to Percona

Inc. For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to

omit the word “Percona” for brevity on the second and subsequent uses, where such omission does not

cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please

contact trademarks@percona.com for assistance and we will do our very best to be helpful.

mailto:trademarks@percona.com

